1
|
Huang T, Che S, Lv Z, Hao D, Wang R, Yi Q, Mei L, Yuan Y, Zou H, Guo Y, Wang X, Chu Y, Zhao K. mRNA-LNP vaccines combined with tPA signal sequence elicit strong protective immunity against Klebsiella pneumoniae. mSphere 2025; 10:e0077524. [PMID: 39745376 PMCID: PMC11774038 DOI: 10.1128/msphere.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Klebsiella pneumoniae is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling K. pneumoniae. To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections. In the present study, we aim to construct a new mRNA vaccine encoding YidR or combining with a tissue plasminogen activator signal sequence for preventing K. pneumoniae infection. Adaptive immunity was determined in mRNA vaccines-immunized mice and the protective effects of mRNA vaccines were evaluated in K. pneumoniae infected models. The results showed that lipid nanoparticle (LNP)-YidR-mRNA vaccine was produced with good morphology, high the encapsulation efficiency, and the specific antigen was highly expressed in cells in vitro. In addition, immunization with either LNP-YidR or LNP-YidR-SP elicited a Th1-biased immune response, reduced bacterial load, and provided broad protection in the lung infection models. Importantly, the LNP-YidR-SP mRNA vaccine induced strong adaptive humoral and cellular immunity and increased the survivability of mice compared to the other groups. Our findings serve as a focal point for developing a potential mRNA vaccine against K. pneumoniae, indicating the potential of mRNA vaccines for improving next-generation bacterial vaccine.IMPORTANCEK. pneumoniae is a notorious and clinical bacterium that is evolving in community-acquired and nosocomial settings. This opportunistic pathogen causes severe infectious diseases, including urinary tract infection and pneumonia, and causes a concerning global public burden. Despite efforts having been created to develop different types of K. pneumoniae vaccines, there is no licensed vaccine for preventing K. pneumoniae infection. Therefore, to develop an effective tactic is essential to combat K. pneumoniae-caused diseases. This study provides a novel vaccine strategy against K. pneumoniae and a potent platform to elicit high levels of humoral and cell-meditated immunity.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Siyou Che
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zheng Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Danrui Hao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Runyu Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Qinxuan Yi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yang Yuan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Hang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yidong Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Lv Z, Zhang X, Zhao K, Du L, Wang X, Chu Y, Huang T. Co-immunization with DNA vaccines encoding yidR and IL-17 augments host immune response against Klebsiella pneumoniae infection in mouse model. Virulence 2024; 15:2345019. [PMID: 38656137 PMCID: PMC11057650 DOI: 10.1080/21505594.2024.2345019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.
Collapse
Affiliation(s)
- Zheng Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Xuan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
- Antiinfective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Tong X, Cao Z, Cheng S, Zhang B, Li X, Kastelic JP, Xu C, Han B, Gao J. Immunoprotective efficacy of 3 Klebsiella pneumoniae type I fimbriae proteins in a murine model. Vet Microbiol 2024; 297:110197. [PMID: 39126781 DOI: 10.1016/j.vetmic.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Klebsiella pneumoniae is a primary cause of clinical mastitis in dairy cows, with prevention being crucial, as treatments often fail due to antimicrobial resistance. Recent studies identified type I fimbrial antigens of K. pneumoniae as promising vaccine candidates, but there are limited research data. In this study, 3 fimbriae genes (fimA, fimC and fimG) were cloned and recombinantly expressed in Escherichia coli and their protective efficacy against K. pneumoniae evaluated in a mouse model. All 3 recombinant fimbriae proteins elicited strong humoral immune responses in mice, significantly increasing IgG, IgG1 and IgG2a. Notably, using a model of mice challenged with an intraperitoneal injection of bacteria, FimG significantly reduced bacterial loads in the spleen and lung, whereas FimA and FimC had limited protection for these organs. Either active or passive immunization with FimG produced substantial protective effects in mice challenged with K. pneumoniae LD100; in contrast, the mortality rate in the FimA-immunized group was similar to that of the control group, whereas FimC had weak protection. We concluded that the FimG recombinant protein vaccine had a favorable protective effect, with potential for immunization against K. pneumoniae mastitis.
Collapse
Affiliation(s)
- Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Zhongming Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Siying Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Baoling Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
4
|
Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res 2024; 287:127837. [PMID: 39059097 DOI: 10.1016/j.micres.2024.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Klebsiella pneumoniae, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against K. pneumoniae. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by K. pneumoniae. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of K. pneumoniae vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR K. pneumoniae.
Collapse
|
5
|
Wantuch PL, Rosen DA. Klebsiella pneumoniae: adaptive immune landscapes and vaccine horizons. Trends Immunol 2023; 44:826-844. [PMID: 37704549 DOI: 10.1016/j.it.2023.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
8
|
Ranjbarian P, Sobhi Amjad Z, Chegene Lorestani R, Shojaeian A, Rostamian M. Klebsiella pneumoniae vaccine studies in animal models. Biologicals 2023; 82:101678. [PMID: 37126906 DOI: 10.1016/j.biologicals.2023.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/01/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
The treatment of Klebsiella pneumoniae is faced with challenges demanding the development of a vaccination strategy. However, no approved and globally available vaccine exists yet. This study aimed to systematically review all published data on K. pneumoniae vaccines in animal models. Without time restrictions, electronic databases were searched using appropriate keywords. The retrieved studies were screened and the data of those that matched our inclusion criteria were collected and analyzed. In total, 2027 records were retrieved; of which 35 studies were included for systematic review. The most frequently used animal model was BALB/c mice. Proteins, polysaccharides, and their combinations (conjugates) were the most common vaccine candidates used. The amount of antigen, the route used for immunization, and the challenge strategy was varying in the studies and were chosen based on several factors such as the animal model, the type of antigen, and the schedule of immunization. Almost all studies claimed that their vaccine was effective/protective, indicated by increasing survival rate, reducing organ bacterial load, and eliciting protective antibody and/or cytokine responses. Altogether, the information presented here will assist researchers to have a better look at the K. pneumoniae vaccine candidates and to take more effective steps in the future.
Collapse
Affiliation(s)
- Parivash Ranjbarian
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roya Chegene Lorestani
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Wang Z, Wen Z, Jiang M, Xia F, Wang M, Zhuge X, Dai J. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Transbound Emerg Dis 2022; 69:e2661-e2676. [PMID: 35679514 DOI: 10.1111/tbed.14615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
Klebsiella pneumoniae is well-known opportunistic enterobacteria involved in complex clinical infections in humans and animals. The domestic animals might be a source of the multidrug-resistant virulent K. pneumoniae to humans. K. pneumoniae infections in domestic animals are considered as an emergent global concern. The horizontal gene transfer plays essential roles in bacterial genome evolution by spread of virulence and resistance determinants. However, the virulence genes can be transferred horizontally via K. pneumoniae-derived outer membrane vesicles (OMVs) remains to be unreported. In this study, we performed complete genome sequencing of two K. pneumoniae HvK2115 and CRK3022 with hypervirulent or carbapenem-resistant traits. OMVs from K. pneumoniae HvK2115 and CRK3022 were purified and observed. The carriage of virulence or resistance genes in K. pneumoniae OMVs was identified. The influence of OMVs on the horizontal transfer of virulence-related or drug-resistant plasmids among K. pneumoniae strains was evaluated thoroughly. The plasmid transfer to recipient bacteria through OMVs was identified by polymerase chain reaction, pulsed field gel electrophoresis and Southern blot. This study revealed that OMVs could mediate the intraspecific and interspecific horizontal transfer of the virulence plasmid phvK2115. OMVs could simultaneously transfer two resistance plasmids into K. pneumoniae and Escherichia coli recipient strains. OMVs-mediated horizontal transfer of virulence plasmid phvK2115 could significantly enhance the pathogenicity of human carbapenem-resistant K. pneumoniae CRK3022. The CRK3022 acquired the virulence plasmid phvK2115 could become a CR-hvKp strain. It was critically important that OMVs-mediated horizontal transfer of phvK2115 lead to the coexistence of virulence and carbapenem-resistance genes in K. pneumoniae, resulting in the emerging of carbapenem-resistant hypervirulent K. pneumoniae.
Collapse
Affiliation(s)
- Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia (Nathan) 2022; 14:4. [PMID: 35509063 PMCID: PMC9069761 DOI: 10.1186/s41479-022-00096-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Bacterial pneumonia is one of the most serious public health issues owing to its medical and economic costs, which result in increased morbidity and mortality in people of all ages around the world. Furthermore, antimicrobial resistance has risen over time, and the advent of multi-drug resistance in GNB complicates therapy and has a detrimental impact on patient outcomes. The current review aimed to summarize bacterial pneumonia with an emphasis on gram-negative etiology, pathogenesis, risk factors, resistance mechanisms, treatment updates, and vaccine concerns to tackle the problem before it causes a serious consequence. In conclusion, the global prevalence of GNB in CAP was reported 49.7% to 83.1%, whereas in VAP patients ranged between 76.13% to 95.3%. The most commonly reported MDR-GNB causes of pneumonia were A. baumannii, K. pneumoniae, and P. aeruginosa, with A. baumannii isolated particularly in VAP patients and the elderly. In most studies, ampicillin, tetracyclines, amoxicillin-clavulanic acid, cephalosporins, and carbapenems were shown to be highly resistant. Prior MDR-GNB infection, older age, previous use of broad-spectrum antibiotics, high frequency of local antibiotic resistance, prolonged hospital stays, ICU admission, mechanical ventilation, and immunosuppression are associated with the MDR-GNB colonization. S. maltophilia was reported as a severe cause of HAP/VAP in patients with mechanically ventilated and having hematologic malignancy due to its ability of biofilm formation, site adhesion in respiratory devices, and its intrinsic and acquired drug resistance mechanisms. Effective combination therapies targeting PDR strains and drug-resistant genes, antibiofilm agents, gene-based vaccinations, and pathogen-specific lymphocytes should be developed in the future.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| |
Collapse
|
11
|
Singh A, Singh AN, Rathor N, Chaudhry R, Singh SK, Nath G. Evaluation of Bacteriophage Cocktail on Septicemia Caused by Colistin-Resistant Klebsiella pneumoniae in Mice Model. Front Pharmacol 2022; 13:778676. [PMID: 35197852 PMCID: PMC8860340 DOI: 10.3389/fphar.2022.778676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Objective: The emergence of resistance against last-resort antibiotics, carbapenem and colistin, in Klebsiella pneumoniae has been reported across the globe. Bacteriophage therapy seems to be one of the most promising alternatives. This study aimed to optimize the quantity and frequency of bacteriophage cocktail dosage/s required to eradicate the Klebsiella pneumoniae bacteria in immunocompetent septicemic mice. Methods: The three most active phages ɸKpBHU4, ɸKpBHU7, and ɸKpBHU14 characterized by molecular and TEM analyses were in the form of cocktail and was given intraperitoneally to mice after inducing the septicemia mice model with a constant dose of 8 × 107 colony-forming unit/mouse (CFU/mouse) Klebsiella pneumoniae. After that, the efficacy of the phage cocktail was analyzed at different dosages, that is, in increasing, variable, constant, and repeated dosages. Furthermore, interleukin-6 and endotoxin levels were estimated with variable doses of phage cocktail. Results: We have elucidated that phage therapy is effective against the Klebsiella pneumoniae septicemia mice model and is a promising alternative to antibiotic treatments. Our work delineates that a single dose of phage cocktail with 1 × 105 plaque-forming unit/mouse (PFU/mouse) protects the mice from fatal outcomes at any stage of septicemia. However, a higher phage dosage of 1 × 1012 PFU/mice is fatal when given at the early hours of septicemia, while this high dose is not fatal at the later stages of septicemia. Moreover, multiple repeated dosages are required to eradicate the bacteria from peripheral blood. In addition, the IL-6 levels in the 1 × 105 PFU/mouse group remain lower, but in the 1 × 1012 PFU/mouse group remains high at all points, which were associated with fatal outcomes. Conclusion: Our study showed that the optimized relatively lower and multiple dosages of phage cocktails with the strict monitoring of vitals in clinical settings might cure septicemia caused by MDR bacteria with different severity of infection.
Collapse
Affiliation(s)
- Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Assoni L, Girardello R, Converso TR, Darrieux M. Current Stage in the Development of Klebsiella pneumoniae Vaccines. Infect Dis Ther 2021; 10:2157-2175. [PMID: 34476772 PMCID: PMC8412853 DOI: 10.1007/s40121-021-00533-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
Klebsiella pneumoniae is a bacterium capable of colonizing mucous membranes, causing serious infections. Widespread antibiotic resistance in K. pneumoniae—either through intrinsic mechanisms or via acquisition from different species, especially in hospital environments—limits the therapeutic options against this pathogen, further aggravating the disease burden. To date, there are no vaccines available against K. pneumoniae infection. Although formulations based on capsular polysaccharides have been proposed, the high variability in capsular serotypes limits vaccine coverage. Recombinant vaccines based on surface exposed bacterial antigens are a promising alternative owing to their conservation among different serotypes and accessibility to the immune system. Many vaccine candidates have been proposed, some of which have reached clinical trials. The present review summarizes the current status of K. pneumoniae vaccine development. Different strategies including whole cell vaccines, outer membrane vesicles (OMVs), ribosome, polysaccharide, lipopolysaccharide (LPS), and protein-based formulations are discussed. The contribution of antibody and cell-mediated responses is also presented. In summary, K. pneumoniae vaccines are feasible and a promising strategy to prevent infections and to reduce the antimicrobial resistance burden worldwide.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil.
| |
Collapse
|
13
|
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int J Mol Sci 2021; 22:4042. [PMID: 33919847 PMCID: PMC8070759 DOI: 10.3390/ijms22084042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (V.A.); (M.M.R.); (G.G.); (F.B.S.)
| |
Collapse
|
14
|
Atelge M, Inci A, Yildirim A, Sozdutmaz I, Adler PH. First molecular characterization of hypodermin genes of Hypoderma bovis and serodiagnosis of bovine hypodermosis with recombinant hypodermin C antigen and a synthetic peptide containing its linear B-cell epitope. Vet Parasitol 2021; 292:109394. [PMID: 33689962 DOI: 10.1016/j.vetpar.2021.109394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Hypodermins A (HA), B (HB), and C (HC) of warble flies are modulatory antigens involved in host inflammation and immune responses during migration of the warble fly larvae through host connective tissues. In the current study, molecular characteristics of the genes encoding HA, HB, and HC were revealed from cDNA constructs of third-instar larvae of Hypoderma bovis. The open reading frame (ORF) of each hypodermin gene was amplified with modified gene-specific primers, and the resulting PCR products were cloned into pGEM-T Easy Vector to produce recombinant plasmids (rHA, rHB, and rHC). The ORF sequences of rHA, rHB, and rHC genes are 705 bp, 771 bp, and 783 bp long and encode proteins of 234, 256, and 263 amino acids with predicted sizes of 25.74 kDa, 27.79 kDa, and 28.51 kDa, respectively. The rHC gene was subcloned into the pET 100/D-TOPO Expression Vector, and the recombinant HC was purified using affinity chromatography. Western blotting indicated that rHC was recognized by the sera of cattle naturally infested with H. bovis. The rHC and a synthetic peptide (sHC) containing its linear B cell-specific epitope were evaluated as serological markers in indirect ELISA (iELISA) for the diagnosis of bovine hypodermosis. Both sHC and rHC iELISAs had sensitivity values equal to or higher than 90 % and specificity values of 100 %. A total of 200 serum samples from cattle in the Central Anatolia Region of Turkey were also analyzed by rHC and sHC-iELISAs to reveal the seroprevalence of bovine hypodermosis. The results of both iELISAs were consistent with one another and revealed a hypodermosis prevalence of 62 %. Our study provides the first data on molecular characterization of hypodermin genes of H. bovis and indicates the efficacy of recombinant antigen and peptide-based iELISA for serodiagnosis of bovine hypodermosis.
Collapse
Affiliation(s)
- Mubeccel Atelge
- Department of Parasitology, Faculty of Veterinary Medicine, Kastamonu University, 37150, Kastamonu, Turkey; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039, Kayseri, Turkey.
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039, Kayseri, Turkey
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039, Kayseri, Turkey
| | - Ibrahim Sozdutmaz
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039, Kayseri, Turkey; Department of Virology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Peter H Adler
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
15
|
Tomazi T, Tomazi ACCH, Silva JCC, Bringhenti L, Bravo MLMC, Rodrigues MX, Bicalho RC. Immunization with a novel recombinant protein (YidR) reduced the risk of clinical mastitis caused by Klebsiella spp. and decreased milk losses and culling risk after Escherichia coli infections. J Dairy Sci 2021; 104:4787-4802. [PMID: 33612238 DOI: 10.3168/jds.2020-19173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
The primary objective of this study was to evaluate the protective efficacy of a novel recombinant subunit vaccine containing the protein YidR (rYidR) against clinical mastitis (CM) caused by Klebsiella spp. and Escherichia coli. Given that E. coli infection is known to cause metritis, we also evaluated the effect of rYidR vaccination on the incidence of metritis and conception at the first artificial insemination. Retained placenta and abortion incidence, milk production and composition, and serological responses to specific antigens were also evaluated. In total, 3,107 cows were blocked by parity and randomly allocated into 1 of 3 treatment groups: experimental recombinant subunit vaccine containing the YidR protein (rYidR); commercial vaccine composed of Klebsiella pneumoniae siderophore receptors and porin protein (Kleb-SRP; KlebVax, Epitopix, Willmar, MN); and sterile water adjuvanted with aluminum hydroxide (20%; placebo). Vaccinations were performed at the dry-off for cows, and at 223 ± 3 d of pregnancy for pre-fresh heifers. A second administration was given at 21 ± 3 d after the first injection. Vaccination with rYidR significantly reduced the incidence of CM caused by Klebsiella spp. (3.2%) when compared with the placebo (5.1%) group. No difference was observed on risk of Klebsiella CM between Kleb-SRP (5.9%) and placebo groups. Cows in the rYidR group that experienced E. coli CM had a lower risk of death or culling (12.5%) compared with the Kleb-SRP (27.6%) and placebo groups (27.8%). Furthermore, among cows that developed E. coli CM, rYidR-immunized cows produced more milk than did cows in the placebo and Kleb-SRP groups. Regardless of CM occurrence, rYidR-immunized cows tended to have higher milk production up to the eighth month of lactation than cows in the other groups. No significant effect of treatment was observed on the overall incidence of abortion and metritis; however, the risk of retained placenta tended to be lower for the rYidR group (4.7%) compared with the placebo group (6.7%). In addition, primiparous cows in the rYidR group had the highest conception risk at the first artificial insemination (48.3%) compared with the placebo (39.5%) group, and no significant difference was observed when the Kleb-SRP (40.1%) group was compared with the placebo group. Generally, higher antibody serum titers (IgM and IgG) were observed for the immunized groups compared with the placebo. In conclusion, the rYidR vaccine reduced the risk of CM caused by Klebsiella spp. and the mortality or culling of cows with E. coli infections. Other benefits of the novel vaccine include maintenance of milk production after CM caused by E. coli, and higher conception risk at the first service in primiparous cows compared with cows in the placebo and Kleb-SRP groups.
Collapse
Affiliation(s)
- T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - J C C Silva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M L M C Bravo
- Departamento de Agroindústria, Alimentos e Nutrição, Universidade de Sao Paulo, Piracicaba, Sao Paulo, Brazil 13418-900; Escuela Ingeniería Agroindustrial, Faculdad Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Chota, Cajamarca, Peru 06121
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
16
|
Recombinant Technologies to Improve Ruminant Production Systems: The Past, Present and Future. Processes (Basel) 2020. [DOI: 10.3390/pr8121633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of recombinant technologies has been proposed as an alternative to improve livestock production systems for more than 25 years. However, its effects on animal health and performance have not been described. Thus, understanding the use of recombinant technology could help to improve public acceptance. The objective of this review is to describe the effects of recombinant technologies and proteins on the performance, health status, and rumen fermentation of meat and milk ruminants. The heterologous expression and purification of proteins mainly include eukaryotic and prokaryotic systems like Escherichia coli and Pichia pastoris. Recombinant hormones have been commercially available since 1992, their effects remarkably improving both the reproductive and productive performance of animals. More recently the use of recombinant antigens and immune cells have proven to be effective in increasing meat and milk production in ruminant production systems. Likewise, the use of recombinant vaccines could help to reduce drug resistance developed by parasites and improve animal health. Recombinant enzymes and probiotics could help to enhance rumen fermentation and animal efficiency. Likewise, the use of recombinant technologies has been extended to the food industry as a strategy to enhance the organoleptic properties of animal-food sources, reduce food waste and mitigate the environmental impact. Despite these promising results, many of these recombinant technologies are still highly experimental. Thus, the feasibility of these technologies should be carefully addressed before implementation. Alternatively, the use of transgenic animals and the development of genome editing technology has expanded the frontiers in science and research. However, their use and implementation depend on complex policies and regulations that are still under development.
Collapse
|
17
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|