1
|
Szabados T, Makkos A, Ágg B, Benczik B, Brenner GG, Szabó M, Váradi B, Vörös I, Gömöri K, Varga ZV, Görbe A, Bencsik P, Ferdinandy P. Pharmacokinetics and cardioprotective efficacy of intravenous miR-125b* microRNA mimic in a mouse model of acute myocardial infarction. Br J Pharmacol 2025; 182:432-450. [PMID: 39472767 DOI: 10.1111/bph.17345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND PURPOSE MicroRNA (miRNA) therapy is a promising approach to induce cardioprotection. We have previously identified cardiac microRNA-125b* (microRNA-125b-2-3p; miR-125b*) as a potential cardioprotective miRNA, termed ProtectomiR. We aimed to characterize the pharmacokinetics and pharmacodynamics, and the effect of miR-125b* mimic on infarct size using an in vivo mouse model. EXPERIMENTAL APPROACH To characterize the pharmacokinetics properties of miR-125b* mimic, a single injection of 10-μg miR-125b* mimic or its scramble miRNA control, or vehicle i.v. was given to C57BL/6 mice. MiR-125b* expression was measured from plasma, heart, kidney and liver samples. Effect of miR-125b* on area at risk and infarct size was assessed after 45-min coronary occlusion, followed by 24-h reperfusion; 10-μg miR-125b* mimic or 10-μg non-targeting miRNA mimic control or vehicle were administered via the right jugular vein at 10th mins of coronary occlusion. To assess molecular mechanism involved in cardioprotection, expression of mRNA targets of miR-125b* were measured from ventricular myocardium at 1, 2, 4, 8 or 24 h post-treatment using quantitative real time polymerase chain reaction. KEY RESULTS MiR-125b* expression was markedly increased in plasma and myocardium 1 h, and in the liver 2h after treatment. Infarct size was significantly reduced after miR-125b* mimic treatment when compared to the vehicle. The expression of Ccna2, Eef2k and Cacnb2 target mRNAs was significantly reduced 8 h after injection of miR-125b* mimic. CONCLUSION AND IMPLICATIONS This is the first demonstration of pharmacokinetic and molecular pharmacodynamic properties as well as the cardioprotective effect of miR-125b* mimic in vivo. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - András Makkos
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Gábor G Brenner
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Barnabás Váradi
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Heger J, Szabados T, Brosinsky P, Bencsik P, Ferdinandy P, Schulz R. Sex Difference in Cardioprotection against Acute Myocardial Infarction in MAO-B Knockout Mice In Vivo. Int J Mol Sci 2023; 24:ijms24076443. [PMID: 37047416 PMCID: PMC10094730 DOI: 10.3390/ijms24076443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
The cardiomyocyte-specific knockout (KO) of monoamine oxidase (MAO)-B, an enzyme involved in the formation of reactive oxygen species (ROS), reduced myocardial ischemia/reperfusion (I/R) injury in vitro. Because sex hormones have a strong impact on MAO metabolic pathways, we analyzed the myocardial infarct size (IS) following I/R in female and male MAO-B KO mice in vivo. Method and Results: To induce the deletion of MAO-B, MAO-B KO mice (Myh6 Cre+/MAO-Bfl/fl) and wild-type (WT, Cre-negative MAO-Bfl/fl littermates) were fed with tamoxifen for 2 weeks followed by 10 weeks of normal mice chow. Myocardial infarction (assessed by TTC staining and expressed as a percentage of the area at risk as determined by Evans blue staining)) was induced by 45 min coronary occlusion followed by 120 min of reperfusion. Results: The mortality following I/R was higher in male compared to female mice, with the lowest mortality found in MAO-B KO female mice. IS was significantly higher in male WT mice compared to female WT mice. MAO-B KO reduced IS in male mice but had no further impact on IS in female MAO-B KO mice. Interestingly, there was no difference in the plasma estradiol levels among the groups. Conclusion: The cardiomyocyte-specific knockout of MAO-B protects male mice against acute myocardial infarction but had no effect on the infarct size in female mice.
Collapse
|
3
|
Tian T, Zhang J, Xiong L, Yu H, Deng K, Liao X, Zhang F, Huang P, Zhang J, Chen Y. Evaluating Subtle Pathological Changes in Early Myocardial Ischemia Using Spectral Histopathology. Anal Chem 2022; 94:17112-17120. [PMID: 36442494 DOI: 10.1021/acs.analchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early myocardial ischemia (EMI) is morphologically challenging, and the results from conventional histological staining may be subjective, imprecise, or even silent. The size of myocardial necrosis determines the acute and long-term mortality of EMI. The precise diagnosis of myocardial ischemia is critical for both clinical management and forensic investigation. Fourier transform infrared (FTIR) spectroscopic imaging is a highly sensitive tool for detecting protein conformations and imaging protein profiles. The aim of this study was to evaluate the application of FTIR imaging with multivariate analysis to detect biochemical changes in the protein conformation in the early phase of myocardial ischemia and to visually classify different disease states. The spectra and curve fitting results revealed that the total protein content decreased significantly in the EMI group and that the α-helix content of the secondary protein structure continuously decreased as ischemia progressed, while the β-sheet content increased. Differences in the control and EMI groups and perfused and ischemic myocardium were confirmed using principal component analysis and partial least squares discriminant analysis. Next, two support vector machine classifiers were effectively created. The accuracy, recall, and precision were 99.98, 99.96, and 100.00%, respectively, to differentiate the EMI group from the control group and 99.25, 98.95, and 99.54%, respectively, to differentiate perfused and ischemic myocardium. Ultimately, high EMI diagnostic accuracy was achieved with 100.00% recall and 100.00% precision, and ischemic myocardium diagnostic accuracy was achieved with 99.30% recall and 99.53% precision for the test set. This pilot study demonstrated that FTIR imaging is a powerful automated quantitative analysis tool to detect EMI without morphological changes and will improve diagnostic accuracy and patient prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ling Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Haixing Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Yijiu Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| |
Collapse
|
4
|
Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12:49. [PMID: 34488888 PMCID: PMC8420010 DOI: 10.1186/s13293-021-00392-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.
Collapse
|
5
|
Chen H, Gao J, Xu Q, Wan D, Zhai W, Deng L, Qie R. MiR-145-5p modulates lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia. Can J Physiol Pharmacol 2021; 99:857-863. [PMID: 34143694 DOI: 10.1139/cjpp-2020-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aims to explore the role of microRNA 145-5p (miR-145-5p) in hyperlipidemia. Using bioinformatics tools and a wide range of function and mechanism assays, we attempted to understand the specific function and potential mechanism of miR-145-5p in hyperlipidemia. A cholesterol-enriched diet induced an increase of serum cholesterol and triacylglycerol but a decrease of serum high-density lipoprotein. MiR-145-5p level was decreased in hyperlipidemia rat models. MiR-145-5p regulated lipid metabolism by antagonizing the alteration of high-density lipoprotein, cholesterol, and triacylglycerol in serum mediated by a cholesterol-enriched diet. In mechanism, miR-145-5p directly bound with p21 protein (RAC1)-activated kinase 7 (PAK7) and negatively regulated mRNA and protein levels of PAK7 in THP-1 cells. Furthermore, miR-145-5p level was negatively associated with PAK7 level in rat cardiac tissues. Finally, overexpression of PAK7 reversed the effects of miR-145-5p on β-catenin activation and M2 macrophages polarization in THP-1 cells. In conclusion, MiR-145-5p modulated lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia, which may provide a potential biomarker for the treatment of hyperlipidemia-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Jing Gao
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Qian Xu
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Dongmei Wan
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Wenji Zhai
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Limei Deng
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Rui Qie
- Department of Emergency, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
6
|
Oliveira BC, Santos PP, Figueiredo AM, Rafacho BPM, Ishikawa L, Zanati SG, Fernandes AAH, Azevedo PS, Polegato BF, Zornoff LAM, Minicucci MF, Paiva SAR. Influence of Consumption of Orange Juice (Citrus Sinensis) on Cardiac Remodeling of Rats Submitted to Myocardial Infarction. Arq Bras Cardiol 2021; 116:1127-1136. [PMID: 34133599 PMCID: PMC8288524 DOI: 10.36660/abc.20190397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Fundamento O suco de laranja (SL) é rico em polifenóis com propriedades anti-inflamatórias e antioxidantes. Após o infarto do miocárdio (IM), mudanças complexas ocorrem na estrutura e na função cardíacas, processo conhecido como remodelação cardíaca (RC). O estresse oxidativo e a inflamação podem modular esse processo. Nossa hipótese foi a de que o consumo de SL atenua a RC após o IM. Objetivos Avaliar a influência do SL sobre a RC após IM pela análise de variáveis funcionais, morfológicas, de estresse oxidativo, de inflação, e de metabolismo energético. Métodos Um total de 242 ratos machos pesando entre 200 e 250g foram submetidos a um procedimento cirúrgico (ligação da artéria coronária ou cirurgia simulada). Sete dia após a cirurgia, os animais sobreviventes foram divididos para um dos quatro grupos: 1) SM, animais sham que receberam água e maltodextrina (n= 20); 2) SSL, animais sham que receberam SL (n= 20); 3) IM, animais infartados que receberam água e maltodextrina (n= 40); e 4) ISL, animais infartados que receberam SL (n = 40). A análise estatística foi realizada pelo teste de ANOVA com dois fatores com o teste de Holm-Sidak. Os resultados foram apresentados em média ± desvio padrão, e o nível de significância adotado foi de 5%. Resultados Três meses depois, o IM levou à hipertrofia do ventrículo esquerdo (VE), com disfunção sistólica e diastólica, e aumento nos mediadores inflamatórios e de estresse oxidativo. Os animais que consumiram SL apresentaram menor atividade da glutationa peroxidase e maior expressão da heme-oxigenase-1 (HO-1). Conclusão O SL atenuou a RC, e a HO-1 pode exercer um importante papel nesse processo.
Collapse
Affiliation(s)
- Bruna C Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Priscila P Santos
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Amanda M Figueiredo
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Bruna P M Rafacho
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Larissa Ishikawa
- Instituto de Biociências Campus de Botucatu (UNESP), Botucatu , SP - Brasil
| | - Silméia G Zanati
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Ana A H Fernandes
- Instituto de Biociências Campus de Botucatu (UNESP), Botucatu , SP - Brasil
| | - Paula S Azevedo
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Bertha F Polegato
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Leonardo A M Zornoff
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Marcos F Minicucci
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Sergio A R Paiva
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil.,Food Research Center FoRC , São Paulo , SP - Brasil
| |
Collapse
|
7
|
Baraka SA, Tolba MF, Elsherbini DA, El-Naga RN, Awad AS, El-Demerdash E. Rosuvastatin and low-dose carvedilol combination protects against isoprenaline-induced myocardial infarction in rats: Role of PI3K/Akt/Nrf2/HO-1 signalling. Clin Exp Pharmacol Physiol 2021; 48:1358-1370. [PMID: 34081810 DOI: 10.1111/1440-1681.13535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Rosuvastatin has been shown to activate PI3K/Akt/Nrf2/HO-1 pathway, which promotes cell survival in the myocardium. This study investigated the therapeutic benefit of adding rosuvastatin to low-dose carvedilol in protection against myocardial infarction (MI). Rosuvastatin (RSV) and carvedilol (CAR) were given for 7 consecutive days with concurrent administration of two doses of isoprenaline (ISP) on 6th and 7th days to induce MI. Isoprenaline injections caused detrimental alterations in the myocardial architecture and electrocardiogram (ECG) pattern and significantly increased the infarct size, heart index and serum levels of cardiotoxicity markers compared to the control group. ISP induced oxidative damage, inflammatory and apoptotic events and downregulated PI3K/Akt/Nrf2/HO-1 signalling pathway compared to the control values. Treatment with low-dose CAR and/or RSV prevented the ECG and histopathological alterations induced by ISP, and also reduced the infarct size, heart index, serum creatine kinase-MB, cardiac troponin-I and C-reactive protein levels compared to ISP group. CAR and/or RSV treatment restored the activity of superoxide dismutase and total antioxidant capacity with a consequent reduction in lipid peroxides level. Further, they decreased the expression of nuclear factor (NF)-κB (p65) and increased the phosphorylated PI3K and Akt, which may activate the anti-apoptotic signalling as evidenced by the decreased active caspase 3 level. The combination therapy has a more significant effect in the most studied parameters than their monotherapy, which may be because of the activation of PI3K/Akt Nrf2/HO-1 pro-survival signalling pathway. This study highlights the potential benefits of combining RSV with low-dose CAR in case of MI.
Collapse
Affiliation(s)
- Sarah A Baraka
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Mai F Tolba
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Doaa A Elsherbini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| |
Collapse
|
8
|
Fischer M, Zacherl MJ, Weckbach L, Paintmayer L, Weinberger T, Stark K, Massberg S, Bartenstein P, Lehner S, Schulz C, Todica A. Cardiac 18F-FDG Positron Emission Tomography: An Accurate Tool to Monitor In vivo Metabolic and Functional Alterations in Murine Myocardial Infarction. Front Cardiovasc Med 2021; 8:656742. [PMID: 34113662 PMCID: PMC8185215 DOI: 10.3389/fcvm.2021.656742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiac monitoring after murine myocardial infarction, using serial non-invasive cardiac 18F-FDG positron emissions tomography (PET) represents a suitable and accurate tool for in vivo studies. Cardiac PET imaging enables tracking metabolic alterations, heart function parameters and provides correlations of the infarct size to histology. ECG-gated 18F-FDG PET scans using a dedicated small-animal PET scanner were performed in mice at baseline, 3, 14, and 30 days after myocardial infarct (MI) by permanent ligation of the left anterior descending (LAD) artery. The percentage of the injected dose per gram (%ID/g) in the heart, left ventricular metabolic volume (LVMV), myocardial defect, and left ventricular function parameters: end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and the ejection fraction (EF%) were estimated. PET assessment of the defect positively correlates with post-infarct histology at 3 and 30 days. Infarcted murine hearts show an immediate decrease in LVMV and an increase in %ID/g early after infarction, diminishing in the remodeling process. This study of serial cardiac PET scans provides insight for murine myocardial infarction models by novel infarct surrogate parameters. It depicts that serial PET imaging is a valid, accurate, and multimodal non-invasive assessment.
Collapse
Affiliation(s)
- Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ludwig Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lisa Paintmayer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation Therapy, Regensburg, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
9
|
Gömöri K, Szabados T, Kenyeres É, Pipis J, Földesi I, Siska A, Dormán G, Ferdinandy P, Görbe A, Bencsik P. Cardioprotective Effect of Novel Matrix Metalloproteinase Inhibitors. Int J Mol Sci 2020; 21:ijms21196990. [PMID: 32977437 PMCID: PMC7582346 DOI: 10.3390/ijms21196990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background: We recently developed novel matrix metalloproteinase-2 (MMP-2) inhibitor small molecules for cardioprotection against ischemia/reperfusion injury and validated their efficacy in ischemia/reperfusion injury in cardiac myocytes. The aim of the present study was to test our lead compounds for cardioprotection in vivo in a rat model of acute myocardial infarction (AMI) in the presence or absence of hypercholesterolemia, one of the major comorbidities affecting cardioprotection. Methods: Normocholesterolemic adult male Wistar rats were subjected to 30 min of coronary occlusion followed by 120 min of reperfusion to induce AMI. MMP inhibitors (MMPI)-1154 and -1260 at 0.3, 1, and 3 µmol/kg, MMPI-1248 at 1, 3, and 10 µmol/kg were administered at the 25th min of ischemia intravenously. In separate groups, hypercholesterolemia was induced by a 12-week diet (2% cholesterol, 0.25% cholic acid), then the rats were subjected to the same AMI protocol and single doses of the MMPIs that showed the most efficacy in normocholesterolemic animals were tested in the hypercholesterolemic animals. Infarct size/area at risk was assessed at the end of reperfusion in all groups by standard Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial microvascular obstruction (MVO) was determined by thioflavine-S staining. Results: MMPI-1154 at 1 µmol/kg, MMPI-1260 at 3 µmol/kg and ischemic preconditioning (IPC) as the positive control reduced infarct size significantly; however, this effect was not seen in hypercholesterolemic animals. MVO in hypercholesterolemic animals decreased by IPC only. Conclusions: This is the first demonstration that MMPI-1154 and MMPI-1260 showed a dose-dependent infarct size reduction in an in vivo rat AMI model; however, single doses that showed the most efficacy in normocholesterolemic animals were abolished by hypercholesterolemia. The further development of these promising cardioprotective MMPIs should be continued with different dose ranges in the study of hypercholesterolemia and other comorbidities.
Collapse
Affiliation(s)
- Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (K.G.); (T.S.); (É.K.); (A.G.)
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (K.G.); (T.S.); (É.K.); (A.G.)
| | - Éva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (K.G.); (T.S.); (É.K.); (A.G.)
| | - Judit Pipis
- Pharmahungary Group, H-6722 Szeged, Hungary; (J.P.); (P.F.)
| | - Imre Földesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (I.F.); (A.S.)
| | - Andrea Siska
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (I.F.); (A.S.)
| | | | - Péter Ferdinandy
- Pharmahungary Group, H-6722 Szeged, Hungary; (J.P.); (P.F.)
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (K.G.); (T.S.); (É.K.); (A.G.)
- Pharmahungary Group, H-6722 Szeged, Hungary; (J.P.); (P.F.)
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (K.G.); (T.S.); (É.K.); (A.G.)
- Pharmahungary Group, H-6722 Szeged, Hungary; (J.P.); (P.F.)
- Correspondence: ; Tel.: +36-30-212-3469
| |
Collapse
|
10
|
Szabó MR, Gáspár R, Pipicz M, Zsindely N, Diószegi P, Sárközy M, Bodai L, Csont T. Hypercholesterolemia Interferes with Induction of miR-125b-1-3p in Preconditioned Hearts. Int J Mol Sci 2020; 21:ijms21113744. [PMID: 32466450 PMCID: PMC7312064 DOI: 10.3390/ijms21113744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic preconditioning (IPre) reduces ischemia/reperfusion (I/R) injury in the heart. The non-coding microRNA miR-125b-1-3p has been demonstrated to play a role in the mechanism of IPre. Hypercholesterolemia is known to attenuate the cardioprotective effect of preconditioning; nevertheless, the exact underlying mechanisms are not clear. Here we investigated, whether hypercholesterolemia influences the induction of miR-125b-1-3p by IPre. Male Wistar rats were fed with a rodent chow supplemented with 2% cholesterol and 0.25% sodium-cholate hydrate for 8 weeks to induce high blood cholesterol levels. The hearts of normo- and hypercholesterolemic animals were then isolated and perfused according to Langendorff, and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPre (3 × 5 min I/R cycles applied before index ischemia). IPre significantly reduced infarct size in the hearts of normocholesterolemic rats; however, IPre was ineffective in the hearts of hypercholesterolemic animals. Similarly, miR-125b-1-3p was upregulated by IPre in hearts of normocholesterolemic rats, while in the hearts of hypercholesterolemic animals IPre failed to increase miR-125b-1-3p significantly. Phosphorylation of cardiac Akt, ERK, and STAT3 was not significantly different in any of the groups at the end of reperfusion. Based on these results we propose here that hypercholesterolemia attenuates the upregulation of miR-125b-1-3p by IPre, which seems to be associated with the loss of cardioprotection.
Collapse
Affiliation(s)
- Márton R. Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary;
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - Márta Sárközy
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary;
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary; (M.R.S.); (R.G.); (M.P.); (P.D.); (M.S.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13., H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-096
| |
Collapse
|
11
|
McDonald H, Peart J, Kurniawan ND, Galloway G, Royce SG, Samuel CS, Chen C. Hexarelin targets neuroinflammatory pathways to preserve cardiac morphology and function in a mouse model of myocardial ischemia-reperfusion. Biomed Pharmacother 2020; 127:110165. [PMID: 32403043 DOI: 10.1016/j.biopha.2020.110165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/15/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Acute myocardial ischemia and reperfusion injury (IRI) underly the detrimental effects of coronary heart disease on the myocardium. Despite the ongoing advances in reperfusion therapies, there remains a lack of effective therapeutic strategies for preventing IRI. Growth hormone secretagogues (GHS) have been demonstrated to improve cardiac function, attenuate inflammation and modulate the autonomic nervous system (ANS) in models of cardiovascular disease. Recently, we demonstrated a reduction in infarct size after administration of hexarelin (HEX), in a murine model of myocardial infarction. In the present study we employed a reperfused ischemic (IR) model, to determine whether HEX would continue to have a cardioprotective influence in a model of higher clinical relevance. Myocardial ischemia was induced by transient ligation of the left descending coronary artery (tLAD) in C57BL/6 J mice followed by HEX (0.3 mg/kg/day; n = 20) or vehicle (VEH) (n = 18) administration for 21 days, first administered immediately prior-to reperfusion. IR-injured and sham mice were subjected to high-field magnetic resonance imaging to assess left ventricular (LV) function, with HEX-treated mice demonstrating a significant improvement in LV function compared with VEH-treated mice. A significant decrease in interstitial collagen, TGF-β1 expression and myofibroblast differentiation was also seen in the HEX-treated mice after 21 days. HEX treatment shifted the ANS balance towards a parasympathetic predominance; combined with a significant decrease in cardiac troponin-I and TNF-α levels, these findings were suggestive of an anti-inflammatory action on the myocardium mediated via HEX. In this model of IR, HEX appeared to rebalance the deregulated ANS and activate vagal anti-inflammatory pathways to prevent adverse remodelling and LV dysfunction. There are limited interventions focusing on IRI that have been successful in improving clinical outcome in acute myocardial infarction (AMI) patients, this study provides compelling evidence towards the translational potential of HEX where all others have largely failed.
Collapse
Affiliation(s)
- H McDonald
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - J Peart
- Menzies Health Institute of Queensland, Griffith University, Gold Coast, Australia
| | - N D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - G Galloway
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - S G Royce
- Cardiovascular Disease Program, Biomedical Discovery Institute and Department of Pharmacology, Australia; Central Clinical School, Monash University, Victoria, Australia
| | - C S Samuel
- Cardiovascular Disease Program, Biomedical Discovery Institute and Department of Pharmacology, Australia
| | - C Chen
- School of Biomedical Science, University of Queensland, Brisbane, Australia.
| |
Collapse
|
12
|
Serebryakova L, Pal'keeva M, Studneva I, Molokoedov A, Veselova O, Ovchinnikov M, Gataulin R, Sidorova M, Pisarenko O. Galanin and its N-terminal fragments reduce acute myocardial infarction in rats. Peptides 2019; 111:127-131. [PMID: 29730241 DOI: 10.1016/j.peptides.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
Agonists and antagonists for galanin receptor subtypes GalR1-3 can be used as putative therapeutics targets for the treatment of various human diseases. However, effects of galanin and its N-terminal fragments on myocardial ischemia/reperfusion injury remain unclear. This study was designed to assess the ability of the full-length galanin (GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2, G1), the natural fragments WTLNSAGYLL-NH2 (G2) and WTLNSAGYLLGPHA (G3), and their modified analogs WTLNAAGYLL (G4) and WTLNSAGYLLGPβAH (G5) to limit acute myocardial infarction in rats in vivo. The peptides G2-5 were synthesized by the automatic solid phase method using Fmoc technology, purified by preparative HPLC and identified by 1H NMR spectroscopy and MALDI -TOF mass spectrometry. The peptides G1-5 were administered by i.v. bolus injection at the onset of reperfusion at doses of 0.25, 0.50, 1.0, 2.0 or 3.0 mg/kg. The optimal doses of the peptides G1-5 significantly reduced the infarction area and decreased the activity of CK-MB and LDH in blood plasma at the end of reperfusion compared with the control. Among the peptides studied, G5 showed high efficacy in reducing the infarct size and the activity of necrosis markers in blood plasma with no significant effect on hemodynamic parameters. The results suggest that a novel agonist for galanin receptors G5 may be a promising tool for the treatment of myocardial ischemia/reperfusion (I/R) injury. Further studies are warranted to explore the stability of this peptide in blood plasma and mechanisms that contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- Larisa Serebryakova
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Marina Pal'keeva
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Irina Studneva
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Alexander Molokoedov
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Oksana Veselova
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Michael Ovchinnikov
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Radik Gataulin
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Maria Sidorova
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| | - Oleg Pisarenko
- National Medical Research Center for Cardiology, 121552, Moscow, 3rd Cherepkovskaya Str., 15A, Russian Federation.
| |
Collapse
|
13
|
Ghotbi AA, Kjaer A, Nepper-Christensen L, Ahtarovski KA, Lønborg JT, Vejlstrup N, Kyhl K, Christensen TE, Engstrøm T, Kelbæk H, Holmvang L, Bang LE, Ripa RS, Hasbak P. Subacute cardiac rubidium-82 positron emission tomography ( 82Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI. J Nucl Cardiol 2018; 25:970-981. [PMID: 27743299 PMCID: PMC5966489 DOI: 10.1007/s12350-016-0694-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest 82Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR). METHODS Twelve STEMI patients were injected with 99mTc-Sestamibi intravenously immediate prior to reperfusion. SPECT, 82Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index. RESULTS SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78). CONCLUSIONS 82Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.
Collapse
Affiliation(s)
- Adam Ali Ghotbi
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lars Nepper-Christensen
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kiril Aleksov Ahtarovski
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jacob Thomsen Lønborg
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kasper Kyhl
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas Emil Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Henning Kelbæk
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lia E Bang
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Prompunt E, Sanit J, Barrère-Lemaire S, Nargeot J, Noordali H, Madhani M, Kumphune S. The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Exp Ther Med 2018; 15:5231-5242. [PMID: 29904407 PMCID: PMC5996700 DOI: 10.3892/etm.2018.6097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
Protease enzymes generated from injured cells and leukocytes are the primary cause of myocardial cell damage following ischemia/reperfusion (I/R). The inhibition of protease enzyme activity via the administration of particular drugs may reduce injury and potentially save patients' lives. The aim of the current study was to investigate the cardioprotective effects of treatment with recombinant human secretory leukocyte protease inhibitor (rhSLPI) on in vitro and ex vivo models of myocardial I/R injury. rhSLPI was applied to isolated adult rat ventricular myocytes (ARVMs) subjected to simulated I/R and to ex vivo murine hearts prior to I/R injury. Cellular injury, cell viability, reactive oxygen species (ROS) levels, and levels of associated proteins were assessed. The results demonstrated that administration of rhSLPI prior to or during sI/R significantly reduced the death and injury of ARVMs and significantly reduced intracellular ROS levels in ARVMs during H2O2 stimulation. In addition, treatment of ARVMs with rhSLPI significantly attenuated p38 mitogen-activated protein kinase (MAPK) activation and increased the activation of Akt. Furthermore, pretreatment of ex vivo murine hearts with rhSLPI prior to I/R significantly decreased infarct size, attenuated p38 MAPK activation and increased Akt phosphorylation. The results of the current study demonstrated that treatment with rhSLPI induced a cardioprotective effect and reduced ARVM injury and death, intracellular ROS levels and infarct size. rhSLPI also attenuated p38 MAPK phosphorylation and activated Akt phosphorylation. These results suggest that rhSLPI may be developed as a novel therapeutic strategy of treating ischemic heart disease.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Jantira Sanit
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Stephanie Barrère-Lemaire
- Department of Physiology, Institute of Functional Genomics, National Centre for Scientific Research, French National Institute of Health and Medical Research, University of Montpellier, 34090 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, University of Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Joel Nargeot
- Department of Physiology, Institute of Functional Genomics, National Centre for Scientific Research, French National Institute of Health and Medical Research, University of Montpellier, 34090 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, University of Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Hannah Noordali
- Institute of Cardiovascular Sciences, School of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, School of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
15
|
Schreckenberg R, Bencsik P, Weber M, Abdallah Y, Csonka C, Gömöri K, Kiss K, Pálóczi J, Pipis J, Sárközy M, Ferdinandy P, Schulz R, Schlüter KD. Adverse Effects on β-Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long-Term Cardiac Function. J Am Heart Assoc 2017; 6:e006809. [PMID: 29273639 PMCID: PMC5779008 DOI: 10.1161/jaha.117.006809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The current article examines the effect of IPC or IPoC on the regulation and coupling of β-adrenergic receptors and their effects on postischemic left ventricular function. METHODS AND RESULTS The β-adrenergic signal transduction was analyzed in 3-month-old Wistar rats for each of the intervention strategies (Sham, ischemia/reperfusion, IPC, IPoC) immediately and 7 days after myocardial infarction. Directly after the infarction a cardioprotective potential was demonstrated for both IPC and IPoC: the infarct size was reduced, apoptosis and production of reactive oxygen species were lowered, and the myocardial tissue was preserved. Seven days after myocardial ischemia, only IPC hearts showed significant functional improvement. Along with a deterioration in fractional shortening, IPoC hearts no longer responded adequately to β-adrenergic stimulation. The stabilization of β-adrenergic receptor kinase-2 via increased phosphorylation of Mdm2 (an E3-ubiquitin ligase) was responsible for desensitization of β-adrenergic receptors and identified as a characteristic specific to IPoC hearts. CONCLUSIONS Immediately after myocardial infarction, rapid and transient activation of β-adrenergic receptor kinase-2 may be an appropriate means to protect the injured heart from excessive stress. In the long term, however, induction and stabilization of β-adrenergic receptor kinase-2, with the resultant loss of positive inotropic function, leads to the functional picture of heart failure.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Péter Bencsik
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Martin Weber
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Yaser Abdallah
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Krisztina Kiss
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - János Pálóczi
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | | | - Márta Sárközy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | |
Collapse
|
16
|
Murino Rafacho BP, Portugal dos Santos P, Gonçalves ADF, Fernandes AAH, Okoshi K, Chiuso-Minicucci F, Azevedo PS, Mamede Zornoff LA, Minicucci MF, Wang XD, Rupp de Paiva SA. Rosemary supplementation (Rosmarinus oficinallis L.) attenuates cardiac remodeling after myocardial infarction in rats. PLoS One 2017; 12:e0177521. [PMID: 28494028 PMCID: PMC5426768 DOI: 10.1371/journal.pone.0177521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown. METHODS AND RESULTS To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1) Sham group fed standard chow (SR0, n = 23); 2) Sham group fed standard chow supplemented with 0.02% rosemary (R002) (SR002, n = 23); 3) Sham group fed standard chow supplemented with 0.2% rosemary (R02) (SR02, n = 22); 4) group submitted to MI and fed standard chow (IR0, n = 13); 5) group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8); and 6) group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9). After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively. CONCLUSION Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | - Fernanda Chiuso-Minicucci
- Department of Microbiology and Immunology, Botucatu Biosciences Institute–UNESP, Botucatu/SP, Brazil
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | | | | | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston/MA, United States of America
| | | |
Collapse
|
17
|
Feyzizadeh S, Badalzadeh R. Application of ischemic postconditioning's algorithms in tissues protection: response to methodological gaps in preclinical and clinical studies. J Cell Mol Med 2017; 21:2257-2267. [PMID: 28402080 PMCID: PMC5618671 DOI: 10.1111/jcmm.13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Ischaemic postconditioning (IPostC) was introduced for the first time by Zhao et al. as a feasible method for reduction of myocardial ischaemia–reperfusion (IR) injury. The cardioprotection by this protocol has been extensively evaluated in various species. Then, further research revealed that IPostC is a safe and convenient approach in limiting IR injury of non‐myocardial tissues such as lung, liver, kidney, intestine, skeletal muscle, brain and spinal cord. IPostC has been conducted with different algorithms, resulting in diverse effects. The possible important factors leading to these differences are the difference in activation levels of signalling pathways and protective mediators by any algorithm, presence or absence of IPostC effectors in each tissue, or intrinsic characteristics of the tissues as well as the methodological biases. Also, the conflicting results have been shown with the application of the same algorithm of IPostC in certain tissues or animal species. The effectiveness of IPostC may depend upon various parameters including the species and the tissues characteristics. For example, different heart rates and metabolic rates of the species and unequal amounts of perfusion and blood flow of the tissues should be considered as the important determinants of IPostC effectiveness and should be thought about in designing IPostC algorithms for future studies. Due to these discrepancies, there is still no optimal single IPostC algorithm applicable to any tissue or any species. This issue is the main topic of the present article.
Collapse
Affiliation(s)
- Saeid Feyzizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
van Vuuren D, Marais E, Genade S, Lochner A. The differential effects of FTY720 on functional recovery and infarct size following myocardial ischaemia/reperfusion. Cardiovasc J Afr 2017; 27:375-386. [PMID: 27966000 PMCID: PMC5408499 DOI: 10.5830/cvja-2016-039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study was to evaluate the effects of the sphingosine analogue, FTY720 (Fingolimod), on the outcomes of myocardial ischaemia/reperfusion (I/R) injury. METHODS Two concentrations of FTY720 (1 or 2.5 µM were administered either prior to (PreFTY), or following (PostFTY) 20 minutes' global (GI) or 35 minutes' regional ischaemia (RI) in the isolated, perfused, working rat heart. Functional recovery during reperfusion was assessed following both models of ischaemia, while infarct size (IFS) was determined following RI. RESULTS FTY720 at 1 µM exerted no effect on functional recovery, while 2.5 µM significantly impaired aortic output (AO) recovery when administered prior to GI (% recovery: control: 33.88 ± 6.12% vs PreFTY: 0%, n = 6-10; p < 0.001), as well as before and after RI ( % recovery: control: 27.86 ± 13.22% vs PreFTY: 0.62% ; p < 0.05; and PostFTY: 2.08%; p = 0.0585, n = 6). FTY720 at 1 µM administered during reperfusion reduced IFS (% of area at risk (AAR): control: 39.89 ± 3.93% vs PostFTY: 26.56 ± 4.32%, n = 6-8; p < 0.05), while 2.5 µM FTY720 reduced IFS irrespective of the time of administration ( % of AAR: control: 39.89 ± 3.93% vs PreFTY: 29.97 ± 1.03% ; and PostFTY: 30.45 ± 2.16%, n = 6; p < 0.05). CONCLUSION FTY720 exerted divergent outcomes on function and tissue survival depending on the concentration administered, as well as the timing of administration.
Collapse
Affiliation(s)
- Derick van Vuuren
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sonia Genade
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
19
|
Na+/Ca2+ exchanger 1 inhibition abolishes ischemic tolerance induced by ischemic preconditioning in different cardiac models. Eur J Pharmacol 2017; 794:246-256. [DOI: 10.1016/j.ejphar.2016.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/22/2023]
|
20
|
Valentin J, Frobert A, Ajalbert G, Cook S, Giraud MN. Histological Quantification of Chronic Myocardial Infarct in Rats. J Vis Exp 2016. [PMID: 28060356 DOI: 10.3791/54914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myocardial infarction is defined as cardiomyocyte death due to prolonged ischemia; an inflammatory response and scar formation (fibrosis) follow the ischemic injury. Following the initial acute phase, chronic remodeling of the left ventricle (LV) modifies the structure and function of the heart. Permanent coronary ligation in small animals has been widely used as a reference model for a chronic model of MI. Thinning of the infarcted wall progressively develops to transmural fibrosis. Histological assessment of infarct size is commonly performed; nevertheless, a standardization of the methods for quantification is missing. Indeed, important methodological aspects, such as the number of sections analyzed and the sampling and quantification methods, are usually not described and therefore preclude comparison across investigations. Too often, quantification is performed on a single section obtained at the level of the papillary muscles. Because novel strategies aimed at reducing infarct expansion and remodeling are under investigation, there is an important need for the standardization of accurate heart sampling protocols. We describe an accurate method to quantify the infarct size using a systematic sampling of harvested rat heart and image analyses of trichromatic stained histological sections obtained from base to apex. We also provide evidence that calculating the expansion index (EI) allowed for infarct size assessment, taking into account changes of the left ventricle throughout the remodeling.
Collapse
Affiliation(s)
| | | | | | - Stéphane Cook
- Cardiology, Department of Medicine, University of Fribourg
| | | |
Collapse
|
21
|
Ellenbroek GHJM, van Hout GPJ, Timmers L, Doevendans PA, Pasterkamp G, Hoefer IE. Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction. J Vis Exp 2016. [PMID: 27768034 DOI: 10.3791/54021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mortality after acute myocardial infarction remains substantial and is associated with significant morbidity, like heart failure. Novel therapeutics are therefore required to confine cardiac damage, promote survival and reduce the disease burden of heart failure. Large animal experiments are an essential part in the translational process from experimental to clinical therapies. To optimize clinical translation, robust and representative outcome measures are mandatory. The present manuscript aims to address this need by describing the assessment of three clinically relevant outcome modalities in a pig acute myocardial infarction (AMI) model: infarct size in relation to area at risk (IS/AAR) staining, 3-dimensional transesophageal echocardiography (TEE) and admittance-based pressure-volume (PV) loops. Infarct size is the main determinant driving the transition from AMI to heart failure and can be quantified by IS/AAR staining. Echocardiography is a reliable and robust tool in the assessment of global and regional cardiac function in clinical cardiology. Here, a method for three-dimensional transesophageal echocardiography (3D-TEE) in pigs is provided. Extensive insight into cardiac performance can be obtained by admittance-based pressure-volume (PV) loops, including intrinsic parameters of myocardial function that are pre- and afterload independent. Combined with a clinically feasible experimental study protocol, these outcome measures provide researchers with essential information to determine whether novel therapeutic strategies could yield promising targets for future testing in clinical studies.
Collapse
Affiliation(s)
| | - Gerardus P J van Hout
- Department of Experimental Cardiology, University Medical Center Utrecht; Department of Cardiology, University Medical Center Utrecht
| | - Leo Timmers
- Department of Experimental Cardiology, University Medical Center Utrecht; Department of Cardiology, University Medical Center Utrecht
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht; Interuniversity Cardiology Institutes of the Netherlands (ICIN)
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, University Medical Center Utrecht; Department of Clinical Chemistry and Hematology, University Medical Center Utrecht
| | - Imo E Hoefer
- Department of Experimental Cardiology, University Medical Center Utrecht; Department of Clinical Chemistry and Hematology, University Medical Center Utrecht
| |
Collapse
|
22
|
Kiss K, Csonka C, Pálóczi J, Pipis J, Görbe A, Kocsis GF, Murlasits Z, Sárközy M, Szűcs G, Holmes CP, Pan Y, Bhandari A, Csont T, Shamloo M, Woodburn KW, Ferdinandy P, Bencsik P. Novel, selective EPO receptor ligands lacking erythropoietic activity reduce infarct size in acute myocardial infarction in rats. Pharmacol Res 2016; 113:62-70. [PMID: 27521836 DOI: 10.1016/j.phrs.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Erythropoietin (EPO) has been shown to protect the heart against acute myocardial infarction in pre-clinical studies, however, EPO failed to reduce infarct size in clinical trials and showed significant safety problems. Here, we investigated cardioprotective effects of two selective non-erythropoietic EPO receptor ligand dimeric peptides (AF41676 and AF43136) lacking erythropoietic activity, EPO, and the prolonged half-life EPO analogue, darbepoetin in acute myocardial infarction (AMI) in rats. In a pilot study, EPO at 100U/mL significantly decreased cell death compared to vehicle (33.8±2.3% vs. 40.3±1.5%, p<0.05) in rat neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. In further studies (studies 1-4), in vivo AMI was induced by 30min coronary occlusion and 120min reperfusion in male Wistar rats. Test compounds and positive controls for model validation (B-type natriuretic peptide, BNP or cyclosporine A, CsA) were administered iv. before the onset of reperfusion. Infarct size (IS) was measured by standard TTC staining. In study 1, 5000U/kg EPO reduced infarct size significantly compared to vehicle (45.3±4.8% vs. 59.8±4.5%, p<0.05). In study 2, darbepoetin showed a U-shaped dose-response curve with maximal infarct size-reducing effect at 5μg/kg compared to the vehicle (44.4±5.7% vs. 65.9±2.7%, p<0.01). In study 3, AF41676 showed a U-shaped dose-response curve, where 3mg/kg was the most effective dose compared to the vehicle (24.1±3.9% vs. 44.3±2.5%, p<0.001). The positive control BNP significantly decreased infarct size in studies 1-3 by approximately 35%. In study 4, AF43136 at 10mg/kg decreased infarct size, similarly to the positive control CsA compared to the appropriate vehicle (39.4±5.9% vs. 58.1±5.4% and 45.9±2.4% vs. 63.8±4.1%, p<0.05, respectively). This is the first demonstration that selective, non-erythropoietic EPO receptor ligand dimeric peptides AF41676 and AF43136 administered before reperfusion are able to reduce infarct size in a rat model of AMI. Therefore, non-erythropoietic EPO receptor peptide ligands may be promising cardioprotective agents.
Collapse
Affiliation(s)
- Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Csaba Csonka
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - János Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Judit Pipis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Gabriella F Kocsis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| | - Zsolt Murlasits
- Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary; Sports Science Program, Qatar University, Doha 00974, Qatar.
| | - Márta Sárközy
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Gergő Szűcs
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | | | - Yijun Pan
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States.
| | - Ashok Bhandari
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States.
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary.
| | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States.
| | - Kathryn W Woodburn
- Affymax, Inc., 4015 Miranda Ave Fl 1, Palo Alto, CA 94304, United States; Avalanche Biotechnologies, 1035 O'Brien Drive, Menlo Park, CA 94025, United States.
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, Budapest H-1089, Hungary.
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary; Pharmahungary Group, Dom ter 9, Szeged H-6720, Hungary.
| |
Collapse
|
23
|
Valente M, Araújo A, Esteves T, Laundos TL, Freire AG, Quelhas P, Pinto-do-Ó P, Nascimento DS. Optimized Heart Sampling and Systematic Evaluation of Cardiac Therapies in Mouse Models of Ischemic Injury: Assessment of Cardiac Remodeling and Semi-Automated Quantification of Myocardial Infarct Size. ACTA ACUST UNITED AC 2015; 5:359-391. [PMID: 26629776 DOI: 10.1002/9780470942390.mo140293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiac therapies are commonly tested preclinically in small-animal models of myocardial infarction. Following functional evaluation, post-mortem histological analysis is essential to assess morphological and molecular alterations underlying the effectiveness of treatment. However, non-methodical and inadequate sampling of the left ventricle often leads to misinterpretations and variability, making direct study comparisons unreliable. Protocols are provided for representative sampling of the ischemic mouse heart followed by morphometric analysis of the left ventricle. Extending the use of this sampling to other types of in situ analysis is also illustrated through the assessment of neovascularization and cellular engraftment in a cell-based therapy setting. This is of interest to the general cardiovascular research community as it details methods for standardization and simplification of histo-morphometric evaluation of emergent heart therapies. © 2015 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mariana Valente
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France
| | - Ana Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Tiago Esteves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, Porto, Portugal
| | - Tiago L Laundos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana G Freire
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, Porto, Portugal.,Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Quelhas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Pipicz M, Varga ZV, Kupai K, Gáspár R, Kocsis GF, Csonka C, Csont T. Rapid ventricular pacing-induced postconditioning attenuates reperfusion injury: effects on peroxynitrite, RISK and SAFE pathways. Br J Pharmacol 2015; 172:3472-83. [PMID: 25827015 DOI: 10.1111/bph.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Rapid ventricular pacing (RVP) applied before an index ischaemia has anti-ischaemic effects. Here, we investigated whether RVP applied after index ischaemia attenuates reperfusion injury and whether peroxynitrite, reperfusion injury salvage kinase (RISK) and survival activating factor enhancement (SAFE) pathways as well as haem oxygenase 1 (HO1) are involved in the mechanism of RVP-induced postconditioning. EXPERIMENTAL APPROACH Langendorff perfused rat hearts were subjected to 30 min regional ischaemia and 120 min reperfusion with or without ischaemic postconditioning (6 × 10/10 s reperfusion/ischaemia; IPost) or RVP (6 × 10/10 s non-pacing/rapid pacing at 600 bpm) applied at the onset of reperfusion. KEY RESULTS Meta-analysis of our previous studies revealed an association between longer reperfusion-induced ventricular tachycardia/fibrillation with decreased infarct size. In the present experiments, we tested whether RVP is cardioprotective and found that both IPost and RVP significantly decreased infarct size; however, only RVP attenuated the incidence of reperfusion-induced ventricular tachycardia. Both postconditioning methods increased the formation of cardiac 3-nitrotyrosine and superoxide, and non-significantly enhanced Akt phosphorylation at the beginning of reperfusion without affecting ERK1/2 and STAT3, while IPost alone induced HO1. Application of brief ischaemia/reperfusion cycles or RVP without preceding index ischaemia also facilitated peroxynitrite formation; nevertheless, only brief RVP increased STAT3 phosphorylation. CONCLUSIONS AND IMPLICATIONS Short periods of RVP at the onset of reperfusion are cardioprotective and increase peroxynitrite formation similarly to IPost and thus may serve as an alternative postconditioning method. However, downstream mechanisms of the protection elicited by IPost and RVP seem to be partially different. LINKED ARTICLES This article is part of a themed section on Conditioning the Heart - Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-8.
Collapse
Affiliation(s)
- Márton Pipicz
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Krisztina Kupai
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | - Csaba Csonka
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Cardiac microvascular barrier function mediates the protection of Tongxinluo against myocardial ischemia/reperfusion injury. PLoS One 2015; 10:e0119846. [PMID: 25781461 PMCID: PMC4363146 DOI: 10.1371/journal.pone.0119846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023] Open
Abstract
Objective Tongxinluo (TXL) has been shown to decrease myocardial necrosis after ischemia/reperfusion (I/R) by simulating ischemia preconditioning (IPC). However, the core mechanism of TXL remains unclear. This study was designed to investigate the key targets of TXL against I/R injury (IRI) among the cardiac structure-function network. Materials and Methods To evaluate the severity of lethal IRI, a mathematical model was established according to the relationship between myocardial no-reflow size and necrosis size. A total of 168 mini-swine were employed in myocardial I/R experiment. IRI severity among different interventions was compared and IPC and CCB groups were identified as the mildest and severest groups, respectively. Principal component analysis was applied to further determine 9 key targets of IPC in cardioprotection. Then, the key targets of TXL in cardioprotection were confirmed. Results Necrosis size and no-reflow size fit well with the Sigmoid Emax model. Necrosis reduction space (NRS) positively correlates with I/R injury severity and necrosis size (R2=0.92, R2=0.57, P<0.01, respectively). Functional and structural indices correlate positively with NRS (R2=0.64, R2=0.62, P<0.01, respectively). TXL recovers SUR2, iNOS activity, eNOS activity, VE-cadherin, β-catenin, γ-catenin and P-selectin with a trend toward the sham group. Moreover, TXL increases PKA activity and eNOS expression with a trend away from the sham group. Among the above nine indices, eNOS activity, eNOS, VE-cadherin, β-catenin and γ-catenin expression were significantly up-regulated by TXL compared with IPC (P>0.05) or CCB (P<0.05) and these five microvascular barrier-related indices may be the key targets of TXL in minimizing IRI. Conclusions Our study underlines the lethal IRI as one of the causes of myocardial necrosis. Pretreatment with TXL ameliorates myocardial IRI through promoting cardiac microvascular endothelial barrier function by simulating IPC.
Collapse
|
26
|
Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, Ferdinandy P, Heusch G, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Sluijter JPG, Van Laake LW, Yellon DM, Hausenloy DJ. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 2014; 104:399-411. [PMID: 25344369 PMCID: PMC4242141 DOI: 10.1093/cvr/cvu225] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of death and disability worldwide. As a result, novel therapies are still needed to protect the heart from the detrimental effects of acute ischaemia–reperfusion injury, in order to improve clinical outcomes in IHD patients. In this regard, although a large number of novel cardioprotective therapies discovered in the research laboratory have been investigated in the clinical setting, only a few of these have been demonstrated to improve clinical outcomes. One potential reason for this lack of success may have been the failure to thoroughly assess the cardioprotective efficacy of these novel therapies in suitably designed preclinical experimental animal models. Therefore, the aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to provide recommendations for improving the preclinical assessment of novel cardioprotective therapies discovered in the research laboratory, with the aim of increasing the likelihood of success in translating these new treatments into improved clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart Group, University of Cape Town, Cape Town, South Africa
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Institute, National Research Council of Italy, Rozzano, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institut für Pathophysiologie, West German Heart and Vascular Centre, Universitätsklinikum Essen, Essen, Germany
| | - Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, 'G. d'Annunzio' University of Chieti, Chieti, Italy Texas Heart Institute, Houston, TX, USA Department of Internal Medicine, University of Texas Medical School, Center of Cardiovascular and Atherosclerosis Research, Houston, TX, USA
| | - Michel Ovize
- Inserm U 1060 (CarMeN_Cardioprotection Team) & CIC de Lyon, Service d'Exploration Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | - Linda W Van Laake
- University Medical Center Utrecht and Hubrecht Institute, Utrecht, the Netherlands
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| |
Collapse
|
27
|
Transduction of PEP-1-heme oxygenase-1 fusion protein reduces myocardial ischemia/reperfusion injury in rats. J Cardiovasc Pharmacol 2014; 62:436-42. [PMID: 23921302 DOI: 10.1097/fjc.0b013e3182a0b638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have uncovered that overexpression of heme oxygenase-1 (HO-1) by induction or gene transfer provides myocardial protection. In the present study, we investigated whether HO-1 protein mediated by cell-penetrating peptide PEP-1 could confer cardioprotection in a rat model of myocardial ischemia/reperfusion (I/R) injury. Male Sprague-Dawley rats were subjected to 30 minutes of ischemia by occluding the left anterior descending coronary artery and to 120 minutes of reperfusion to prepare the model of I/R. Animals were randomized to receive PEP-1-HO-1 fusion protein or saline 30 minutes before a 30-minute occlusion. I/R increased myocardial infarct size and levels of malondialdehyde, serum tumor necrosis factor alpha, and interleukin 6 and reduced myocardial superoxide dismutase activity. Administration of PEP-1-HO-1 reduced myocardial infarct size and levels of malondialdehyde, serum tumor necrosis factor alpha, and interleukin 6 and increased myocardial superoxide dismutase and HO-1 activities. His-probe protein was only detected in PEP-1-HO-1-transduced hearts. In addition, transduction of PEP-1-HO-1 markedly reduced elevated myocardial tissue nuclear factor-κB induced by I/R. The results suggested that transduction of PEP-1-HO-1 fusion protein decreased myocardial reperfusion injury, probably by attenuating the production of oxidants and proinflammatory cytokines regulated by nuclear factor-κB.
Collapse
|
28
|
Varga ZV, Zvara A, Faragó N, Kocsis GF, Pipicz M, Gáspár R, Bencsik P, Görbe A, Csonka C, Puskás LG, Thum T, Csont T, Ferdinandy P. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am J Physiol Heart Circ Physiol 2014; 307:H216-27. [PMID: 24858849 DOI: 10.1152/ajpheart.00812.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We aimed to characterize early changes in microRNA expression in acute cardioprotection by ischemic pre- and postconditioning in rat hearts. Hearts isolated from male Wistar rats were subjected to 1) time-matched nonischemic perfusion, 2) ischemia-reperfusion (30 min of coronary occlusion and 120 min of reperfusion), 3) preconditioning (3 × 5 min of coronary occlusion) followed by ischemia-reperfusion, or 4) ischemia-reperfusion with postconditioning (6 × 10 s of global ischemia-reperfusion at the onset of reperfusion). Infarct size was significantly reduced by both interventions. Of 350 different microRNAs assessed by microarray analysis, 147-160 microRNAs showed detectable expression levels. Compared with microRNA alterations induced by ischemia-reperfusion versus time-matched nonischemic controls, five microRNAs were significantly affected by both pre- and postconditioning (microRNA-125b*, microRNA-139-3p, microRNA-320, microRNA-532-3p, and microRNA-188), four microRNAs were significantly affected by preconditioning (microRNA-487b, microRNA-139-5p, microRNA-192, and microRNA-212), and nine microRNAs were significantly affected by postconditioning (microRNA-1, microRNA let-7i, microRNA let-7e, microRNA let-7b, microRNA-181a, microRNA-208, microRNA-328, microRNA-335, and microRNA-503). Expression of randomly selected microRNAs was validated by quantitative real-time PCR. By a systematic comparison of the direction of microRNA expression changes in all groups, we identified microRNAs, specific mimics, or antagomiRs that may have pre- and postconditioning-like cardioprotective effects (protectomiRs). Transfection of selected protectomiRs (mimics of microRNA-139-5p, microRNA-125b*, microRNA let-7b, and inhibitor of microRNA-487b) into cardiac myocytes subjected to simulated ischemia-reperfusion showed a significant cytoprotective effect. This is the first demonstration that the ischemia-reperfusion-induced microRNA expression profile is significantly influenced by both pre- and postconditioning, which shows the involvement of microRNAs in cardioprotective signaling. Moreover, by analysis of microRNA expression patterns in cardioprotection by pre- and postconditioning, specific protectomiRs can be revealed as potential therapeutic tools for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zoltán V Varga
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Agnes Zvara
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Nóra Faragó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gabriella F Kocsis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Márton Pipicz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Thomas Thum
- Institue of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
29
|
Jiang C, Li Y, Jiang X, Yao N, Gao M, Zhang X, Wang J, Wang X, Sun Z, Zhang J, Ni Y. Hypericin as a Marker for Determination of Myocardial Viability in a Rat Model of Myocardial Infarction. Photochem Photobiol 2014; 90:867-72. [DOI: 10.1111/php.12247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Cuihua Jiang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Yue Li
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Xiao Jiang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Nan Yao
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Meng Gao
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Xueli Zhang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Junying Wang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Xiaoning Wang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Ziping Sun
- The Radiation Medical Institute; Shandong Academy of Medical Sciences; Jinan Shandong Province China
| | - Jian Zhang
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
| | - Yicheng Ni
- Laboratory of Translational Medicine; Jiangsu Academy of Traditional Chinese Medicine; Nanjing Jiangsu Province China
- The Radiation Medical Institute; Shandong Academy of Medical Sciences; Jinan Shandong Province China
- Theragnostic Laboratory; Department of Imaging & Pathology; Biomedical Sciences Group; KU Leuven; Leuven Belgium
| |
Collapse
|
30
|
Moderate inhibition of myocardial matrix metalloproteinase-2 by ilomastat is cardioprotective. Pharmacol Res 2014; 80:36-42. [DOI: 10.1016/j.phrs.2013.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022]
|
31
|
Szűcs G, Murlasits Z, Török S, Kocsis GF, Pálóczi J, Görbe A, Csont T, Csonka C, Ferdinandy P. Cardioprotection by farnesol: role of the mevalonate pathway. Cardiovasc Drugs Ther 2014; 27:269-77. [PMID: 23673412 DOI: 10.1007/s10557-013-6460-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Farnesol is a key metabolite of the mevalonate pathway and known as an antioxidant. We examined whether farnesol treatment protects the ischemic heart. METHODS Male Wistar rats were treated orally with 0.2, 1, 5, and 50 mg/kg/day farnesol/vehicle for 12 days, respectively. On day 13, the effect of farnesol treatment on cardiac ischemic tolerance and biochemical changes was tested. Therefore, hearts were isolated and subjected either to 30 min coronary occlusion followed by 120 min reperfusion to measure infarct size or to 10 min aerobic perfusion to measure cardiac mevalonate pathway end-products (protein prenylation, cholesterol, coenzyme Q9, coenzyme Q10, dolichol), and 3-nitrotyrosine (oxidative/nitrosative stress marker), respectively. The cytoprotective effect of farnesol was also tested in cardiomyocytes subjected to simulated ischemia/reperfusion. RESULTS Farnesol pretreatment decreased infarct size in a U-shaped dose-response manner where 1 mg/kg/day dose reached a statistically significant reduction (22.3±3.9% vs. 40.9±6.1% of the area at risk, p<0.05). Farnesol showed a similar cytoprotection in cardiomyocytes. The cardioprotective dose of farnesol (1 mg/kg/day) significantly increased the marker of protein geranylgeranylation, but did not influence protein farnesylation, cardiac tissue cholesterol, coenzyme Q9, coenzyme Q10, and dolichol. While the cardioprotective dose of farnesol did not influence 3-nitrotyrosine, the highest dose of farnesol (50 mg/kg/day) tested did not show cardioprotection, however, it significantly decreased cardiac 3-nitrotyrosine. CONCLUSIONS This is the first demonstration that oral farnesol treatment reduces infarct size. The cardioprotective effect of farnesol likely involves increased protein geranylgeranylation and seems to be independent of the antioxidant effect of farnesol.
Collapse
Affiliation(s)
- Gergő Szűcs
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720, 9 Dóm tér, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Csonka C, Kupai K, Bencsik P, Görbe A, Pálóczi J, Zvara A, Puskás LG, Csont T, Ferdinandy P. Cholesterol-enriched diet inhibits cardioprotection by ATP-sensitive K+ channel activators cromakalim and diazoxide. Am J Physiol Heart Circ Physiol 2013; 306:H405-13. [PMID: 24285110 DOI: 10.1152/ajpheart.00257.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been previously shown that hyperlipidemia interferes with cardioprotective mechanisms. Here, we investigated the interaction of hyperlipidemia with cardioprotection induced by pharmacological activators of ATP-sensitive K(+) (KATP) channels. Hearts isolated from rats fed a 2% cholesterol-enriched diet or normal diet for 8 wk were subjected to 30 min of global ischemia and 120 min of reperfusion in the presence or absence of KATP modulators. In normal diet-fed rats, either the nonselective KATP activator cromakalim at 10(-5) M or the selective mitochondrial (mito)KATP opener diazoxide at 3 × 10(-5) M significantly decreased infarct size compared with vehicle-treated control rats. Their cardioprotective effect was abolished by coadministration of the nonselective KATP blocker glibenclamide or the selective mitoKATP blocker 5-hydroxydecanoate, respectively. However, in cholesterol-fed rats, the cardioprotective effect of cromakalim or diazoxide was not observed. Therefore, we further investigated how cholesterol-enriched diet influences cardiac KATP channels. Cardiac expression of a KATP subunit gene (Kir6.1) was significantly downregulated in cholesterol-fed rats; however, protein levels of Kir6.1 and Kir6.2 were not changed. The cholesterol diet significantly decreased cardiac ATP, increased lactate content, and enhanced myocardial oxidative stress, as shown by increased cardiac superoxide and dityrosine formation. This is the first demonstration that cardioprotection by KATP channel activators is impaired in cholesterol-enriched diet-induced hyperlipidemia. The background mechanism may include hyperlipidemia-induced attenuation of mitoKATP function by altered energy metabolism and increased oxidative stress in the heart.
Collapse
Affiliation(s)
- Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Csont T, Sárközy M, Szűcs G, Szűcs C, Bárkányi J, Bencsik P, Gáspár R, Földesi I, Csonka C, Kónya C, Ferdinandy P. Effect of a multivitamin preparation supplemented with phytosterol on serum lipids and infarct size in rats fed with normal and high cholesterol diet. Lipids Health Dis 2013; 12:138. [PMID: 24063587 PMCID: PMC3851526 DOI: 10.1186/1476-511x-12-138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/13/2013] [Indexed: 01/01/2023] Open
Abstract
Background Although complex multivitamin products are widely used as dietary supplements to maintain health or as special medical food in certain diseases, the effects of these products were not investigated in hyperlipidemia which is a major risk factor for cardiovascular diseases. Therefore, here we investigated if a preparation developed for human use containing different vitamins, minerals and trace elements enriched with phytosterol (VMTP) affects the severity of experimental hyperlipidemia as well as myocardial ischemia/reperfusion injury. Methods Male Wistar rats were fed a normal or cholesterol-enriched (2% cholesterol + 0.25% cholate) diet for 12 weeks to induce hyperlipidemia. From week 8, rats in both groups were fed with a VMTP preparation or placebo for 4 weeks. Serum triglyceride and cholesterol levels were measured at week 0, 8 and 12. At week 12, hearts were isolated, perfused according to Langendorff and subjected to a 30-min coronary occlusion followed by 120 min reperfusion to measure infarct size. Results At week 8, cholesterol-fed rats showed significantly higher serum cholesterol level as compared to normal animals, however, serum triglyceride level did not change. VMTP treatment significantly decreased serum cholesterol level in the hyperlipidemic group by week 12 without affecting triglyceride levels. However, VMTP did not show beneficial effect on infarct size. The inflammatory marker hs-CRP and the antioxidant uric acid were also not significantly different. Conclusions This is the first demonstration that treatment of hyperlipidemic subjects with a VMTP preparation reduces serum cholesterol, the major risk factor for cardiovascular disease; however, it does not provide cardioprotection.
Collapse
|
34
|
Kertész A, Bombicz M, Priksz D, Balla J, Balla G, Gesztelyi R, Varga B, Haines DD, Tosaki A, Juhasz B. Adverse impact of diet-induced hypercholesterolemia on cardiovascular tissue homeostasis in a rabbit model: time-dependent changes in cardiac parameters. Int J Mol Sci 2013; 14:19086-108. [PMID: 24048247 PMCID: PMC3794822 DOI: 10.3390/ijms140919086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/16/2022] Open
Abstract
The present study evaluates a hypothesis that diet-related hypercholesterolemia increases oxidative stress-related burden to cardiovascular tissue, resulting in progressively increased mortality, along with deterioration of electrophysiological and enzymatic function in rabbit myocardium. New Zealand white rabbits were divided into four groups, defined as follows: GROUP I, cholesterol-free rabbit chow for 12 weeks; GROUP II, cholesterol-free chow, 40 weeks; GROUP III, chow supplemented with 2% cholesterol, 12 weeks; GROUP IV, chow supplemented with 2% cholesterol, 40 weeks. At the 12 and 40 weeks time points, animals in each of the aforementioned cohorts were subjected to echocardiographic measurements, followed by sacrifice. Significant deterioration in major outcome variables measured in the present study were observed only in animals maintained for 40 weeks on 2% cholesterol-supplemented chow, with much lesser adverse effects noted in animals fed high cholesterol diets for only 12 weeks. It was observed that rabbits receiving high cholesterol diets for 40 weeks exhibited significantly increased mortality, worsened ejection fraction and general deterioration of cardiac functions, along with increased atherosclerotic plaque formation and infarct size. Additionally, myocardium of GROUP IV animals was observed to contain lower levels of heme oxygenase-1 (HO-1) and cytochrome c oxidase III (COX III) protein relative to the controls.
Collapse
Affiliation(s)
- Attila Kertész
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mail:
| | - Mariann Bombicz
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - Daniel Priksz
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - Jozsef Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (J.B.); (G.B.)
- Department of Nephrology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Gyorgy Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (J.B.); (G.B.)
- Department of Pediatrics, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - Balazs Varga
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - David D. Haines
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
| | - Bela Juhasz
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (M.B.); (D.P.); (R.G.); (B.V.); (D.D.H.); (A.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +36-52-255-586
| |
Collapse
|
35
|
Isolation of a new Pseudomonas halophila strain possess bacteriorhodopsin-like protein by a novel method for screening of photoactive protein producing bacteria. World J Microbiol Biotechnol 2013; 30:585-94. [PMID: 24002576 DOI: 10.1007/s11274-013-1453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein deposited in the purple membrane of Halobacterium salinarum which absorbs energy from photons to create a photo-induced proton gradient across the membrane. A bR molecule can be considered as a natural solar device transforming light into other types of energy and therefore is of interest for a wide range of applications including two and three-dimensional memory storage, optical data processing, artificial cells, holographic media, the artificial retina and photo sensor devices. H. salinarum is a slow-growing, halophilic Archaea present in red salt waters. The present study introduces a novel bR-like pigment from a new strain of Pseudomonas halophila (with registered accession number KC959570 in the NCBI databank) which has a very significant degree of light-dependent activity. This is the first report on the presence of functional bR-like protein in the Pseudomonas family. The isolate is a fast-growing, halophilic bacterium and is comparable with other photoactive protein producer microorganisms. Also, in the present study a novel isolation method for screen light-stimulating protein producing microorganisms is introduced. For this purpose 2,3,5-triphenyltetrazolium chloride (TTC) was employed for the first time as an artificial hydrogen acceptor in the proton-transfer processes. The TTC test is an easy and susceptible method for estimating hydrogen production during the proton transport process. This is the first report of the use of TTC for photo activity measurement and selection of bacteria containing light dependent proteins.
Collapse
|
36
|
|
37
|
Kumar BP, Kannan MM, Quine DS. Litsea deccanensis ameliorates myocardial infarction in wistar rats: evidence from biochemical and histological studies. J Young Pharm 2013; 3:287-96. [PMID: 22224035 PMCID: PMC3249741 DOI: 10.4103/0975-1483.90239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to evaluate the cardioprotective effects of methanolic extract of Litsea deccanensis (MELD) against isoproterenol-induced myocardial infarction in rats by studying cardiac markers, lipid peroxidation, lipid profile, and histological changes. Male Wistar rats were treated orally with MELD (100 and 200 mg/kg) daily for a period of 21 days. After 21 days of pretreatment, isoproterenol (100 mg/kg) was injected subcutaneously to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed significant (P < 0.05) increase in the levels of serum creatine kinase, lactate dehydrogenase, thiobarbituric acid reactive substances, and lipid hydro peroxides. The serum lipid levels were altered in the isoproterenol-induced myocardial infarcted rats. The histopathological findings of the myocardial tissue evidenced myocardial damage in isoproterenol-induced rats. The oral pretreatment with MELD restored the pathological alterations in the isoproterenol-induced myocardial infarcted rats. The MELD pretreatment significantly reduced the levels of biochemical markers, lipid peroxidation and regulated the lipid profile of the antioxidant system in the isoproterenol-induced rats. An inhibited myocardial necrosis was evidenced by the histopathological findings in MELD pretreated isoproterenol-induced rats. Our study shows that oral pretreatment with MELD prevents isoproterenol-induced oxidative stress in myocardial infarction. The presence of phenolic acid and flavonoid contents were confirmed by preliminary phytochemical tests. The reducing power and free radical scavenging activities of the MELD may be the possible reason for it pharmacological actions.
Collapse
Affiliation(s)
- Bharath P Kumar
- Department of Clinical Pharmacy and Pharmacology, Jayamukhi College of Pharmacy, Narsampet, Warangal, Andhra Pradesh, India
| | | | | |
Collapse
|
38
|
MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 2013; 62:111-21. [PMID: 23722270 DOI: 10.1016/j.yjmcc.2013.05.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 01/27/2023]
Abstract
Diet-induced hypercholesterolemia leads to oxidative/nitrative stress and subsequent myocardial dysfunction. However, the regulatory role of microRNAs in this phenomenon is unknown. We aimed to investigate, whether hypercholesterolemia-induced myocardial microRNA alterations play a role in the development of oxidative/nitrative stress and in subsequent cardiac dysfunction. Male Wistar rats were fed with 2% cholesterol/0.25% cholate-enriched or standard diet for 12weeks. Serum and tissue cholesterol levels were significantly elevated by cholesterol-enriched diet. Left ventricular end-diastolic pressure was significantly increased in cholesterol-fed rats both in vivo and in isolated perfused hearts, indicating diastolic dysfunction. Myocardial expression of microRNAs was affected by cholesterol-enriched diet as assessed by microarray analysis. MicroRNA-25 showed a significant down-regulation as detected by microarray analysis and QRT-PCR. In silico target prediction revealed NADPH oxidase 4 (NOX4) as a putative target of microRNA-25. NOX4 protein showed significant up-regulation in the hearts of cholesterol-fed rats, while NOX1 and NOX2 remained unaffected. Cholesterol-feeding significantly increased myocardial oxidative/nitrative stress as assessed by dihydroethidium staining, protein oxidation assay, and nitro-tyrosine ELISA, respectively. Direct binding of microRNA-25 mimic to the 3' UTR region of NOX4 was demonstrated using a luciferase reporter assay. Transfection of a microRNA-25 mimic into primary cardiomyocytes decreased superoxide production, while a microRNA-25 inhibitor resulted in an up-regulation of NOX4 protein and an increase in oxidative stress that was attenuated by the NADPH oxidase inhibitor diphenyleneiodonium. Here we demonstrated for the first time that hypercholesterolemia affects myocardial microRNA expression, and by down-regulating microRNA-25 increases NOX4 expression and consequently oxidative/nitrative stress in the heart. We conclude that hypercholesterolemia-induced microRNA alterations play an important role in the regulation of oxidative/nitrative stress and in consequent myocardial dysfunction.
Collapse
|
39
|
Alstrup AKO, Smith DF. Anaesthesia for positron emission tomography scanning of animal brains. Lab Anim 2013; 47:12-8. [PMID: 23349451 DOI: 10.1258/la.2012.011173] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Positron emission tomography (PET) provides a means of studying physiological and pharmacological processes as they occur in the living brain. Mice, rats, dogs, cats, pigs and non-human primates are often used in studies using PET. They are commonly anaesthetized with ketamine, propofol or isoflurane in order to prevent them from moving during the imaging procedure. The use of anaesthesia in PET studies suffers, however, from the drawback of possibly altering central neuromolecular mechanisms. As a result, PET findings obtained in anaesthetized animals may fail to correctly represent normal properties of the awake brain. Here, we review findings of PET studies carried out either in both awake and anaesthetized animals or in animals given at least two different anaesthetics. Such studies provide a means of estimating the extent to which anaesthesia affects the outcome of PET neuroimaging in animals. While no final conclusion can be drawn concerning the 'best' general anaesthetic for PET neuroimaging in laboratory animals, such studies provide findings that can enhance an understanding of neurobiological mechanisms in the living brain.
Collapse
Affiliation(s)
- Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospitals, Nørrebrogade 44, 10G, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
40
|
Kornyushin O, Galagudza M, Kotslova A, Nutfullina G, Shved N, Nevorotin A, Sedov V, Vlasov T. Intestinal injury can be reduced by intra-arterial postischemic perfusion with hypertonic saline. World J Gastroenterol 2013; 19:209-218. [PMID: 23345943 PMCID: PMC3547561 DOI: 10.3748/wjg.v19.i2.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of local intestinal perfusion with hypertonic saline (HTS) on intestinal ischemia-reperfusion injury (IRI) in both ex vivo and in vivo rat models.
METHODS: All experiments were performed on male Wistar rats anesthetized with pentobarbital sodium given intraperitoneally at a dose of 60 mg/kg. Ex vivo vascularly perfused rat intestine was subjected to 60-min ischemia and either 30-min reperfusion with isotonic buffer (controls), or 5 min with HTS of 365 or 415 mOsm/L osmolarity (HTS365mOsm or HTS415mOsm, respectively) followed by 25-min reperfusion with isotonic buffer. The vascular intestinal perfusate flow (IPF) rate was determined by collection of the effluent from the portal vein in a calibrated tube. Spontaneous intestinal contraction rate was monitored throughout. Irreversible intestinal injury or area of necrosis (AN) was evaluated histochemically using 2.3.5-triphenyltetrazolium chloride staining. In vivo, 30-min ischemia was followed by either 30-min blood perfusion or 5-min reperfusion with HTS365mOsm through the superior mesenteric artery (SMA) followed by 25-min blood perfusion. Arterial blood pressure (BP) was measured in the common carotid artery using a miniature pressure transducer. Histological injury was evaluated in both preparations using the Chui score.
RESULTS: Ex vivo, intestinal IRI resulted in a reduction in the IPF rate during reperfusion (P < 0.05 vs sham). The postischemic recovery of the IPF rate did not differ between the controls and the HTS365mOsm group. In the HTS415mOsm group, postischemic IPF rates were lower than in the controls and the HTS365mOsm group (P < 0.05). The intestinal contraction rate was similar at baseline in all groups. An increase in this parameter was observed during the first 10 min of reperfusion in the control group as compared to the sham-treated group, but no such increase was seen in the HTS365mOsm group. In controls, AN averaged 14.8% ± 5.07% of the total tissue volume. Administration of HTS365mOsm for 5 min after 60-min ischemia resulted in decrease in AN (5.1% ± 1.20% vs controls, P < 0.01). However, perfusion of the intestine with the HTS of greater osmolarity (HTS415mOsm) failed to protect the intestine from irreversible injury. The Chiu score was lower in the HTS365mOsm group in comparison with controls (2.4 ± 0.54 vs 3.2 ± 0.44, P = 0.042), while intestinal perfusion with HTS415mOsm failed to improve the Chiu score. Intestinal reperfusion with HTS365mOsm in the in vivo series secured rapid recovery of BP after its transient fall, whereas in the controls no recovery was seen. The Chiu score was lower in the HTS365mOsm group vs controls (3.1 ± 0.26 and 3.8 ± 0.22, P = 0.0079 respectively,), although the magnitude of the effect was lower than in the ex vivo series.
CONCLUSION: Brief intestinal postischemic perfusion with HTS365mOsm through the SMA followed by blood flow restoration is a protective procedure that could be used for the prevention of intestinal IRI.
Collapse
|
41
|
Roelants V, Delgaudine M, Walrand S, Lhommel R, Beguin Y, Jamar F, Vanoverschelde JL. Myocardial infarct size quantification in mice by SPECT using a novel algorithm independent of a normal perfusion database. EJNMMI Res 2012; 2:64. [PMID: 23272995 PMCID: PMC3598640 DOI: 10.1186/2191-219x-2-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/16/2012] [Indexed: 11/23/2022] Open
Abstract
Background There is a growing interest in developing non-invasive imaging techniques permitting infarct size (IS) measurements in mice. The aim of this study was to validate the high-resolution rodent Linoview single photon emission computed tomography (SPECT) system for non-invasive measurements of IS in mice by using a novel algorithm independent of a normal database, in comparison with histology. Methods Eleven mice underwent a left coronary artery ligature. Seven days later, animals were imaged on the SPECT 2h30 after injection of 173 ± 27 MBq of Tc-99m-sestamibi. Mice were subsequently killed, and their hearts were excised for IS determination with triphenyltetrazolium chloride (TTC) staining. SPECT images were reconstructed using the expectation maximization maximum likelihood algorithm, and the IS was calculated using a novel algorithm applied on the 20-segment polar map provided by the commercially available QPS software (Cedars-Sinai Medical Center, CA, USA). This original method is attractive by the fact that it does not require the implementation of a normal perfusion database. Results Reconstructed images allowed a clear delineation of the left ventricles borders in all mice. No significant difference was found between mean IS determined by SPECT and by TTC staining [37.9 ± 17.5% vs 35.6 ± 17.2%, respectively (P = 0.10)]. Linear regression analysis showed an excellent correlation between IS measured on the SPECT images and IS obtained with TTC staining (y = 0.95x + 0.03 (r = 0.97; P < 0.0001)), without bias, as demonstrated by the Bland-Altman plot. Conclusion Our results demonstrate the accuracy of the method for the measurement of myocardial IS in mice with the Linoview SPECT system.
Collapse
Affiliation(s)
- Véronique Roelants
- Institut de Recherche Expérimentale et Clinique, Pôle d'Imagerie Moléculaire, Radiothérapie et Oncologie and Pôle de Recherche Cardiovasculaire, Université Catholique de Louvain, Brussels, 1200, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liepinsh E, Kuka J, Dambrova M. Troubleshooting digital macro photography for image acquisition and the analysis of biological samples. J Pharmacol Toxicol Methods 2012. [PMID: 23202591 DOI: 10.1016/j.vascn.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For years, image acquisition and analysis have been an important part of life science experiments to ensure the adequate and reliable presentation of research results. Since the development of digital photography and digital planimetric methods for image analysis approximately 20 years ago, new equipment and technologies have emerged, which have increased the quality of image acquisition and analysis. Different techniques are available to measure the size of stained tissue samples in experimental animal models of disease; however, the most accurate method is digital macro photography with software that is based on planimetric analysis. In this study, we described the methodology for the preparation of infarcted rat heart and brain tissue samples before image acquisition, digital macro photography techniques and planimetric image analysis. These methods are useful in the macro photography of biological samples and subsequent image analysis. In addition, the techniques that are described in this study include the automated analysis of digital photographs to minimize user input and exclude the risk of researcher-generated errors or bias during image analysis.
Collapse
|
43
|
|
44
|
Kocsis GF, Sárközy M, Bencsik P, Pipicz M, Varga ZV, Pálóczi J, Csonka C, Ferdinandy P, Csont T. Preconditioning protects the heart in a prolonged uremic condition. Am J Physiol Heart Circ Physiol 2012; 303:H1229-36. [PMID: 22982778 DOI: 10.1152/ajpheart.00379.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metabolic diseases such as hyperlipidemia and diabetes attenuate the cardioprotective effect of ischemic preconditioning. In the present study, we examined whether another metabolic disease, prolonged uremia, affects ischemia/reperfusion injury and cardioprotection by ischemic preconditioning. Uremia was induced by partial nephrectomy in male Wistar rats. The development of uremia was verified 29 wk after surgery. Transthoracic echocardiography was performed to monitor cardiac function. At week 30, hearts of nephrectomized and sham-operated rats were isolated and subjected to a 30-min coronary occlusion followed by 120 min reperfusion with or without preceding preconditioning induced by three intermittent cycles of brief ischemia and reperfusion. In nephrectomized rats, plasma uric acid, carbamide, and creatinine as well as urine protein levels were increased as compared with sham-operated controls. Systolic anterior and septal wall thicknesses were increased in nephrectomized rats, suggesting the development of a minimal cardiac hypertrophy. Ejection fraction was decreased and isovolumic relaxation time was shortened in nephrectomized rats demonstrating a mild systolic and diastolic dysfunction. Infarct size was not affected significantly by nephrectomy itself. Ischemic preconditioning significantly decreased infarct size from 24.8 ± 5.2% to 6.6 ± 1.3% in the sham-operated group and also in the uremic group from 35.4 ± 9.5% to 11.9 ± 3.1% of the area at risk. Plasma ANG II and nitrotyrosine were significantly increased in the uremic rats. We conclude that although prolonged experimental uremia leads to severe metabolic changes and the development of a mild myocardial dysfunction, the cardioprotective effect of ischemic preconditioning is still preserved.
Collapse
Affiliation(s)
- Gabriella F Kocsis
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin Sci (Lond) 2012; 122:513-25. [PMID: 22324471 DOI: 10.1042/cs20110622] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study was undertaken to evaluate the effects of chronic treatment with c-AUCB {cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid}, a novel inhibitor of sEH (soluble epoxide hydrolase), which is responsible for the conversion of biologically active EETs (epoxyeicosatrienoic acids) into biologically inactive DHETEs (dihydroxyeicosatrienoic acids), on BP (blood pressure) and myocardial infarct size in male heterozygous TGR (Ren-2 renin transgenic rats) with established hypertension. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. Myocardial ischaemia was induced by coronary artery occlusion. Systolic BP was measured in conscious animals by tail plethysmography. c-AUCB was administrated in drinking water. Renal and myocardial concentrations of EETs and DHETEs served as markers of internal production of epoxygenase metabolites. Chronic treatment with c-AUCB, which resulted in significant increases in the availability of biologically active epoxygenase metabolites in TGR (assessed as the ratio of EETs to DHETEs), was accompanied by a significant reduction in BP and a significantly reduced infarct size in TGR as compared with untreated TGR. The cardioprotective action of c-AUCB treatment was completely prevented by acute administration of a selective EETs antagonist [14,15-epoxyeicosa-5(Z)-enoic acid], supporting the notion that the improved cardiac ischaemic tolerance conferred by sEH inhibition is mediated by EETs actions at the cellular level. These findings indicate that chronic inhibition of sEH exhibits antihypertensive and cardioprotective actions in this transgenic model of angiotensin II-dependent hypertension.
Collapse
|
46
|
Szucs G, Bester DJ, Kupai K, Csont T, Csonka C, Esterhuyse AJ, Ferdinandy P, Van Rooyen J. Dietary red palm oil supplementation decreases infarct size in cholesterol fed rats. Lipids Health Dis 2011; 10:103. [PMID: 21689423 PMCID: PMC3148975 DOI: 10.1186/1476-511x-10-103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/20/2011] [Indexed: 01/10/2023] Open
Abstract
Background and Aims The effect of red palm oil (RPO) supplementation on infarct size after ischaemia/reperfusion in a cholesterol enriched diet-induced hyperlipidemic animal model has not been reported. Previous studies reported results on the effect of RPO in a normal diet, whilst evidence of protection has been linked to improved functional recovery, prosurvival kinase, anti-apoptosis and NO-cGMP. Therefore, we aimed to investigate the effects of dietary RPO supplementation in a cholesterol-enriched diet-induced hyperlipidemic rat model and to investigate the involvement of matrix metalloproteinase 2 (MMP2) inhibition as a possible mechanism of protection. Materials and Methods Male Wistar rats were fed either a standard rat chow diet (Norm) or a 2% cholesterol-enriched diet (Chol) for nine weeks. Additionally, two more groups received the same treatment, however, at the week 4, diet was supplemented with RPO for the last five weeks (Norm+RPO and Chol+RPO), respectively. After the feeding period hearts were isolated, perfused according to Langendorff and subjected to 30 minutes of normothermic global ischaemia followed by two hours of reperfusion. Infarct size was measured by 2,3,5-triphenyltetrazolium chloride staining at the end of reperfusion. Results Cholesterol-enriched diet increased myocardial infarct size from 23.5 ± 3.0% to 37.2 ± 3.6% (p < 0.05) when compared to normal diet. RPO supplementation significantly reduced infarct size either in Norm+RPO or in Chol+RPO (to 9.2 ± 1.0% and 26.9 ± 3.0%), respectively. Infarct size in Chol+RPO was comparable to the Norm group. MMP2 activity before ischaemia was significantly reduced in the Chol+RPO group when compared to the Chol group. However, the MMP2 activity of the hearts of the RPO fed rats was significantly increased when compared to the normal diet group after ischaemia. Conclusions For the first time it was shown that dietary RPO supplementation attenuated the increased susceptibility of the hearts in cholesterol fed rats to ischaemia/reperfusion injury. This was shown by reduced infarct size. For the first time we also show that red palm oil supplementation altered pre-ischaemic levels of MMP-2, which may indicate that myocardial MMP2 may be implicated as a possible role player in RPO mediated protection against ischaemia/reperfusion injury in hearts of cholesterol supplemented rats.
Collapse
Affiliation(s)
- Gergo Szucs
- Cardiovascular Research Group, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Badea CT, Hedlund LW, Qi Y, Berridge B, Johnson GA. In vivo imaging of rat coronary arteries using bi-plane digital subtraction angiography. J Pharmacol Toxicol Methods 2011; 64:151-7. [PMID: 21683146 DOI: 10.1016/j.vascn.2011.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/19/2011] [Accepted: 05/31/2011] [Indexed: 12/14/2022]
Abstract
INTRODUCTION X-ray based digital subtraction angiography (DSA) is a common clinical imaging method for vascular morphology and function. Coronary artery characterization is one of its most important applications. We show that bi-plane DSA of rat coronary arteries can provide a powerful imaging tool for translational safety assessment in drug discovery. METHODS A novel, dual tube/detector system, constructed explicitly for preclinical imaging, supports image acquisition at 10 frames/s with 88-micron spatial resolution. Ventilation, x-ray exposure, and contrast injection are all precisely synchronized using a biological sequence controller implemented as a LabVIEW application. A set of experiments were performed to test and optimize the sampling and image quality. We applied the DSA imaging protocol to record changes in the visualization of coronaries and myocardial perfusion induced by a vasodilator drug, nitroprusside. The drug was infused into a tail vein catheter using a peristaltic infusion pump at a rate of 0.07 mL/h for 3 min (dose: 0.0875 mg). Multiple DSA sequences were acquired before, during, and up to 25 min after drug infusion. Perfusion maps of the heart were generated in MATLAB to compare the drug effects over time. RESULTS The best trade-off between the injection time, pressure, and image quality was achieved at 60 PSI, with the injection of 150 ms occurring early in diastole (60 ms delay) and resulting in the delivery of 113 μL of contrast agent. DSA images clearly show the main branches of the coronary arteries in an intact, beating heart. The drug test demonstrated that DSA can detect relative changes in coronary circulation via perfusion maps. CONCLUSIONS The methodology for DSA imaging of rat coronary arteries can serve as a template for future translational studies to assist in safety evaluation of new pharmaceuticals. Although x-ray imaging involves radiation, the associated dose (0.4 Gy) is not a major limitation.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
48
|
Görbe A, Varga ZV, Kupai K, Bencsik P, Kocsis GF, Csont T, Boengler K, Schulz R, Ferdinandy P. Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. Am J Physiol Heart Circ Physiol 2011; 300:H1907-13. [PMID: 21398600 DOI: 10.1152/ajpheart.01242.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardioprotection by ischemic preconditioning (IP) was abolished in connexin 43 (Cx43)-deficient mice due to loss of Cx43 located in mitochondria rather than at the sarcolemma. IP is lost in hyperlipidemic rat hearts as well. Since changes in mitochondrial Cx43 in hyperlipidemia have not yet been analyzed, we determined total and mitochondrial Cx43 levels in male Wistar rats fed a laboratory chow enriched with 2% cholesterol or normal chow for 12 wk. Hearts were isolated and perfused according to Langendorff. After a 10-min perfusion, myocardial tissue cholesterol, superoxide, and nitrotyrosine contents were measured and Cx43 content in whole heart homogenate and a mitochondrial fraction determined. In the cholesterol-fed group, tissue cholesterol and superoxide formation was increased (P < 0.05), while total Cx43 content remained unchanged. Mitochondrial total and dephosphorylated Cx43 content decreased. Hearts were subjected to an IP protocol (3 × 5 min ischemia-reperfusion) or time-matched aerobic perfusion followed by 30-min global ischemia and 5-min reperfusion. IP reduced infarct size in normal but not in cholesterol-fed rats. At 5-min reperfusion following 30-min global ischemia, the total and dephosphorylated mitochondrial Cx43 content was increased, which was abolished by IP in both normal and high-cholesterol diet. In conclusion, loss of cardioprotection by IP in hyperlipidemia is associated with a redistribution of both sarcolemmal and mitochondrial Cx43.
Collapse
Affiliation(s)
- Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Curtis MJ. Troubleshooting pharmacological and toxicological methods. J Pharmacol Toxicol Methods 2010; 61:65-6. [PMID: 20184960 DOI: 10.1016/j.vascn.2010.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/28/2022]
Abstract
The majority of articles published in J Pharmacol Tox Methods describe new approaches, or modifications to those established (Curtis, 2006). However, even established methods have their limitations. It is part of the practice of research to troubleshoot: to identify methodological weaknesses and correct them. This process of troubleshooting is rarely acknowledged in research. The present issue of J Pharmacol Tox Methods draws on the expertise of the editorial board and their network of colleagues around the world to highlight how to troubleshoot the methods they use. We hope that the articles published herein with not only help those in the field to improve their research, but will also stimulate the community to feel more comfortable with the idea that improving established methods - and publishing the results - is a valuable part of the process. Now, and in the future, the journal will give its support and encouragement to the community to submit for publication papers that identify how to troubleshoot the methods they use.
Collapse
|