1
|
Wang W, Wang S, Meng X, Zhao Y, Li N, Wang T, Feng N, Yan F, Xia X. A virus-like particle candidate vaccine based on CRISPR/Cas9 gene editing technology elicits broad-spectrum protection against SARS-CoV-2. Antiviral Res 2024; 225:105854. [PMID: 38447647 DOI: 10.1016/j.antiviral.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| |
Collapse
|
2
|
Elliott S, Olufemi OT, Daly JM. Systematic Review of Equine Influenza A Virus Vaccine Studies and Meta-Analysis of Vaccine Efficacy. Viruses 2023; 15:2337. [PMID: 38140577 PMCID: PMC10747572 DOI: 10.3390/v15122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines against equine influenza have been available since the late 1960s, but outbreaks continue to occur periodically, affecting both vaccinated and unvaccinated animals. The aim of this study was to systematically evaluate the efficacy of vaccines against influenza A virus in horses (equine IAV). For this, PubMed, CAB abstracts, and Web of Science were searched for controlled trials of equine IAV vaccines published up to December 2020. Forty-three articles reporting equine IAV vaccination and challenge studies in previously naïve equids using an appropriate comparison group were included in a qualitative analysis of vaccine efficacy. A value for vaccine efficacy (VE) was calculated as the percentage reduction in nasopharyngeal virus shedding detected by virus isolation in embryonated hens' eggs from 38 articles. Among 21 studies involving commercial vaccines, the mean VE was 50.03% (95% CI: 23.35-76.71%), ranging from 0 to 100%. Among 17 studies reporting the use of experimental vaccines, the mean VE was 40.37% (95% CI: 19.64-62.44), and the range was again 0-100%. Overall, complete protection from virus shedding was achieved in five studies. In conclusion, although commercially available vaccines can, in some circumstances, offer complete protection from infection, the requirement for frequent vaccination in the field to limit virus shedding and hence transmission is apparent. Although most studies were conducted by a few centres, a lack of consistent study design made comparisons difficult.
Collapse
Affiliation(s)
| | | | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
3
|
El-Hage C, Hartley C, Savage C, Watson J, Gilkerson J, Paillot R. Assessment of Humoral and Long-Term Cell-Mediated Immune Responses to Recombinant Canarypox-Vectored Equine Influenza Virus Vaccination in Horses Using Conventional and Accelerated Regimens Respectively. Vaccines (Basel) 2022; 10:vaccines10060855. [PMID: 35746463 PMCID: PMC9229645 DOI: 10.3390/vaccines10060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically. Although the vaccine encoded for (HA) belonged to two EIVs of distinct strains of the field virus, clinical protection was reported in vaccinated horses. Our aim is to assess the extent of humoral immunity in one group of vaccinated horses and interferon-gamma ((EIV)-IFN-γ)) production in the peripheral blood mononuclear cells (PBMCs) of a second population of vaccinated horses. Twelve racehorses at work were monitored for haemagglutination inhibition antibodies to three antigenically distinct equine influenza viruses (EIVs) The EIV antigens included two H3N8 subtypes: A/equine/Sydney/07) A/equine/Newmarket/95 (a European lineage strain) and an H7N7 subtype (A/equine/Prague1956). Cell-mediated immune responses of: seven racehorses following an accelerated vaccination schedule, two horses vaccinated using a conventional regimen, and six unvaccinated horses were evaluated by determining (EIV)-IFN-γ levels. Antibody responses following vaccination with ProteqFlu™ were cross-reactive in nature, with responses to both H3N8 EIV strains. Although (EIV)IFN-γ was clearly detected following the in vitro re-stimulation of PBMC, there was no significant difference between the different groups of horses. Results of this study support reports of clinical protection of Australian horses following vaccination with Proteq-Flu™ with objective evidence of humoral cross-reactivity to the outbreak viral strain A/equine/Sydney/07.
Collapse
Affiliation(s)
- Charles El-Hage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
- Correspondence: ; Tel.: +61-417166029
| | - Carol Hartley
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Catherine Savage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - James Watson
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3216, Australia;
| | - James Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford CM1 3RR, UK;
| |
Collapse
|
4
|
Lee DH, Lee EB, Seo JP, Ko EJ. Evaluation of concurrent vaccinations with recombinant canarypox equine influenza virus and inactivated equine herpesvirus vaccines. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:588-598. [PMID: 35709134 PMCID: PMC9184697 DOI: 10.5187/jast.2022.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
Abstract
Despite vaccination, equine influenza virus (EIV) and equine herpesvirus (EHV)
infections still cause highly contagious respiratory diseases in horses.
Recently, concurrent vaccination with EIV and EHV was suggested as a new
approach; however, there have been no reports of concurrent vaccination with
recombinant canarypox EIV and inactivated EHV vaccines. In this study, we aimed
to compare the EIV-specific immune responses induced by concurrent
administrations of a recombinant canarypox EIV vaccine and an inactivated
bivalent EHV vaccine with those induced by a single recombinant canarypox EIV
vaccine in experimental horse and mouse models. Serum and peripheral blood
mononuclear cells (PBMCs) were collected from immunized animals after
vaccination. EIV-specific serum antibody levels, serum hemagglutinin inhibition
(HI) titers, and interferon-gamma (IFN-γ) levels were measured by
enzyme-linked immunosorbent assay, HI assay, and quantitative polymerase chain
reaction, respectively. Concurrent EIV and EHV vaccine administration
significantly increased IFN-γ production, without compromising humoral
responses. Our data demonstrate that concurrent vaccination with EIV and EHV
vaccines can enhance EIV-specific cellular responses in horses.
Collapse
Affiliation(s)
- Dong-Ha Lee
- College of Veterinary Medicine and
Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea
| | - Eun-bee Lee
- Department of Veterinary Medicine, College
of Veterinary Medicine, Jeju National University, Jeju 63243,
Korea
| | - Jong-pil Seo
- Department of Veterinary Medicine, College
of Veterinary Medicine, Jeju National University, Jeju 63243,
Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and
Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea
- Corresponding author: Eun-Ju Ko, College of
Veterinary Medicine and Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea. Tel: +82-64-754-3366, E-mail:
| |
Collapse
|
5
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
6
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
7
|
Pavulraj S, Bergmann T, Trombetta CM, Marchi S, Montomoli E, Alami SSE, Ragni-Alunni R, Osterrieder N, Azab W. Immunogenicity of Calvenza-03 EIV/EHV ® Vaccine in Horses: Comparative In Vivo Study. Vaccines (Basel) 2021; 9:vaccines9020166. [PMID: 33671378 PMCID: PMC7922102 DOI: 10.3390/vaccines9020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/20/2023] Open
Abstract
Equine influenza (EI) is a highly contagious acute respiratory disease of equines that is caused mainly by the H3N8 subtype of influenza A virus. Vaccinating horses against EI is the most effective strategy to prevent the infection. The current study aimed to compare the kinetics of EI-specific humoral- and cell-mediated immunity (CMI) in horses receiving either identical or mixed vaccinations. Two groups of horses were previously (six months prior) vaccinated with either Calvenza 03 EIV EHV® (G1) or Fluvac Innovator® (G2) vaccine. Subsequently, both groups received a booster single dose of Calvenza 03 EIV EHV®. Immune responses were assessed after 10 weeks using single radial hemolysis (SRH), virus neutralization (VN), and EliSpot assays. Our results revealed that Calvenza-03 EIV/EHV®-immunized horses had significantly higher protective EI-specific SRH antibodies and VN antibodies. Booster immunization with Calvenza-03 EIV/EHV® vaccine significantly stimulated cell-mediated immune response as evidenced by significant increase in interferon-γ-secreting peripheral blood mononuclear cells. In conclusion, Calvenza-03 EIV/EHV® vaccine can be safely and effectively used for booster immunization to elicit optimal long persisting humoral and CMI responses even if the horses were previously immunized with a heterogeneous vaccine.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Tobias Bergmann
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
- VisMederi srl, 53100 Siena, Italy
| | | | - Roberto Ragni-Alunni
- Equine Marketing Division, Boehringer Ingelheim META, Dubai P.O. Box 507066, United Arab Emirates;
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Correspondence:
| |
Collapse
|
8
|
Determining Equine Influenza Virus Vaccine Efficacy-The Specific Contribution of Strain Versus Other Vaccine Attributes. Vaccines (Basel) 2020; 8:vaccines8030501. [PMID: 32899189 PMCID: PMC7564743 DOI: 10.3390/vaccines8030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Vaccination is an effective tool to limit equine influenza virus (EIV H3N8) infection, a contagious respiratory disease with potentially huge economic impact. The study assessed the effects of antigenic change on vaccine efficacy and the need for strain update. Horses were vaccinated (V1 and V2) with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza, group 2, FC1 and European strains) or a carbomer-adjuvanted, modified vector vaccine (ProteqFlu, group 3, FC1 and FC2 HA genes). Serology (SRH, HI, VN), clinical signs and viral shedding were assessed in comparison to unvaccinated control horses. The hypothesis was that group 2 (no FC2 vaccine strain) would be less well protected than group 3 following experimental infection with a recent FC2 field strain (A/equi-2/Wexford/14) 4.5 months after vaccination. All vaccinated horses had antibody titres to FC1 and FC2. After challenge, serology increased more markedly in group 3 than in group 2. Vaccinated horses had significantly lower total clinical scores and viral shedding. Unexpectedly, viral RNA shedding was significantly lower in group 2 than in group 3. Vaccination induced protective antibody titres to FC1 and FC2 and reduced clinical signs and viral shedding. The two tested vaccines provided equivalent protection against a recent FC2 EIV field strain.
Collapse
|
9
|
Entenfellner J, Gahan J, Garvey M, Walsh C, Venner M, Cullinane A. Response of Sport Horses to Different Formulations of Equine Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8030372. [PMID: 32664411 PMCID: PMC7563521 DOI: 10.3390/vaccines8030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/28/2023] Open
Abstract
The international governing body of equestrian sports requires that horses be vaccinated against equine influenza within 6 months and 21 days of competing. The aim of this study was to compare the antibody response of young sport horses to six-monthly booster vaccination with equine influenza vaccines of different formulations. An inactivated vaccine was allocated to 35 horses and subunit and recombinant vaccines were allocated to 34 horses each. After vaccination, all horses were monitored for evidence of adverse reactions. Whole blood samples were collected at the time of vaccination and on nine occasions up to six months and 21 days post vaccination. Antibodies against equine influenza were measured by single radial haemolysis. Transient fever and injection site reactions were observed in several horses vaccinated with each vaccine. Only two horses failed to seroconvert post booster vaccination but there was a delayed response to the recombinant vaccine. The antibody response to the recombinant vaccine was lower than that induced by the whole-inactivated and subunit vaccines up to three months post vaccination. Thereafter, there was no significant difference. By six months post vaccination, the majority of horses in all three groups were clinically but not virologically protected. There was minimal decline in antibody titres within the 21-day grace period.
Collapse
Affiliation(s)
| | - Jacinta Gahan
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
| | - Marie Garvey
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Monica Venner
- Pferdeklinik Destedt GmbH, Destedt, Trift 4, 38162 Cremlingen, Germany;
| | - Ann Cullinane
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
- Correspondence: ; Tel.: +353-45-866-266
| |
Collapse
|
10
|
Bambra W, Daly JM, Kendall NR, Gardner DS, Brennan M, Kydd JH. Equine influenza vaccination as reported by horse owners and factors influencing their decision to vaccinate or not. Prev Vet Med 2020; 180:105011. [PMID: 32438206 DOI: 10.1016/j.prevetmed.2020.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Equine influenza virus is a highly contagious respiratory pathogen that causes pyrexia, anorexia, lethargy and coughing in immunologically naïve horses. Vaccines against equine influenza are available and vaccination is mandatory for horses that participate in affiliated competitions, but this group forms a small proportion of the total horse population. The aims of this study were to: i) identify the equine influenza vaccination rate as reported in 2016 by horse owners in the United Kingdom (UK); ii) examine the demographics of owners and horses which were associated with significantly lower influenza vaccination rates and iii) explore factors that influence horse owners' decisions around influenza vaccine uptake. RESULTS Responses from 4837 UK horse owners who were responsible for 10,501 horses were analysed. An overall equine influenza vaccination rate of 80% (8385/10501) was reported. Several owner demographic characteristics were associated with significantly lower (p<0.05) reported equine influenza vaccination rates including: some geographical locations, increasing horse owner age, annual household income of less that £15,000 and owning more than one horse. Horse-related features which were associated with significantly lower reported equine influenza vaccination rates included age ranges of <4 years and > 20 years, use as a companion or breeding animal or leaving their home premises either never or at most once a year. The most common reasons cited for failing to vaccinate horses was no competition activity, lack of exposure to influenza and expense of vaccines. In contrast, the most common underlying reasons given by horse owners who vaccinated their horse were protection of the individual horse against disease, veterinary advice and to protect the national herd. Owners of vaccinated horses had less previous experience of an influenza outbreak or adverse reaction to vaccination compared with owners of unvaccinated horses. CONCLUSIONS This study documented a high rate of equine influenza vaccination as reported by owners in a substantial number of horses in the UK, but this does not reflect the level of protection. Sub-populations of horses which were less likely to be vaccinated and the factors that influence each owner's decision around vaccination of their horses against equine influenza were identified, but may alter following the 2019 European influenza outbreak. This information may nevertheless help veterinary surgeons identify "at-risk" patients and communicate more personalised advice to their horse-owning clients. It may also influence educational campaigns about equine influenza directed to horse owners, which aim to improve uptake of vaccination against this pathogen.
Collapse
Affiliation(s)
- W Bambra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - J M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - N R Kendall
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - D S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - M Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - J H Kydd
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
11
|
Cullinane A, Gahan J, Walsh C, Nemoto M, Entenfellner J, Olguin-Perglione C, Garvey M, Huang Fu TQ, Venner M, Yamanaka T, Barrandeguy M, Fernandez CJ. Evaluation of Current Equine Influenza Vaccination Protocols Prior to Shipment, Guided by OIE Standards. Vaccines (Basel) 2020; 8:E107. [PMID: 32121419 PMCID: PMC7157717 DOI: 10.3390/vaccines8010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/28/2023] Open
Abstract
To facilitate the temporary importation of horses for competition and racing purposes, with a minimum risk of transmitting equine influenza, the World Organisation for Animal Health (Office International des Epizooties, or OIE), formally engaged in a public-private partnership with the Federation Equestre Internationale (FEI) and the International Federation for Horseracing Authorities (IFHA) to establish, within the context of existing OIE standards, a science-based rationale to identify the ideal time period for equine influenza vaccination prior to shipment. Field trials using vaccines based on different technologies were carried out on three continents. The antibody response post-booster vaccination at intervals aligned with the different rules/recommendations of the OIE, FEI, and IFHA, was monitored by single radial haemolysis. It was determined that 14 days was the optimum period necessary to allow horses adequate time to respond to booster vaccination and for horses that have previously received four or more doses of vaccine and are older than four years, it is adequate to allow vaccination within 180 days of shipment. In contrast, the results indicate that there is a potential benefit to younger (four years old or younger) horses in requiring booster vaccination within 90 days of shipment, consistent with the current OIE standard.
Collapse
Affiliation(s)
- Ann Cullinane
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Jacinta Gahan
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Manabu Nemoto
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
- Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan;
| | - Johanna Entenfellner
- Equine Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Cecilia Olguin-Perglione
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología, De Los Reseros y Dr. Nicolás Repetto S/N, Hurlingham, Buenos Aires B1686IGC, Argentina;
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Tao Qi Huang Fu
- Centre for Animal and Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board, 1 Cluny Road, Singapore 259569, Singapore; (T.Q.H.F.); (C.J.F.)
| | - Monica Venner
- Pferdeklinik Destedt GmbH, Destedt, Trift 4, 38162 Cremlingen, Germany;
| | - Takashi Yamanaka
- Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan;
| | - María Barrandeguy
- Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km 54.5 Pilar, Buenos Aires B1630AHU, Argentina;
| | - Charlene Judith Fernandez
- Centre for Animal and Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board, 1 Cluny Road, Singapore 259569, Singapore; (T.Q.H.F.); (C.J.F.)
| |
Collapse
|
12
|
Impact of Mixed Equine Influenza Vaccination on Correlate of Protection in Horses. Vaccines (Basel) 2018; 6:vaccines6040071. [PMID: 30287762 PMCID: PMC6313876 DOI: 10.3390/vaccines6040071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
To evaluate the humoral immune response to mixed Equine Influenza vaccination, a common practice in the field, an experimental study was carried out on 42 unvaccinated thoroughbred weanling foals divided into six groups of seven. Three groups were vaccinated using a non-mixed protocol (Equilis® Prequenza-Te, Proteqflu-Te® or Calvenza-03®) and three other groups were vaccinated using a mix of the three vaccines mentioned previously. Each weanling underwent a primary EI vaccination schedule composed of two primary immunisations (V1 and V2) four weeks apart followed by a third boost immunisation (V3) six months later. Antibody responses were monitored until one-year post-V3 by single radial haemolysis (SRH). The results showed similar antibody responses for all groups using mixed EI vaccination and the group exclusively vaccinated with Equilis® Prequenza-TE, which were significantly higher than the other two groups vaccinated with Proteqflu-TE® and Calvenza-03®. All weanlings (100%) failed to seroconvert after V1 and 21% (9/42) still had low or no SRH antibody titres two weeks post-V2. All weanlings had seroconverted and exceeded the clinical protection threshold one month after V3. The poor response to vaccination was primarily observed in groups exclusively vaccinated with Proteqflu-Te® and Calvenza-03®. A large window of susceptibility (3–4.5-month duration) usually called immunity gap was observed after V2 and prior to V3 for all groups. The SRH antibody level was maintained above the clinical protection threshold for three months post-V3 for the groups exclusively vaccinated with Proteqflu-Te® and Calvenza-03®, and six months to one year for groups using mixed EI vaccination or exclusively vaccinated with Equilis® Prequenza-Te. This study demonstrates for the first time that the mix of EI vaccines during the primary vaccination schedule has no detrimental impact on the correlate of protection against EIV infection.
Collapse
|
13
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
14
|
Pavulraj S, Virmani N, Bera BC, Joshi A, Anand T, Virmani M, Singh R, Singh RK, Tripathi BN. Immunogenicity and protective efficacy of inactivated equine influenza (H3N8) virus vaccine in murine model. Vet Microbiol 2017; 210:188-196. [PMID: 29103691 DOI: 10.1016/j.vetmic.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 02/04/2023]
Abstract
Equine influenza viruses (EIVs) are responsible for acute contagious respiratory infection in equines and the disease remains a major threat for equine population throughout the world despite vaccination strategies in place. The present study was aimed to assess the suitability of BALB/c mice as a potential small animal model for preliminary screening of EI vaccine candidates. For this, we evaluated the immunogenicity and protective efficacy of an inactivated EIV (H3N8) vaccine in BALB/c mouse model after challenge with homologous H3N8 virus (Clade 2 virus, Florida sublineage) through serology, clinical signs, gross and histopathology lesions with grading, immunohistochemistry and virus quantification. Serological responses in immunized mice were evaluated by haemagglutination inhibition assay (HAI) and antibodies were subtyped by ELISA. The vaccine induced optimum protective antibody titre on 49 dpi along with balanced Th1/Th2 responses. Immunized mice were well protected against EIV challenge as evident by significant rise in serum antibody titre which concurred with mild clinical signs, early recovery, lower gross and histopathological lesions score, less severe intensity of viral antigen distribution, restricted virus replication in respiratory tract and less virus detection in nasal washes for short duration. The duration of the viral load was also lower and only for brief period as compared to unvaccinated challenged mice. In conclusion, induction of H3N8 specific antibody response and protection against H3N8 challenge proves that egg grown inactivated H3N8 whole virus vaccine would provide an effective intercession against H3N8 virus. In addition, BALB/c mouse can serve as an attractive tool for adjudging protective efficacy of vaccine candidates prior to final testing in equines.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | - Nitin Virmani
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India.
| | | | - Alok Joshi
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, 125003, India
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, 125003, India
| | - Rajendra Singh
- Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | | |
Collapse
|
15
|
Paillot R, Rash NL, Garrett D, Prowse-Davis L, Montesso F, Cullinane A, Lemaitre L, Thibault JC, Wittreck S, Dancer A. How to Meet the Last OIE Expert Surveillance Panel Recommendations on Equine Influenza (EI) Vaccine Composition: A Review of the Process Required for the Recombinant Canarypox-Based EI Vaccine. Pathogens 2016; 5:pathogens5040064. [PMID: 27897990 PMCID: PMC5198164 DOI: 10.3390/pathogens5040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
Vaccination is highly effective to prevent, control, and limit the impact of equine influenza (EI), a major respiratory disease of horses. However, EI vaccines should contain relevant equine influenza virus (EIV) strains for optimal protection. The OIE expert surveillance panel annually reviews EIV evolution and, since 2010, the use of Florida clade 1 and 2 sub-lineages representative vaccine strains is recommended. This report summarises the development process of a fully- updated recombinant canarypox-based EI vaccine in order to meet the last OIE recommendations, including the vaccine mode of action, production steps and schedule. The EI vaccine ProteqFlu contains 2 recombinant canarypox viruses expressing the haemagglutinin of the A/equine/Ohio/03 and A/equine/Richmond/1/07 isolates (Florida clade 1 and 2 sub-lineages, respectively). The updated EI vaccine was tested for efficacy against the representative Florida clade 2 EIV strain A/equine/Richmond/1/07 in the Welsh mountain pony model. Protective antibody response, clinical signs of disease and virus shedding were compared with unvaccinated control ponies. Significant protection was measured in vaccinated ponies, which supports the vaccine registration. The recombinant canarypox-based EI vaccine was the first fully updated EI vaccine available in the EU, which will help to minimise the increasing risk of vaccine breakdown due to constant EIV evolution through antigenic drift.
Collapse
Affiliation(s)
- Romain Paillot
- Animal Health Trust, Lanwades Park, Kentford Newmarket CB8 7UU, UK.
| | - Nicola L Rash
- Animal Health Trust, Lanwades Park, Kentford Newmarket CB8 7UU, UK.
| | - Dion Garrett
- Animal Health Trust, Lanwades Park, Kentford Newmarket CB8 7UU, UK.
| | | | | | - Ann Cullinane
- Irish Equine Centre, Johnstown, Naas, W91 RH93 Co. Kildare, Ireland.
| | | | | | | | | |
Collapse
|
16
|
Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A, Charreyre C, Horvat B. Protection from Hendra virus infection with Canarypox recombinant vaccine. NPJ Vaccines 2016; 1:16003. [PMID: 29263849 PMCID: PMC5707888 DOI: 10.1038/npjvaccines.2016.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/14/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is an emerging zoonotic pathogen, which causes severe respiratory illness and encephalitis in humans and horses. Since its first appearance in 1994, spillovers of HeV from its natural reservoir fruit bats occur on almost an annual basis. The high mortality rate in both humans and horses and the wide-ranging reservoir distribution are making HeV a serious public health problem, especially for people exposed to sick horses. This study has aimed to develop an efficient low-cost HeV vaccine for horses based on Canarypox recombinant vector expressing HeV glycoproteins, attachment glycoprotein (G) and fusion protein (F). This vaccine was used to immunise hamsters and then challenged intraperitoneally with HeV 3 weeks later. The higher tested dose of the vaccine efficiently prevented oropharyngeal virus shedding and protected animals from clinical disease and virus-induced mortality. Vaccine induced generation of seroneutralising antibodies and prevented virus-induced histopathological changes and a production of viral RNA and antigens in animal tissues. Interestingly, some vaccinated animals, including those immunised at a lower dose, were protected in the absence of detectable specific antibodies, suggesting the induction of an efficient virus-specific cellular immunity. Finally, ponies immunised using the same vaccination protocol as hamsters developed strong seroneutralising titres against both HeV and closely related Nipah virus, indicating that this vaccine may have the ability to induce cross-protection against Henipavirus infection. These data suggest that Canarypox-based vectors encoding for HeV glycoproteins present very promising new vaccine candidate to prevent infection and shedding of the highly lethal HeV.
Collapse
Affiliation(s)
- Vanessa Guillaume-Vasselin
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Kévin P Dhondt
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | - Branka Horvat
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
17
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
18
|
Kinsley R, Scott SD, Daly JM. Controlling equine influenza: Traditional to next generation serological assays. Vet Microbiol 2016; 187:15-20. [PMID: 27066704 DOI: 10.1016/j.vetmic.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 01/20/2023]
Abstract
Serological assays provide an indirect route for the recognition of infectious agents via the detection of antibodies against the infectious agent of interest within serum. Serological assays for equine influenza A virus can be applied for different purposes: diagnosing infections; subtyping isolates; surveillance of circulating strains; and to evaluate the efficacy of vaccines before they reach the market. Haemagglutination inhibition (HI) and single radial haemolysis (SRH) assays are most commonly used in the equine field. This review outlines how both these assays together with virus neutralization (VN) and ELISA are performed, interpreted and applied for the control of equine influenza, giving the limitations and advantages of each. The pseudotyped virus neutralization assay (PVNA) is also discussed as a promising prospect for the future of equine influenza virus serology.
Collapse
Affiliation(s)
- Rebecca Kinsley
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Simon D Scott
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
19
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
20
|
A Systematic Review of Recent Advances in Equine Influenza Vaccination. Vaccines (Basel) 2014; 2:797-831. [PMID: 26344892 PMCID: PMC4494246 DOI: 10.3390/vaccines2040797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination.
Collapse
|
21
|
Rosanowski SM, Cogger N, Rogers CW, Stevenson MA. Evaluating the Effectiveness of Strategies for the Control of Equine Influenza Virus in the New Zealand Equine Population. Transbound Emerg Dis 2014; 63:321-32. [DOI: 10.1111/tbed.12277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 12/01/2022]
Affiliation(s)
- S. M. Rosanowski
- EpiCentre; Institute of Veterinary, Animal, and Biomedical Sciences; Massey University; Palmerston North New Zealand
| | - N. Cogger
- EpiCentre; Institute of Veterinary, Animal, and Biomedical Sciences; Massey University; Palmerston North New Zealand
| | - C. W. Rogers
- Massey Equine; Institute of Veterinary, Animal, and Biomedical Sciences; Massey University; Palmerston North New Zealand
| | - M. A. Stevenson
- EpiCentre; Institute of Veterinary, Animal, and Biomedical Sciences; Massey University; Palmerston North New Zealand
| |
Collapse
|
22
|
Slater J, Borchers K, Chambers T, Cullinane A, Duggan V, Elton D, Legrand L, Paillot R, Fortier G. Report of the International Equine Influenza Roundtable Expert Meeting at Le Touquet, Normandy, February 2013. Equine Vet J 2014; 46:645-50. [PMID: 25146166 DOI: 10.1111/evj.12302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Slater
- Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chervyakova OV, Strochkov VM, Tailakova ET, Sultankulova KT, Sandybayev NT, Sansyzbay AR, Gorev NE, Sergeeva MV, Potapchuk MV, Repko IA, Tsybalova LM, Kiselev OI. Recombinant Strain A/HK/Otar/6:2/2010 (H3N8) for Development of a Live Intranasal Equine Influenza Vaccine. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Paillot R, Prowse L, Montesso F, Stewart B, Jordon L, Newton JR, Gilkerson JR. Duration of equine influenza virus shedding and infectivity in immunised horses after experimental infection with EIV A/eq2/Richmond/1/07. Vet Microbiol 2013; 166:22-34. [PMID: 23769636 DOI: 10.1016/j.vetmic.2013.04.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
Equine influenza (EI) is a major respiratory disease of horses. Recent outbreaks of EI have demonstrated the ease with which EI virus (EIV) can be transmitted internationally. This study aimed to improve our understanding of EIV shedding after infection of vaccinated horses, which would inform possible changes to current quarantine requirements. Our objectives were to compare commonly used diagnostic tests and to evaluate the relative merits of nasal and nasopharyngeal swabs for detection of EIV in vaccinated and unvaccinated ponies following EIV infection and to use these data to inform optimal quarantine procedures for the safe international movement of horses. Five ponies vaccinated against EI were infected experimentally with A/eq/Richmond/1/07 (Florida clade 2), 11 weeks after V2. Nasal and nasopharyngeal swabs were taken daily for 14 days and every 2 days for another 2 weeks. The 5 vaccinates were introduced sequentially for 48h to 3 groups of 2 naïve sentinel ponies each on days 2, 4 and 6 post-challenge respectively. Clinical signs of disease and EIV shedding were monitored for 14 days after co-mingling. EIV was detected by 3 different methods of detection (EIV nucleoprotein ELISA, EIV nucleoprotein qRT-PCR and isolation/titration in embryonated hens' eggs). Directigen™ EZ Flu A+B tests were also performed on samples from the vaccinated ponies for 6 days after infection. Results show that nasopharyngeal swabs were superior to nasal swabs, with increased frequency and amount of virus detected. The average mean duration of shedding was 6-8 days in naïve animals. All 3 sentinel groups were infected successfully with EIV after commingling with vaccinates, indicating up to 6 days of transmission. EI protection induced by vaccination is a dynamic process, naturally fluctuating and dependent on the time since last immunisation, with periods of high immunity (peak of immunity shortly after boost immunisation) and periods of susceptibility to EIV infection. This result indicates that vaccinated horses may actively transmit EIV if the immunity gap (a usual period of susceptibility between V2 and V3) is not adequately closed by immunisation. In infected sentinels EIV was detectable up to 12 days after commingling. Results also suggest that tests such as qRT-PCR may be a suitable substitute for time spent in pre-export quarantine.
Collapse
Affiliation(s)
- R Paillot
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Paillot R, Prowse L, Montesso F, Huang CM, Barnes H, Escala J. Whole inactivated equine influenza vaccine: Efficacy against a representative clade 2 equine influenza virus, IFNgamma synthesis and duration of humoral immunity. Vet Microbiol 2012; 162:396-407. [PMID: 23146168 DOI: 10.1016/j.vetmic.2012.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 11/19/2022]
Abstract
Equine influenza (EI) is a serious respiratory disease of horses induced by the equine influenza virus (EIV). Surveillance, quarantine procedures and vaccination are widely used to prevent or to contain the disease. This study aimed to further characterise the immune response induced by a non-updated inactivated EI and tetanus vaccine, including protection against a representative EIV isolate of the Florida clade 2 sublineage. Seven ponies were vaccinated twice with Duvaxyn IE-T Plus at an interval of four weeks. Five ponies remained unvaccinated. All ponies were experimentally infected with the EIV strain A/eq/Richmond/1/07 two weeks after the second vaccination. Clinical signs of disease were recorded and virus shedding was measured after experimental infection. Antibody response and EIV-specific IFNgamma synthesis, a marker of cell-mediated immunity, were measured at different time points of the study. Vaccination resulted in significant protection against clinical signs of disease induced by A/eq/Richmond/1/07 and reduced virus shedding when challenged at the peak of immunity. Antigenic drift has been shown to reduce protection against EIV infection. Inclusion of a more recent and representative EIV vaccine strain, as recommended by the OIE expert surveillance panel on equine influenza vaccine, may maximise field protection. In addition, significant levels of EIV-specific IFNgamma synthesis by peripheral blood lymphocytes were detected in immunised ponies, which provided a first evidence of CMI stimulation after vaccination with a whole inactivated EIV. Duration of humoral response was also retrospectively investigated in 14 horses vaccinated under field condition and following the appropriate immunisation schedule, up to 599 days after first immunisation. This study revealed that most immunised horses maintained significant levels of cross-reactive SRH antibody for a prolonged period of time, but individual monitoring may be beneficial to identify poor vaccine responders.
Collapse
Affiliation(s)
- R Paillot
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - L Prowse
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - F Montesso
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - C M Huang
- Eli Lilly and Company, 1301 South White River Parkway East, Indianapolis, IN 46225, USA
| | - H Barnes
- Elanco Animal Health, European Biological R&D Eli Lilly and Company Limited, Lilly House, Priestley Road, Basingstoke, Hampshire RG24 9NL, UK
| | - J Escala
- Elanco Animal Health, European Biological R&D Eli Lilly and Company Limited, Lilly House, Priestley Road, Basingstoke, Hampshire RG24 9NL, UK
| |
Collapse
|
26
|
EL-HAGE CM, SAVAGE CJ, MINKE JM, FICORILLI NP, WATSON J, GILKERSON JR. Accelerated vaccination schedule provides protective levels of antibody and complete herd immunity to equine influenza. Equine Vet J 2012; 45:235-9. [DOI: 10.1111/j.2042-3306.2012.00605.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
El Garch H, Crafford JE, Amouyal P, Durand PY, Edlund Toulemonde C, Lemaitre L, Cozette V, Guthrie A, Minke JM. An African horse sickness virus serotype 4 recombinant canarypox virus vaccine elicits specific cell-mediated immune responses in horses. Vet Immunol Immunopathol 2012; 149:76-85. [PMID: 22763149 DOI: 10.1016/j.vetimm.2012.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 12/24/2022]
Abstract
A recombinant canarypox virus vectored vaccine co-expressing synthetic genes encoding outer capsid proteins, VP2 and VP5, of African horse sickness virus (AHSV) serotype 4 (ALVAC(®)-AHSV4) has been demonstrated to fully protect horses against homologous challenge with virulent field virus. Guthrie et al. (2009) detected weak and variable titres of neutralizing antibody (ranging from <10 to 40) 8 weeks after vaccination leading us to hypothesize that there could be a participation of cell mediated immunity (CMI) in protection against AHSV4. The present study aimed at characterizing the CMI induced by the experimental ALVAC(®)-AHSV4 vaccine. Six horses received two vaccinations twenty-eight days apart and three horses remained unvaccinated. The detection of VP2/VP5 specific IFN-γ responses was assessed by enzyme linked immune spot (ELISpot) assay and clearly demonstrated that all ALVAC(®)-AHSV4 vaccinated horses developed significant IFN-γ production compared to unvaccinated horses. More detailed immune responses obtained by flow cytometry demonstrated that ALVAC(®)-AHSV4 vaccinations induced immune cells, mainly CD8(+) T cells, able to recognize multiple T-epitopes through all VP2 and only the N-terminus sequence of VP5. Neither VP2 nor VP5 specific IFN-γ responses were detected in unvaccinated horses. Overall, our data demonstrated that an experimental recombinant canarypox based vaccine induced significant CMI specific for both VP2 and VP5 proteins of AHSV4.
Collapse
|
28
|
Immunogenicity and clinical protection against equine influenza by DNA vaccination of ponies. Vaccine 2012; 30:3965-74. [PMID: 22449425 DOI: 10.1016/j.vaccine.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022]
Abstract
Equine influenza A (H3N8) virus infection is a leading cause of respiratory disease in horses, resulting in widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, often requiring the development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against diverse subtypes and require frequent boosts. Research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity. Here, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication by homologous H3N8 virus in horses. Furthermore, we demonstrate that needle-free delivery is as efficient and effective as conventional parenteral injection using a needle and syringe. These findings suggest that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against equine influenza.
Collapse
|
29
|
Diallo IS, Read AJ, Kirkland PD. Potential of vaccination to confound interpretation of real-time PCR results for equine influenza. Vet Rec 2011; 169:252. [PMID: 21813581 DOI: 10.1136/vr.d4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- I S Diallo
- Biosecurity Sciences Laboratory, Health and Food Sciences Precinct, Biosecurity Queensland, Department of Employment, Economic Development and Innovation, PO Box 156, Archerfield, QLD 4108, Australia.
| | | | | |
Collapse
|
30
|
Perkins NR, Webster WR, Wright T, Denney I, Links I. Vaccination program in the response to the 2007 equine influenza outbreak in Australia. Aust Vet J 2011; 89 Suppl 1:126-34. [DOI: 10.1111/j.1751-0813.2011.00766.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Gildea S, Arkins S, Walsh C, Cullinane A. A comparison of antibody responses to commercial equine influenza vaccines following annual booster vaccination of National Hunt Horses – a randomised blind study. Vaccine 2011; 29:3917-22. [DOI: 10.1016/j.vaccine.2011.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/02/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
32
|
|
33
|
Humoral and cell-mediated immune responses of old horses following recombinant canarypox virus vaccination and subsequent challenge infection. Vet Immunol Immunopathol 2011; 139:128-40. [DOI: 10.1016/j.vetimm.2010.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 01/21/2023]
|
34
|
Bryant NA, Rash AS, Woodward AL, Medcalf E, Helwegen M, Wohlfender F, Cruz F, Herrmann C, Borchers K, Tiwari A, Chambers TM, Newton JR, Mumford JA, Elton DM. Isolation and characterisation of equine influenza viruses (H3N8) from Europe and North America from 2008 to 2009. Vet Microbiol 2011; 147:19-27. [DOI: 10.1016/j.vetmic.2010.05.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
35
|
Heldens J, Pouwels H, Derks C, Van de Zande S, Hoeijmakers M. Duration of immunity induced by an equine influenza and tetanus combination vaccine formulation adjuvanted with ISCOM-Matrix. Vaccine 2010; 28:6989-96. [DOI: 10.1016/j.vaccine.2010.08.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
|
36
|
Efficacy of a whole inactivated EI vaccine against a recent EIV outbreak isolate and comparative detection of virus shedding. Vet Immunol Immunopathol 2010; 136:272-83. [DOI: 10.1016/j.vetimm.2010.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
|
37
|
Stittelaar KJ, Lacombe V, van Lavieren R, van Amerongen G, Simon J, Cozette V, Swayne DE, Poulet H, Osterhaus ADME. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine. Vaccine 2010; 28:4970-6. [PMID: 20566392 DOI: 10.1016/j.vaccine.2010.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/25/2022]
Abstract
Several felid species have been shown to be susceptible to infection with highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype. Infection of felids by H5N1 HPAI virus is often fatal, and cat-to-cat transmission has been documented. Domestic cats may then be involved in the transmission of infection to other animals but also to humans. A particular concern is the hypothetical role of the cat in the adaptation of the virus to mammalian species, thus increasing the pandemic risk. Therefore, the development of a HPAI vaccine for domestic cats should be considered a veterinary and also a public health priority. Here we show that vaccination of cats with a recombinant canarypox (ALVAC)(1)) virus, expressing the hemagglutinin (HA) of influenza virus A/chicken/Indonesia/03 (H5N1) confers protection against challenge infection with two antigenically distinct H5N1 virus isolates from humans. Despite low hemagglutination inhibiting (HI) antibody titers at the time of challenge, all vaccinated cats were protected against mortality and had reduced histopathological changes in the lungs. Importantly, viral shedding was reduced in vaccinated cats as compared to controls, suggesting that vaccination of cats could reduce the risk of viral transmission. In conclusion this study showed that the recombinant canarypox virus protected cats against homologous and heterologous H5N1 HPAI virus challenges.
Collapse
Affiliation(s)
- Koert J Stittelaar
- ViroClinics Biosciences B.V., Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wagner B, Burton A, Ainsworth D. Interferon-gamma, interleukin-4 and interleukin-10 production by T helper cells reveals intact Th1 and regulatory TR1 cell activation and a delay of the Th2 cell response in equine neonates and foals. Vet Res 2010; 41:47. [PMID: 20374696 PMCID: PMC2865874 DOI: 10.1051/vetres/2010019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/06/2010] [Indexed: 12/15/2022] Open
Abstract
Cytokines produced by T helper (Th) cells are important in orchestrating the immune response during health and disease. Recent reports indicated that cytokine mRNA expression in foals is often quantitatively lower than that of adult horses suggesting that foal T cells are not fully mature. Here, peripheral blood mononuclear cells from foals and adult horses were stimulated with phorbol 12-myristate 13-acetate and analyzed for intracellular interferon-gamma (IFN-γ), interleukin-4 (IL-4) and IL-10 production, representing the Th1, Th2 and regulatory TR1 cell phenotypes respectively, by flow cytometry. In agreement with previous reports, all three cytokines were quantitatively reduced in foals compared to adults. However, the balance between Th1 and Th2 cytokines (IFN-γ/IL-4 ratio) showed a clear Th1-biased response in foals by 6 and 12 weeks of life, while similar IFN-γ/IL-10 ratios were found in foals and adult horses. By day 5 after birth, intracellular IFN-γ production by foal CD4+ and CD8+ T cells resembled that in adults. Overall, IL-4 production was low in foals. IL-4+ cells peaked at day 5 of age when IL-4 was mainly produced by IgE+ cells. Relative percentages of IL-4+ Th2 cells were significantly lower in foals at all time points. The data suggested that equine neonates and young foals have an impaired Th2 response, that the immune response of foals is Th1 biased, that IFN-γ production by Th and cytotoxic T cells is qualitatively similar to adult horses, and regulatory IL-10 production by T cells is developmentally mature in foals during the first three months of life.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
39
|
Garner MG, Cowled B, East IJ, Moloney BJ, Kung NY. Evaluating the effectiveness of early vaccination in the control and eradication of equine influenza--a modelling approach. Prev Vet Med 2010; 99:15-27. [PMID: 20236718 DOI: 10.1016/j.prevetmed.2010.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/07/2009] [Accepted: 02/15/2010] [Indexed: 11/25/2022]
Abstract
In August 2007, Australia which had previously been free of equine influenza, experienced a large outbreak that lasted approximately 4 months before it was eradicated. The outbreak required a significant national response by government and the horse industries. The main components of the response were movement controls, biosecurity measures, risk-based zoning and, subsequently, vaccination to contain the outbreak. Although not initially used, vaccination became a key element in the eradication program, with approximately 140000 horses vaccinated. Vaccination is recognised as a valuable tool for managing EI in endemically infected countries but there is little experience using it in situations where the objective is disease eradication. Vaccination was undoubtedly an important factor in 2007 as it enabled movements of some horses and associated industry activities to recommence. However, its contribution to containment and eradication is less clear. A premises-level equine influenza model, based on an epidemiological analysis of the 2007 outbreak, was developed to evaluate effectiveness of the mitigation strategies used and to investigate whether vaccination, if applied earlier, would have had an effect on the course of the outbreak. The results indicate that early use of strategic vaccination could have significantly reduced the size of the outbreak. The four vaccination strategies evaluated had, by 1 month into the control program, reduced the number of new infections on average by 60% and the size of the infected area by 8-9%. If resources are limited, a 1 km suppressive ring vaccination around infected premises gave the best results, but with greater vaccination capacity, a 3 km ring vaccination was the most effective strategy. The findings suggest that as well as reducing clinical and economic impacts, vaccination when used with biosecurity measures and movement controls could play an important role in the containment and eradication of equine influenza.
Collapse
Affiliation(s)
- M G Garner
- Office of the Chief Veterinary Officer, Department of Agriculture, Fisheries and Forestry, GPO Box 858, 18 Marcus Clarke St, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
40
|
Soboll G, Hussey SB, Minke JM, Landolt GA, Hunter JS, Jagannatha S, Lunn DP. Onset and duration of immunity to equine influenza virus resulting from canarypox-vectored (ALVAC) vaccination. Vet Immunol Immunopathol 2009; 135:100-107. [PMID: 20018384 DOI: 10.1016/j.vetimm.2009.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/10/2009] [Accepted: 11/14/2009] [Indexed: 11/26/2022]
Abstract
Equine influenza virus remains an important problem in horses despite extensive use of vaccination. Efficacy of equine influenza vaccination depends on the onset and duration of protective immunity, and appropriate strain specificity of the immune response. This study was designed to test the protective immunity resulting from vaccination with the North American commercial ALVAC equine influenza vaccine (RECOMBITEK Influenza, Merial, USA)(1) against challenge with American lineage influenza viruses. In experiment 1, 12 ponies were vaccinated twice, at a 35 day interval, using the ALVAC-influenza vaccine expressing the HA genes of influenza A/eq/Newmarket/2/93 and A/eq/Kentucky/94 (H3N8), and 11 ponies served as unvaccinated controls. Six months after the second vaccination, all ponies were challenged with A/eq/Kentucky/91. In experiment 2, 10 ponies received one dose of the ALVAC-influenza vaccine, 10 ponies served as unvaccinated controls, and all ponies were challenge infected with A/equine/Ohio/03, 14 days after vaccination. Parameters studied included serological responses, and clinical disease and nasal viral shedding following challenge infection. In experiment 1, following the two-dose regimen, vaccinated ponies generated high titered anti-influenza virus IgGa and IgGb antibody responses to vaccination and demonstrated statistically significant clinical and virological protection to challenge infection compared to controls. Infection with A/eq/Kentucky/91 produced unusually severe signs in ponies in the control group, requiring therapy with NSAID's and antibiotics, and leading to the euthanasia of one pony. In experiment 2 following the one-dose regimen, vaccinates generated IgGa responses pre-challenge, and anamnestic IgGa and IgGb responses after challenge. Vaccinates demonstrated statistically significant clinical and virological protection to challenge infection compared to controls. The results of this study clearly demonstrate the early onset, and 6-month duration of protective immunity resulting from ALVAC-influenza vaccination against challenge with American lineage equine influenza viruses.
Collapse
Affiliation(s)
- Gisela Soboll
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA
| | - Stephen B Hussey
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA
| | - Jules M Minke
- Merial S.A.S., 254 rue Marcel Merieux, 69007 Lyon, France
| | - Gabriele A Landolt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA
| | | | - Shyla Jagannatha
- School of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - David P Lunn
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA.
| |
Collapse
|
41
|
Bryant NA, Paillot R, Rash AS, Medcalf E, Montesso F, Ross J, Watson J, Jeggo M, Lewis NS, Newton JR, Elton DM. Comparison of two modern vaccines and previous influenza infection against challenge with an equine influenza virus from the Australian 2007 outbreak. Vet Res 2009; 41:19. [PMID: 19863903 PMCID: PMC2790087 DOI: 10.1051/vetres/2009067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/28/2009] [Indexed: 11/14/2022] Open
Abstract
During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared.A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens' eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population.
Collapse
Affiliation(s)
- Neil A Bryant
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Kentford, Newmarket, CB8 7UU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The first safe inactivated equine influenza vaccine formulation adjuvanted with ISCOM-Matrix that closes the immunity gap. Vaccine 2009; 27:5530-7. [DOI: 10.1016/j.vaccine.2009.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/02/2009] [Accepted: 06/25/2009] [Indexed: 11/22/2022]
|
43
|
Bryant NA, Rash AS, Russell CA, Ross J, Cooke A, Bowman S, MacRae S, Lewis NS, Paillot R, Zanoni R, Meier H, Griffiths LA, Daly JM, Tiwari A, Chambers TM, Newton JR, Elton DM. Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007. Vet Microbiol 2009; 138:41-52. [DOI: 10.1016/j.vetmic.2009.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/16/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
|
44
|
Chambers TM, Quinlivan M, Sturgill T, Cullinane A, Horohov DW, Zamarin D, Arkins S, García-Sastre A, Palese P. Influenza A viruses with truncated NS1 as modified live virus vaccines: pilot studies of safety and efficacy in horses. Equine Vet J 2009; 41:87-92. [PMID: 19301588 DOI: 10.2746/042516408x371937] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
REASONS FOR PERFORMING STUDY Three previously described NS1 mutant equine influenza viruses encoding carboxy-terminally truncated NS1 proteins are impaired in their ability to inhibit type I IFN production in vitro and are replication attenuated, and thus are candidates for use as a modified live influenza virus vaccine in the horse. HYPOTHESIS One or more of these mutant viruses is safe when administered to horses, and recipient horses when challenged with wild-type influenza have reduced physiological and virological correlates of disease. METHODS Vaccination and challenge studies were done in horses, with measurement of pyrexia, clinical signs, virus shedding and systemic proinflammatory cytokines. RESULTS Aerosol or intranasal inoculation of horses with the viruses produced no adverse effects. Seronegative horses inoculated with the NS1-73 and NS1-126 viruses, but not the NS1-99 virus, shed detectable virus and generated significant levels of antibodies. Following challenge with wild-type influenza, horses vaccinated with NS1-126 virus did not develop fever (>38.5 degrees C), had significantly fewer clinical signs of illness and significantly reduced quantities of virus excreted for a shorter duration post challenge compared to unvaccinated controls. Mean levels of proinflammatory cytokines IL-1beta and IL-6 were significantly higher in control animals, and were positively correlated with peak viral shedding and pyrexia on Day +2 post challenge. CONCLUSION AND CLINICAL RELEVANCE These data suggest that the recombinant NS1 viruses are safe and effective as modified live virus vaccines against equine influenza. This type of reverse genetics-based vaccine can be easily updated by exchanging viral surface antigens to combat the problem of antigenic drift in influenza viruses.
Collapse
Affiliation(s)
- T M Chambers
- Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wagner B, Hillegas JM, Flaminio MJB, Wattrang E. Monoclonal antibodies to equine interferon-α (IFN-α): New tools to neutralize IFN-activity and to detect secreted IFN-α. Vet Immunol Immunopathol 2008; 125:315-25. [DOI: 10.1016/j.vetimm.2008.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/13/2008] [Accepted: 05/20/2008] [Indexed: 01/13/2023]
|
46
|
Bryant N, Rash A, Lewis N, Elton D, Montesso F, Ross J, Newton R, Paillot R, Watson J, Jeggo M. Australian equine influenza: vaccine protection in the UK. Vet Rec 2008; 162:491-2. [PMID: 18408203 DOI: 10.1136/vr.162.15.491-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Wagner B, Hillegas JM, Brinker DR, Horohov DW, Antczak DF. Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses. Vet Immunol Immunopathol 2008; 122:57-64. [DOI: 10.1016/j.vetimm.2007.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
|
48
|
van den Berg T, Lambrecht B, Marché S, Steensels M, Van Borm S, Bublot M. Influenza vaccines and vaccination strategies in birds. Comp Immunol Microbiol Infect Dis 2008; 31:121-65. [PMID: 17889937 DOI: 10.1016/j.cimid.2007.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 12/21/2022]
Abstract
Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.
Collapse
Affiliation(s)
- Thierry van den Berg
- Avian Virology & Immunology, Veterinary & Agrochemical Research Centre, 99 Groeselenberg, 1180 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
49
|
Paillot R, Grimmett H, Elton D, Daly JM. Protection, systemic IFNγ, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host. Vet Res 2008; 39:21. [DOI: 10.1051/vetres:2007062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/09/2007] [Indexed: 11/14/2022] Open
|
50
|
Paillot R, Kydd JH, MacRae S, Minke JM, Hannant D, Daly JM. New assays to measure equine influenza virus-specific Type 1 immunity in horses. Vaccine 2007; 25:7385-98. [PMID: 17881098 DOI: 10.1016/j.vaccine.2007.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/28/2022]
Abstract
Equine influenza virus (EIV) is a leading cause of respiratory disease in horses. Equine influenza infection induces a long-term immunity to re-infection. Recent strategies of vaccination aim to mimic this immunity by stimulating both antibody and cellular immune responses. Cell-mediated immunity (CMI) to influenza is well defined in man, but little has been done to characterise the responses in the horse. Additionally, the development of reliable assays for the measurement of equine CMI has lagged behind serological methods and vaccine development. In this study, two methods of measuring EIV-specific T lymphocyte responses have been developed. An EIV 'bulk' cytotoxic T lymphocytes (CTL) assay using equine dermal fibroblasts as target cells has been adapted from a method used in the 1980s. This method was also complemented with a new EIV-specific IFNgamma synthesis assay. When compared with the measurement of EIV-specific IFNgamma synthesis previously described, this method required the amplification of EIV-specific lymphocytes by culture and was sensitive enough to detect stimulation of EIV-specific T lymphocytes induced by experimental infection with EIV or vaccination with recombinant canarypox viruses coding for EIV-HA molecules. This study provides the tools to characterise the stimulation of CMI by the new generation of vaccines against equine influenza.
Collapse
Affiliation(s)
- R Paillot
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | | | | | | | | | | |
Collapse
|