1
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm (Lond) 2024; 21:20. [PMID: 38867277 PMCID: PMC11170788 DOI: 10.1186/s12950-024-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.
Collapse
Affiliation(s)
- Shima Famil Samavati
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh HoseinKhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Steven Levitte
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Abdallah AN, Shamaa AA, El-Tookhy OS, Bahr MM. Comparison between stem cell therapy and stem cell derived exosomes on induced multiple sclerosis in dogs. BMC Vet Res 2024; 20:90. [PMID: 38459498 PMCID: PMC10921795 DOI: 10.1186/s12917-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic condition that primarily manifests as demyelination of neuronal axons in the central nervous system, due to the loss or attack of oligodendroglia cells that form myelin. Stem cell therapy has shown promising results for the treatment of MS due to its capability to halt the immune attack, stop apoptosis and axonal degeneration, and differentiate into oligodendrocytes. Stem cell-derived Exosomes (Exosomes) have shown great capabilities for neuronal diseases as they have growth factors, complex sets of miRNA, enzymes, proteins, major peptides, lipids, and macromolecules with anti-inflammatory, angiogenesis, and neurogenesis activities. METHODS This study aimed to compare the healing properties of stem cells, against Exosomes for the treatment of an experimentally induced MS dog model. Dog models of MS received either a single treatment of stem cells or a single treatment of Exosomes intrathecally and the treatment process was evaluated clinically, radiologically, histopathologically, and electron microscopy and cerebrospinal fluid analysis. RESULTS showed marked amelioration of the clinical signs in both treated groups compared to the control one, magnetic resonance scans showed the resolution of the hyperintense lesions at the end of the study period, the histopathology and electron microscopy showed marked healing properties and remyelination in treated groups with superiority of the stem cells compared to Exosomes. CONCLUSIONS Although stem cell results were superior to Exosomes therapy; Exosomes have proven to be effective and safe important actors in myelin regeneration, and their use in diseases like MS helps to stimulate remyelination.
Collapse
Affiliation(s)
- Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar S El-Tookhy
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed M Bahr
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Chrobak AA, Pańczyszyn-Trzewik P, Król P, Pawelec-Bąk M, Dudek D, Siwek M. New Light on Prions: Putative Role of PrP c in Pathophysiology of Mood Disorders. Int J Mol Sci 2024; 25:2967. [PMID: 38474214 PMCID: PMC10932175 DOI: 10.3390/ijms25052967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Mood disorders are highly prevalent and heterogenous mental illnesses with devastating rates of mortality and treatment resistance. The molecular basis of those conditions involves complex interplay between genetic and environmental factors. Currently, there are no objective procedures for diagnosis, prognosis and personalization of patients' treatment. There is an urgent need to search for novel molecular targets for biomarkers in mood disorders. Cellular prion protein (PrPc) is infamous for its potential to convert its insoluble form, leading to neurodegeneration in Creutzfeldt-Jacob disease. Meanwhile, in its physiological state, PrPc presents neuroprotective features and regulates neurotransmission and synaptic plasticity. The aim of this study is to integrate the available knowledge about molecular mechanisms underlying the impact of PrPc on the pathophysiology of mood disorders. Our review indicates an important role of this protein in regulation of cognitive functions, emotions, sleep and biological rhythms, and its deficiency results in depressive-like behavior and cognitive impairment. PrPc plays a neuroprotective role against excitotoxicity, oxidative stress and inflammation, the main pathophysiological events in the course of mood disorders. Research indicates that PrPc may be a promising biomarker of cognitive decline. There is an urgent need of human studies to elucidate its potential utility in clinical practice.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Patrycja Król
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Magdalena Pawelec-Bąk
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| |
Collapse
|
5
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
6
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
7
|
Sharma M, Sheth M, Poling HM, Kuhnell D, Langevin SM, Esfandiari L. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sci Rep 2023; 13:18293. [PMID: 37880299 PMCID: PMC10600140 DOI: 10.1038/s41598-023-45409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maulee Sheth
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Leyla Esfandiari
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
9
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
10
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
11
|
Dar GH, Badierah R, Nathan EG, Bhat MA, Dar AH, Redwan EM. Extracellular vesicles: A new paradigm in understanding, diagnosing and treating neurodegenerative disease. Front Aging Neurosci 2022; 14:967231. [PMID: 36408114 PMCID: PMC9669424 DOI: 10.3389/fnagi.2022.967231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/29/2022] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders (NDs) are becoming one of the leading causes of disability and death across the globe due to lack of timely preventions and treatments. Concurrently, intensive research efforts are being carried out to understand the etiology of these age-dependent disorders. Extracellular vesicles (EVs)-biological nanoparticles released by cells-are gaining tremendous attention in understanding their role in pathogenesis and progression of NDs. EVs have been found to transmit pathogenic proteins of NDs between neurons. Moreover, the ability of EVs to exquisitely surmount natural biological barriers, including blood-brain barrier and in vivo safety has generated interest in exploring them as potential biomarkers and function as natural delivery vehicles of drugs to the central nervous system. However, limited knowledge of EV biogenesis, their heterogeneity and lack of adequate isolation and analysis tools have hampered their therapeutic potential. In this review, we cover the recent advances in understanding the role of EVs in neurodegeneration and address their role as biomarkers and delivery vehicles to the brain.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- Department of Biochemistry, S.P. College, Cluster University Srinagar, Srinagar, India
- Hassan Khoyihami Memorial Degree College, Bandipora, India
| | - Raied Badierah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Erica G. Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge, United Kingdom
| | | | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
12
|
Ditte Z, Silbern I, Ditte P, Urlaub H, Eichele G. Extracellular vesicles derived from the choroid plexus trigger the differentiation of neural stem cells. J Extracell Vesicles 2022; 11:e12276. [PMID: 36325603 PMCID: PMC9630752 DOI: 10.1002/jev2.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The choroid plexus secrets cerebrospinal fluid (CSF) composed of electrolytes, cytokines, growth factors, metabolites and extracellular vesicles (EVs) that flow through the interconnected brain ventricles. On their course, CSF components can act as signals that affect, for example, neural stem cells (NSCs) residing in niches of the ventricular wall. We studied EV-born CSF signals in an in vitro culture system. We purified EVs from the secretome of a choroid plexus cell line (Z310 cells), and from primary choroid plexus cultures and co-cultured those EVs with NSCs isolated from the niche of the lateral and the third ventricle. EVsZ310 and EVsCHP were purified by differential centrifugation. This yielded fractions of EVs of 50-150-nm diameter that induced a complex multicellular network formation and NSC differentiation. Both types of EV converted the round NSCs to cells that extended long processes that contacted nearby, alike-shaped cells. Mass spectrometry showed that the differentiation-inducing EVZ310 were enriched for membrane and membrane-associated proteins involved in cell differentiation, membrane trafficking, and membrane organization. We hypothesize that this type of EV Z310 cargo causes changes of stem cell morphology that leads to multicellular networks in the niches. This cell-shape transition may represent an initial step in NSC differentiation.
Collapse
Affiliation(s)
- Zuzana Ditte
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Biological RhythmsMax Planck Institute for Dynamics and Self OrganizationGöttingenGermany
| | - Ivan Silbern
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Peter Ditte
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Henning Urlaub
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Biological RhythmsMax Planck Institute for Dynamics and Self OrganizationGöttingenGermany
| |
Collapse
|
13
|
Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res 2022; 40:927-935. [PMID: 36163411 PMCID: PMC9512977 DOI: 10.1007/s11095-022-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022]
Abstract
Purpose To inhibit the transmission of SARS-CoV-2, we developed engineered exosomes that were conjugated with anti-spike nanobodies and type I interferon β (IFN-β). We evaluated the efficacy and potency of nanobody-IFN-β conjugated exosomes to treatment of SARS-CoV-2 infection. Methods Milk fat globule epidermal growth factor 8 (MFG-E8) is a glycoprotein that binds to phosphatidylserine (PS) exposed on the exosomes. We generated nanobody-IFN-β conjugated exosomes by fusing an anti-spike nanobody and IFN-β with MFG-E8. We used the SARS-CoV-2 pseudovirus with the spike of the D614G mutant that encodes ZsGreen to mimic the infection process of the SARS-CoV-2. The SARS-CoV-2 pseudovirus was infected with angiotensin-converting enzyme-2 (ACE2) expressing adenocarcinomic human alveolar basal epithelial cells (A549) or ACE2 expressing HEK-blue IFNα/β cells in the presence of nanobody-IFN-β conjugated exosomes. By assessing the expression of ZsGreen in target cells and the upregulation of interferon-stimulated genes (ISGs) in infected cells, we evaluated the anti-viral effects of nanobody-IFN-β conjugated exosomes. Results We confirmed the anti-spike nanobody and IFN-β expressions on the exosomes. Exosomes conjugated with nanobody-hIFN-β inhibited the interaction between the spike protein and ACE2, thereby inhibiting the infection of host cells with SARS-CoV-2 pseudovirus. At the same time, IFN-β was selectively delivered to SARS-CoV-2 infected cells, resulting in the upregulation of ISGs expression. Conclusion Exosomes conjugated with nanobody-IFN-β may provide potential benefits in the treatment of COVID-19 because of the cooperative anti-viral effects of the anti-spike nanobody and the IFN-β. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03400-0.
Collapse
|
14
|
A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes. PLoS One 2022; 17:e0270844. [PMID: 35802670 PMCID: PMC9269907 DOI: 10.1371/journal.pone.0270844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Electrical Impedance Spectroscopy (EIS) is a non-invasive and label-free technology that can characterize and discriminate cells based on their dielectric properties at a wide range of frequency. This characterization method has not been utilized for small extracellular vesicles (exosomes) with heterogenous and nano-scale size distribution. Here, we developed a novel label-free microelectronic impedance spectroscopy for non-invasive and rapid characterization of exosomes based on their unique dielectric properties. The device is comprised of an insulator-based dielectrophoretic (iDEP) module for exosomes isolation followed by an impedance spectroscopy utilizing the embedded micro-electrodes. This device is capable of distinguishing between exosomes harvested from different cellular origins as the result of their unique membrane and cytosolic compositions at a wide range of frequency. Therefore, it has the potential to be further evolved as a rapid tool for characterization of pathogenic exosomes in clinical settings.
Collapse
|
15
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
16
|
Yoon S, Kim SE, Ko Y, Jeong GH, Lee KH, Lee J, Solmi M, Jacob L, Smith L, Stickley A, Carvalho AF, Dragioti E, Kronbichler A, Koyanagi A, Hong SH, Thompson T, Oh H, Salazar de Pablo G, Radua J, Shin JI, Fusar-Poli P. Differential expression of MicroRNAs in Alzheimer's disease: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:2405-2413. [PMID: 35264731 DOI: 10.1038/s41380-022-01476-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) results in progressive cognitive decline owing to the accumulation of amyloid plaques and hyperphosphorylated tau. MicroRNAs (miRNAs) have attracted attention as a putative diagnostic and therapeutic target for neurodegenerative diseases. However, existing meta-analyses on AD and its association with miRNAs have produced inconsistent results. The primary objective of this study is to evaluate the magnitude and consistency of differences in miRNA levels between AD patients, mild cognitive impairment (MCI) patients and healthy controls (HC). Articles investigating miRNA levels in blood, brain tissue, or cerebrospinal fluid (CSF) of AD and MCI patients versus HC were systematically searched in PubMed/Medline from inception to February 16th, 2021. Fixed- and random-effects meta-analyses were complemented with the I2 statistic to measure the heterogeneity, assessment of publication bias, sensitivity subgroup analyses (AD severity, brain region, post-mortem versus ante-mortem specimen for CSF and type of analysis used to quantify miRNA) and functional enrichment pathway analysis. Of the 1512 miRNAs included in 61 articles, 425 meta-analyses were performed on 334 miRNAs. Fifty-six miRNAs were significantly upregulated (n = 40) or downregulated (n = 16) in AD versus HC and all five miRNAs were significantly upregulated in MCI versus HC. Functional enrichment analysis confirmed that pathways related to apoptosis, immune response and inflammation were statistically enriched with upregulated pathways in participants with AD relative to HC. This study confirms that miRNAs' expression is altered in AD and MCI compared to HC. These findings open new diagnostic and therapeutic perspectives for this disorder.
Collapse
Affiliation(s)
- Sojung Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Kyoungki-do, Republic of Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, ON, Canada.,Department of Mental Health, The Ottawa Hospital, Ontario, ON, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada.,School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Louis Jacob
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Andrew Stickley
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Stockholm Center for Health and Social Change (SCOHOST), Södertörn University, Huddinge, Sweden
| | - Andre F Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elena Dragioti
- Pain and Rehabilitation Centre and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
| | | | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Trevor Thompson
- Centre of Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Hans Oh
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, 90015, USA
| | - Gonzalo Salazar de Pablo
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Institute of Psychiatry and Mental Health. Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain.,Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,OASIS service, South London and Maudsley NHS Foundation Trust, London, UK.,National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Bydak B, Pierdoná TM, Seif S, Sidhom K, Obi PO, Labouta HI, Gordon JW, Saleem A. Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity. MEMBRANES 2022; 12:464. [PMID: 35629791 PMCID: PMC9144336 DOI: 10.3390/membranes12050464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), released from all cells, are essential to cellular communication and contain biomolecular cargo that can affect recipient cell function. Studies on the effects of contractile activity (exercise) on EVs usually rely on plasma/serum-based assessments, which contain EVs from many different cells. To specifically characterize skeletal muscle−derived vesicles and the effect of acute contractile activity, we used an in vitro model where C2C12 mouse myoblasts were differentiated to form myotubes. EVs were isolated from conditioned media from muscle cells at pre-differentiation (myoblasts) and post-differentiation (myotubes) and also from acutely stimulated myotubes (1 h @ 14 V, C-Pace EM, IonOptix, Westwood, MA, USA) using total exosome isolation reagent (TEI, ThermoFisher (Waltham, MA, USA), referred to as extracellular particles [EPs]) and differential ultracentrifugation (dUC; EVs). Myotube-EPs (~98 nm) were 41% smaller than myoblast-EPs (~167 nm, p < 0.001, n = 8−10). Two-way ANOVA showed a significant main effect for the size distribution of myotube vs. myoblast-EPs (p < 0.01, n = 10−13). In comparison, myoblast-EPs displayed a bimodal size distribution profile with peaks at <200 nm and 400−600, whereas myotube-Eps were largely 50−300 nm in size. Total protein yield from myotube-EPs was nearly 15-fold higher than from the myoblast-EPs, (p < 0.001 n = 6−9). Similar biophysical characteristics were observed when EVs were isolated using dUC: myotube-EVs (~195 nm) remained 41% smaller in average size than myoblast-EVs (~330 nm, p = 0.07, n = 4−6) and had comparable size distribution profiles to EPs isolated via TEI. Myotube-EVs also had 4.7-fold higher protein yield vs. myoblast EVs (p < 0.05, n = 4−6). Myotube-EPs exhibited significantly decreased expression of exosomal marker proteins TSG101, CD63, ALIX and CD81 compared with myoblast-EPs (p < 0.05, n = 7−12). Conversely, microvesicle marker ARF6 and lipoprotein marker APO-A1 were only found in the myotube-EPs (p < 0.05, n = 4−12). There was no effect of acute stimulation on myotube-EP biophysical characteristics (n = 7) or on the expression of TSG101, ARF6 or CD81 (n = 5−6). Myoblasts treated with control or acute stimulation−derived EPs (13 µg/well) for 48 h and 72 h showed no changes in mitochondrial mass (MitoTracker Red, ThermoFisher, Waltham, MA, USA), cell viability or cell count (n = 3−4). Myoblasts treated with EP-depleted media (72 h) exhibited ~90% lower cell counts (p < 0.01, n = 3). Our data show that EVs differed in size, distribution, protein yield and expression of subtype markers pre vs. post skeletal muscle−differentiation into myotubes. There was no effect of acute stimulation on biophysical profile or protein markers in EPs. Acute stimulation−derived EPs did not alter mitochondrial mass or cell count/viability. Further investigation into the effects of chronic contractile activity on the biophysical characteristics and cargo of skeletal muscle−specific EVs are warranted.
Collapse
Affiliation(s)
- Benjamin Bydak
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Taiana M. Pierdoná
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Samira Seif
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karim Sidhom
- Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Patience O. Obi
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hagar I. Labouta
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joseph W. Gordon
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Winnipeg, MB R3T 2N2, Canada
- Biology of Breathing (BoB) Theme, Winnipeg, MB R3T 2N2, Canada
- Rady Faculty of Health Sciences, College of Nursing, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (B.B.); (P.O.O.)
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3T 2N2, Canada; (T.M.P.); (S.S.); (H.I.L.); (J.W.G.)
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Winnipeg, MB R3T 2N2, Canada
- Biology of Breathing (BoB) Theme, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
18
|
Sun H, Gao Y, Li M, Zhang S, Shen T, Yuan X, Shang X, Li Z, Zhang J. Altered amyloid-β and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea. Sleep Med 2022; 94:76-83. [DOI: 10.1016/j.sleep.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 03/26/2022] [Indexed: 01/01/2023]
|
19
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
20
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
21
|
Cellular prion protein in human plasma-derived extracellular vesicles promotes neurite outgrowth via the NMDA receptor-LRP1 receptor system. J Biol Chem 2022; 298:101642. [PMID: 35090893 PMCID: PMC8861162 DOI: 10.1016/j.jbc.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Exosomes and other extracellular vesicles (EVs) participate in cell–cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α2-macroglobulin, which is reported to regulate PC-12 cell physiology. We therefore further purified EVs by molecular exclusion or phosphatidylserine affinity chromatography, which reduced plasma protein contamination. EVs subjected to these additional purification methods exhibited unchanged activity in PC-12 cells, even though α2-macroglobulin was reduced to undetectable levels. Nonpathogenic cellular prion protein (PrPC) was carried by human plasma EVs and essential for the effects of EVs on PC-12 cells, as EV-induced cell signaling and neurite outgrowth were blocked by the PrPC-specific antibody, POM2. In addition, inhibitors of the N-methyl-d-aspartate (NMDA) receptor (NMDA-R) and low-density lipoprotein receptor–related protein-1 (LRP1) blocked the effects of plasma EVs on PC-12 cells, as did silencing of Lrp1 or the gene encoding the GluN1 NMDA-R subunit (Grin1). These results implicate the NMDA-R–LRP1 complex as the receptor system responsible for mediating the effects of EV-associated PrPC. Finally, EVs harvested from rat astrocytes carried PrPC and replicated the effects of human plasma EVs on PC-12 cell signaling. We conclude that interaction of EV-associated PrPC with the NMDA-R–LRP1 complex in target cells represents a novel mechanism by which EVs may participate in intercellular communication in the nervous system.
Collapse
|
22
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
23
|
Pink D, Donnelier J, Lewis JD, Braun JEA. Cysteine String Protein Controls Two Routes of Export for Misfolded Huntingtin. Front Neurosci 2022; 15:762439. [PMID: 35069097 PMCID: PMC8766765 DOI: 10.3389/fnins.2021.762439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted vesicles of diverse size and cargo that are implicated in the cell-to-cell transmission of disease-causing-proteins in several neurodegenerative diseases. Mutant huntingtin, the disease-causing entity in Huntington's disease, has an expanded polyglutamine track at the N terminus that causes the protein to misfold and form toxic intracellular aggregates. In Huntington's disease, mutant huntingtin aggregates are transferred between cells by several routes. We have previously identified a cellular pathway that is responsible for the export of mutant huntingtin via extracellular vesicles. Identifying the EV sub-populations that carry misfolded huntingtin cargo is critical to understanding disease progression. In this work we expressed a form of polyglutamine expanded huntingtin (GFP-tagged 72Qhuntingtinexon1) in cells to assess the EVs involved in cellular export. We demonstrate that the molecular chaperone, cysteine string protein (CSPα; DnaJC5), facilitates export of disease-causing-polyglutamine-expanded huntingtin cargo in 180-240 nm vesicles as well as larger 10-30 μm vesicles.
Collapse
Affiliation(s)
- Desmond Pink
- Nanostics Precision Health, Edmonton, AB, Canada
| | - Julien Donnelier
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - John D. Lewis
- Nanostics Precision Health, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Janice E. A. Braun
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Mantuano E, Azmoon P, Banki MA, Sigurdson CJ, Campana WM, Gonias SL. A Soluble PrP C Derivative and Membrane-Anchored PrP C in Extracellular Vesicles Attenuate Innate Immunity by Engaging the NMDA-R/LRP1 Receptor Complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:85-96. [PMID: 34810220 PMCID: PMC8702456 DOI: 10.4049/jimmunol.2100412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Nonpathogenic cellular prion protein (PrPC) demonstrates anti-inflammatory activity; however, the responsible mechanisms are incompletely defined. PrPC exists as a GPI-anchored membrane protein in diverse cells; however, PrPC may be released from cells by ADAM proteases or when packaged into extracellular vesicles (EVs). In this study, we show that a soluble derivative of PrPC (S-PrP) counteracts inflammatory responses triggered by pattern recognition receptors in macrophages, including TLR2, TLR4, TLR7, TLR9, NOD1, and NOD2. S-PrP also significantly attenuates the toxicity of LPS in mice. The response of macrophages to S-PrP is mediated by a receptor assembly that includes the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1). PrPC was identified in EVs isolated from human plasma. These EVs replicated the activity of S-PrP, inhibiting cytokine expression and IκBα phosphorylation in LPS-treated macrophages. The effects of plasma EVs on LPS-treated macrophages were blocked by PrPC-specific Ab, by antagonists of LRP1 and the NMDA-R, by deleting Lrp1 in macrophages, and by inhibiting Src family kinases. Phosphatidylinositol-specific phospholipase C dissociated the LPS-regulatory activity from EVs, rendering the EVs inactive as LPS inhibitors. The LPS-regulatory activity that was lost from phosphatidylinositol-specific phospholipase C-treated EVs was recovered in solution. Collectively, these results demonstrate that GPI-anchored PrPC is the essential EV component required for the observed immune regulatory activity of human plasma EVs. S-PrP and EV-associated PrPC regulate innate immunity by engaging the NMDA-R/LRP1 receptor system in macrophages. The scope of pattern recognition receptors antagonized by S-PrP suggests that released forms of PrPC may have broad anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Wendy M Campana
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, CA; and
- Veterans Administration San Diego Healthcare System, San Diego, CA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA;
| |
Collapse
|
25
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
26
|
Muraoka S, DeLeo AM, Yang Z, Tatebe H, Yukawa-Takamatsu K, Ikezu S, Tokuda T, Issadore D, Stern RA, Ikezu T. Proteomic Profiling of Extracellular Vesicles Separated from Plasma of Former National Football League Players at Risk for Chronic Traumatic Encephalopathy. Aging Dis 2021; 12:1363-1375. [PMID: 34527415 PMCID: PMC8407879 DOI: 10.14336/ad.2020.0908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer's disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Annina M DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Zijian Yang
- Deprtment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, JAPAN.
| | - Kayo Yukawa-Takamatsu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Takahiko Tokuda
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, JAPAN.
| | - David Issadore
- Deprtment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, MA, USA.
- Departments of Anatomy & Neurobiology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
27
|
Cerebrospinal Fluid and Plasma Small Extracellular Vesicles and miRNAs as Biomarkers for Prion Diseases. Int J Mol Sci 2021; 22:ijms22136822. [PMID: 34201940 PMCID: PMC8268953 DOI: 10.3390/ijms22136822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.
Collapse
|
28
|
Zhang J, Chi H, Wang T, Zhang S, Shen T, Leng B, Sun H, Li Z, Li F. Altered Amyloid-β and Tau Proteins in Neural-Derived Plasma Exosomes of Type 2 Diabetes Patients with Orthostatic Hypotension. J Alzheimers Dis 2021; 82:261-272. [PMID: 34024835 DOI: 10.3233/jad-210216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Emerging evidence suggests a role for orthostatic hypotension (OH) in contributing to the progression of Alzheimer's disease (AD). The exosomes in the blood can reflect the pathological changes in the brain. OBJECTIVE To investigate whether neural-derived plasma exosomes pathogenic proteins of AD levels are associated with OH in diabetes mellitus (DM) patients. METHODS There were 274 subjects without dementia included in the study: 81 control participants (controls), 101 normotensive patients with DM without OH, and 92 patients with DM and neurogenic OH (DMOH). Neural-derived exosomal proteins were measured by ELISA kits for amyloid-β (Aβ) and tau. RESULTS The neural-derived exosome levels of Aβ42, total tau (T-tau), and tau phosphorylated at threonine 181 (P-T181-tau) in the DM with OH group were higher than those in the DM and control groups. Multivariable linear regression analysis showed that the presence of OH in patients with DM was associated with elevated exosomal Aβ42 (β= 0.172, p = 0.018), T-tau (β= 0.159, p = 0.030), and P-T181-tau (β= 0.220, p = 0.003) levels after adjustment for age, sex, APOE ɛ4, duration of type 2 diabetes, HbA1c, and cardiovascular risk factors. Furthermore, the levels of Aβ42, T-tau, and P-T181-tau in neural-derived exosomes were correlated with HIF-1α levels and the drop in mean cerebral blood flow velocity from the supine to upright position. CONCLUSION The presence of OH in DM patients was independently associated with elevated the Aβ42, T-tau, and P-T181-tau levels in neural-derived plasma exosomes. Cerebral hypoperfusion from DM with OH are likely candidate mechanisms.
Collapse
Affiliation(s)
- Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Haiyan Chi
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Tong Wang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
29
|
Qi X, Chen S, He H, Wen W, Wang H. The role and potential application of extracellular vesicles in liver cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1281-1294. [PMID: 33847910 DOI: 10.1007/s11427-020-1905-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Liver cancer is one of the most common causes of cancer-related death worldwide and mainly includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Extracellular vesicles (EVs) are membrane-derived nanometer-sized vesicles that can be released by different cell types under normal and pathological conditions and thus play important roles in the transmission of biological information between cells. Increasing evidence suggests that liver cancer cell-derived EVs may help establish a favorable microenvironment to support the proliferation, invasion and metastasis of cancer cells. In this review, we summarized the role of EVs in the tumor microenvironment (TME) during the development and progression of liver cancer. As messenger carriers, EVs are loaded by various biomolecules, such as proteins, RNA, DNA, lipids and metabolites, making them potential liquid biopsy biomarkers for the diagnosis and prognosis of liver cancer. We also highlighted the progress of EVs as antigen carriers and EV-based therapeutics in preclinical studies of liver cancer.
Collapse
Affiliation(s)
- Xuewei Qi
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Huisi He
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Ugalde CL, Gordon SE, Shambrook M, Nasiri Kenari A, Coleman BM, Perugini MA, Lawson VA, Finkelstein DI, Hill AF. An intact membrane is essential for small extracellular vesicle-induced modulation of α-synuclein fibrillization. J Extracell Vesicles 2020; 10:e12034. [PMID: 33318779 PMCID: PMC7726797 DOI: 10.1002/jev2.12034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/09/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023] Open
Abstract
The misfolding and fibrillization of the protein, α-synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis. While many studies report the ability of synthetic lipid membranes to modulate αsyn folding, there is little data pertaining to the mechanism(s) of this interaction. αSyn has previously been shown to associate with small lipid vesicles released by cells called extracellular vesicles (EVs) and it is postulated these interactions may assist in the spreading of pathological forms of this protein. Together, this presents the need for robust characterisation studies on αsyn fibrillization using biologically-derived vesicles. In this study, we comprehensively characterised the ability of lipid-rich small extracellular vesicles (sEVs) to alter the misfolding of αsyn induced using the Protein Misfolding Cyclic Amplification (PMCA) assay. The biochemical and biophysical properties of misfolded αsyn were examined using a range of techniques including: Thioflavin T fluorescence, transmission electron microscopy, analytical centrifugation and western immunoblot coupled with protease resistance assays and soluble/insoluble fractionation. We show that sEVs cause an acceleration in αsyn fibrillization and provide comprehensive evidence that this results in an increase in the abundance of mature insoluble fibrillar species. In order to elucidate the relevance of the lipid membrane to this interaction, sEV lipid membranes were modified by treatment with methanol, or a combination of methanol and sarkosyl. These treatments altered the ultrastructure of the sEVs without changing the protein cargo. Critically, these modified sEVs had a reduced ability to influence αsyn fibrillization compared to untreated counterparts. This study reports the first comprehensive examination of αsyn:EV interactions and demonstrates that sEVs are powerful modulators of αsyn fibrillization, which is mediated by the sEV membrane. In doing so, this work provides strong evidence for a role of sEVs in contributing directly to αsyn misfolding in the synucleinopathy disorders.
Collapse
Affiliation(s)
- Cathryn L. Ugalde
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Howard Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Shane E. Gordon
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Mitch Shambrook
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | | | - Bradley M. Coleman
- Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Matthew A. Perugini
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Victoria A. Lawson
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - David I. Finkelstein
- Howard Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Andrew F. Hill
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
31
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
32
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
33
|
Yuyama K, Sun H, Mikami D, Mioka T, Mukai K, Igarashi Y. Lysosomal-associated transmembrane protein 4B regulates ceramide-induced exosome release. FASEB J 2020; 34:16022-16033. [PMID: 33090522 DOI: 10.1096/fj.202001599r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Exosomes are extracellular vesicles that mediate the transport of intracellular molecules, including neurodegenerative agents. Exogenously administrated ceramides have been implicated in the acceleration of exosome production by neurons; however, the molecular machinery involved in this process is unknown. Here, we found that ceramides, especially those consisting of long fatty acids, were internalized into the endocytic pathway in neuroblastoma SH-SY5Y cells to induce exosome secretion through lysosome-associated protein transmembrane 4B (LAPTM4B). Knockdown of LAPTM4B inhibited the ceramide-mediated increase in exosome release completely. Fluorescence microscopy observations indicated that exogenous ceramides promote the transport of multivesicular bodies to the plasma membranes in a LAPTM4B-dependent manner. Similarly, inhibition of acid ceramidase, which tends to induce intracellular ceramide accumulation, increased exosome production by SH-SY5Y cells in a LAPTM4B-dependent manner. Furthermore, the level of amyloid-ß protein (Aß) was decreased in neuronal cells following treatment with exogenous ceramide or inhibition of acid ceramidase, and this effect was attributed to the LAPTM4B-dependent efflux of Aß-containing exosomes. Overall, these findings reveal the novel machinery involved in exosome secretion regulated by ceramides and LAPTM4B, and may contribute to efforts to ameliorate the cellular accumulation of neurodegenerative agents such as Aß.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Brenna S, Altmeppen HC, Mohammadi B, Rissiek B, Schlink F, Ludewig P, Krisp C, Schlüter H, Failla AV, Schneider C, Glatzel M, Puig B, Magnus T. Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. J Extracell Vesicles 2020; 9:1809065. [PMID: 32944194 PMCID: PMC7480459 DOI: 10.1080/20013078.2020.1809065] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.
Collapse
Affiliation(s)
- Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Schlink
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Puig B, Yang D, Brenna S, Altmeppen HC, Magnus T. Show Me Your Friends and I Tell You Who You Are: The Many Facets of Prion Protein in Stroke. Cells 2020; 9:E1609. [PMID: 32630841 PMCID: PMC7407975 DOI: 10.3390/cells9071609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke belongs to the leading causes of mortality and disability worldwide. Although treatments for the acute phase of stroke are available, not all patients are eligible. There is a need to search for therapeutic options to promote neurological recovery after stroke. The cellular prion protein (PrPC) has been consistently linked to a neuroprotective role after ischemic damage: it is upregulated in the penumbra area following stroke in humans, and animal models of stroke have shown that lack of PrPC aggravates the ischemic damage and lessens the functional outcome. Mechanistically, these effects can be linked to numerous functions attributed to PrPC: (1) as a signaling partner of the PI3K/Akt and MAPK pathways, (2) as a regulator of glutamate receptors, and (3) promoting stem cell homing mechanisms, leading to angio- and neurogenesis. PrPC can be cleaved at different sites and the proteolytic fragments can account for the manifold functions. Moreover, PrPC is present on extracellular vesicles (EVs), released membrane particles originating from all types of cells that have drawn attention as potential therapeutic tools in stroke and many other diseases. Thus, identification of the many mechanisms underlying PrPC-induced neuroprotection will not only provide further understanding of the physiological functions of PrPC but also new ideas for possible treatment options after ischemic stroke.
Collapse
Affiliation(s)
- Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | - Denise Yang
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | | | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| |
Collapse
|
36
|
Extracellular Vesicles and Neurodegenerative Diseases. J Neurosci 2020; 39:9269-9273. [PMID: 31748282 DOI: 10.1523/jneurosci.0147-18.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) include exosomes and microvesicles and have been shown to have roles in the CNS ranging from the removal of unwanted biomolecules to intercellular communication to the spread of pathogenic proteins associated with neurodegenerative diseases. EVs carry protein, lipid, and genetic cargo, and research over more than a decade has shown that they contain the misfolded forms of proteins associated with Alzheimer's, Parkinson's, and the prion diseases. Altered genetic cargo, usually in the form of miRNAs, have also been identified in EVs patients with these diseases, suggesting that EVs may be a source of disease biomarkers. Whether EVs play a key role in the pathogenesis of neurological diseases remains to be firmly established because most current research is performed using cell culture and transgenic animal models. If EVs are identified as a key pathological contributor to neurological conditions, they will form a novel target for therapeutic intervention. This Dual Perspectives article will discuss the current understanding of the role of EVs in neurological diseases and raise some of the limitations of our current understandings of this field.
Collapse
|
37
|
Wang LQ, Liu TL, Liang PH, Zhang SH, Li TS, Li YP, Liu GX, Mao L, Luo XN. Characterization of exosome-like vesicles derived from Taenia pisiformis cysticercus and their immunoregulatory role on macrophages. Parasit Vectors 2020; 13:318. [PMID: 32560736 PMCID: PMC7304098 DOI: 10.1186/s13071-020-04186-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Taenia pisiformis is one of the most common intestinal parasites in canines, and leads to serious economic losses in the rabbit breeding industry. Exosome-like vesicles from parasites play crucial roles in host-parasite interactions by transferring cargo from parasites to host cells and by modulating host immunological response through inducing production of host-derived cytokines. Nevertheless, the mechanism by which exosome-like vesicles from T. pisiformis cysticercus regulate the macrophage immune response remains unknown. Methods Using ultracentrifugation, we isolated exosome-like vesicles from excretory/secretory products (ESP) of T. pisiformis cysticercus. The morphology and size of purified vesicles were confirmed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The components of proteins and miRNAs within these vesicles were identified by proteomic analysis and high-throughput small RNA sequencing. The biological function of targets of exosomal miRNAs was predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Moreover, the expression of Th1- and Th2-type immune response associated cytokines in RAW264.7 macrophages were evaluated by qPCR and ELISA. We found that exosome-like vesicles were typical cup-shaped vesicles with diameters from 30 to 150 nm. A total of 87 proteins were identified by proteomic analysis, including proteins prominently associated with exosome-like vesicles biogenesis and vesicle trafficking. 41 known miRNAs and 18 novel miRNAs were identified in the exosome-like vesicles. Eleven selected miRNAs, including 7 known miRNAs (miR-71-5p, miR-10a-5p, miR-let-7-5p, miR-745-3p, miR-219-5p, miR-124-3p and miR-4989-3p) and 4 novel miRNAs (novel-mir-3, novel-mir-7, novel-mir-8 and novel-mir-11) were validated to exist in metacestiodes and exosome-like vesicles of T. pisiformis cysticercus by qPCR. The functions of most targets of exosomal miRNAs were mainly associated with signal transduction and the immune system. Additionally, T. pisiformis cysticercus-derived vesicles induced the production of IL-4, IL-6, IL-10, IL-13 and Arg-1, but downregulated the expression of IL-12, IFN-γ and iNOS in RAW264.7 macrophages. Conclusions We demonstrated that proteins and miRNAs enclosed within exosome-like vesicles from T. pisiformis cysticercus have immunomodulatory functions. Furthermore, exosome-like vesicles were shown to induce the macrophage Th2-type immune response in vitro. Our study suggests that exosome-like vesicles play an important role in the interaction between cysticerci and their hosts.![]()
Collapse
Affiliation(s)
- Li-Qun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ting-Li Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Pan-Hong Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shao-Hua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Tao-Shan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yan-Ping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guang-Xue Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Li Mao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xue-Nong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
38
|
Hornung S, Dutta S, Bitan G. CNS-Derived Blood Exosomes as a Promising Source of Biomarkers: Opportunities and Challenges. Front Mol Neurosci 2020; 13:38. [PMID: 32265650 PMCID: PMC7096580 DOI: 10.3389/fnmol.2020.00038] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs) including exosomes, ectosomes, and microvesicles. Exosomes are nanovesicles, 30–200 nm in diameter, that carry cell- and cell-state-specific cargo of proteins, lipids, and nucleic acids, including mRNA and miRNA. Recent studies have shown that central nervous system (CNS)-derived exosomes may carry amyloidogenic proteins and facilitate their cell-to-cell transfer, thus playing a critical role in the progression of neurodegenerative diseases, such as tauopathies and synucleinopathies. CNS-derived exosomes also have been shown to cross the blood-brain-barrier into the bloodstream and therefore have drawn substantial attention as a source of biomarkers for various neurodegenerative diseases as they can be isolated via a minimally invasive blood draw and report on the biochemical status of the CNS. However, although isolating specific brain-cell-derived exosomes from the blood is theoretically simple and the approach has great promise, practical details are of crucial importance and may compromise the reproducibility and utility of this approach, especially when different laboratories use different protocols. In this review we discuss the role of exosomes in neurodegenerative diseases, the usefulness of CNS-derived blood exosomes as a source of biomarkers for these diseases, and practical challenges associated with the methodology of CNS-derived blood exosomes and subsequent biomarker analysis.
Collapse
Affiliation(s)
- Simon Hornung
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
39
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
40
|
Leng B, Sun H, Zhao J, Liu Y, Shen T, Liu W, Liu X, Tan M, Li F, Zhang J, Li Z. Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neurosci Lett 2020; 723:134866. [PMID: 32109555 DOI: 10.1016/j.neulet.2020.134866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cognitive decline is a common non-motor symptom of Parkinson disease (PD), and cellular prion protein (PrPC) has been suggested to play a role in this process. This study aimed to investigate the correlation between plasma exosomal prion protein and cognitive decline in PD patients. METHOD A total of 60 participants, which included 23 PD patients without cognitive impairment (the PD-NCI group), 17 PD patients with cognitive impairment (the PD-CI group) and 20 health controls were included in this study. All participants received a complete evaluation of motor symptoms as well as non-motor symptoms, which include devaluations of cognitive function(assessed with the Montreal Cognitive Assessment (MoCA)) and their psychiatric state(assessed with the Hamilton Anxiety Scale(HAM-A) and Hamilton Depression Scale(HAMD-17)). We used an enzyme-linked immunosorbent assay (ELISA) to measure the plasma exosomal prion protein level. The exosomal marker Heat shock protein 70 (HSP 70) was used to normalize the protein level to the exosome content. RESULT In PD patients, the plasma exosomal prion protein concentration was negatively correlated with the cognitive level. The plasma exosomal prion protein concentration was significantly higher in the PD-CI group than in the control group (p < 0.05) and the PD-NCI group (p < 0.05).Multivariate regression analysis indicated that plasma exosomal prion protein levels were significantly associated with the cognitive level (t=-3.185, P = 0.001) after adjusting for age, education, disease duration, H&Y stage and MDS-UPDRS-III scores. CONCLUSION The plasma exosomal prion protein level is correlated with cognitive decline in PD patients and might be a potential biomarker for PD patients at risk for cognitive impairment.
Collapse
Affiliation(s)
- Bing Leng
- Weifang Medical University, PR China; Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Junwu Zhao
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Yuanyuan Liu
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Wenjin Liu
- Department of Neurology, Weihai Municipal Hospital, the Affiliated Hostpital of Binzhou Medical University, PR China
| | - Xiaoxiao Liu
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Fang Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, PR China
| | - Jinbiao Zhang
- Weifang Medical University, PR China; Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China
| | - Zhenguang Li
- Weifang Medical University, PR China; Department of Neurology, Weihai Municipal Hospital, Weihai Clinical School of Shandong University, PR China.
| |
Collapse
|
41
|
Eichele G, Bodenschatz E, Ditte Z, Günther AK, Kapoor S, Wang Y, Westendorf C. Cilia-driven flows in the brain third ventricle. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190154. [PMID: 31884922 DOI: 10.1098/rstb.2019.0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Gregor Eichele
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Zuzana Ditte
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ann-Kathrin Günther
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shoba Kapoor
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yong Wang
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Christian Westendorf
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
42
|
Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. LAB ON A CHIP 2019; 19:3726-3734. [PMID: 31588942 PMCID: PMC7477750 DOI: 10.1039/c9lc00902g] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exosomes are nano-scale membrane-encapsulated vesicles produced by the majority of cells and have emerged as a rich source of biomarkers for a wide variety of diseases. Although many approaches have been developed for exosome isolation from biofluids, most of them have substantial shortcomings including long processing time, inefficiency, high cost, lack of specificity and/or surface marker-dependency. To address these issues, here we report a novel insulator-based dielectrophoretic (iDEP) device predicated on an array of borosilicate micropipettes to rapidly isolate exosomes from conditioned cell culture media and biofluids, such as plasma, serum, and saliva. The device is capable of exosome isolation from small sample volumes of 200 μL within 20 minutes under a relatively low (10 V cm-1) direct current (DC). This device is easy to fabricate thus, no cleanroom facility and expensive equipment are needed. Therefore, the iDEP device offers a rapid and cost-effective strategy for exosome isolation from biofluids in timely manner while maintaining the yield and purity.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott M Langevin
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA and Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA and Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA and Cincinnati Cancer Center, Cincinnati, OH, USA and Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Kaczor-Urbanowicz KE, Wei F, Rao SL, Kim J, Shin H, Cheng J, Tu M, Wong DTW, Kim Y. Clinical validity of saliva and novel technology for cancer detection. Biochim Biophys Acta Rev Cancer 2019; 1872:49-59. [PMID: 31152821 PMCID: PMC6692231 DOI: 10.1016/j.bbcan.2019.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
Cancer, a local disease at an early stage, systemically evolves as it progresses by triggering alterations in surrounding microenvironment, disturbing immune surveillance and further disseminating its molecular contents into circulation. This pathogenic characteristic of cancer makes the use of biofluids such as blood/serum/plasma, urine, tear and cerebrospinal fluids credible surrogates harboring tumor tissue-derived molecular alterations for the detection of cancer. Most importantly, a number of recent reports have credentialed the clinical validity of saliva for the detection of systemic diseases including cancers. In this review, we discussed the validity of saliva as credible biofluid and clinical sample type for the detection of cancers. We have presented the molecular constituents of saliva that could mirror the systemic status of our body and recent findings of salivaomics associated with cancers. Recently, liquid biopsy to detect cancer-derived circulating tumor DNA has emerged as a credible cancer-detection tool with potential benefits in screening, diagnosis and also risk management of cancers. We have further presented the clinical validity of saliva for liquid biopsy of cancers and a new technology platform based on electrochemical detection of cancer-derived ctDNA in saliva with superior sensitivity and point-of-care potential. The clinical utilities of saliva for the detection of cancers have been evidenced, but biological underpinning on the existence of molecular signatures of cancer-origin in saliva, such as via exosomal distribution, should be addressed in detail.
Collapse
Affiliation(s)
- Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Section of Orthodontics, UCLA School of Dentistry, University of California at Los Angeles, United States of America
| | - Fang Wei
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Shannon Liu Rao
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jinseok Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Heebum Shin
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jordan Cheng
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Michael Tu
- EZLife Bio Inc., 21250 Califa St #101, Woodland Hills, CA 9367, United States of America
| | - David T W Wong
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| | - Yong Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| |
Collapse
|
44
|
Crotti A, Sait HR, McAvoy KM, Estrada K, Ergun A, Szak S, Marsh G, Jandreski L, Peterson M, Reynolds TL, Dalkilic-Liddle I, Cameron A, Cahir-McFarland E, Ransohoff RM. BIN1 favors the spreading of Tau via extracellular vesicles. Sci Rep 2019; 9:9477. [PMID: 31263146 PMCID: PMC6603165 DOI: 10.1038/s41598-019-45676-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
Despite Bridging INtegrator 1 (BIN1) being the second most statistically-significant locus associated to Late Onset Alzheimer’s Disease, its role in disease pathogenesis remains to be clarified. As reports suggest a link between BIN1, Tau and extracellular vesicles, we investigated whether BIN1 could affect Tau spreading via exosomes secretion. We observed that BIN1-associated Tau-containing extracellular vesicles purified from cerebrospinal fluid of AD-affected individuals are seeding-competent. We showed that BIN1 over-expression promotes the release of Tau via extracellular vesicles in vitro as well as exacerbation of Tau pathology in vivo in PS19 mice. Genetic deletion of Bin1 from microglia resulted in reduction of Tau secretion via extracellular vesicles in vitro, and in decrease of Tau spreading in vivo in male, but not female, mice, in the context of PS19 background. Interestingly, ablation of Bin1 in microglia of male mice resulted in significant reduction in the expression of heat-shock proteins, previously implicated in Tau proteostasis. These observations suggest that BIN1 could contribute to the progression of AD-related Tau pathology by altering Tau clearance and promoting release of Tau-enriched extracellular vesicles by microglia.
Collapse
Affiliation(s)
- Andrea Crotti
- Biogen, 225 Binney St., Cambridge, MA, 02142, USA. .,Astellas, 1030 Massachusetts Avenue, Cambridge, MA, 02138, USA.
| | | | | | | | - Ayla Ergun
- Fulcrum Therapeutics, 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Suzanne Szak
- Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | - Galina Marsh
- Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
You Y, Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol Dis 2019; 130:104512. [PMID: 31229685 DOI: 10.1016/j.nbd.2019.104512] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous vesicles which carry a large diversity of molecules such as proteins and RNA species. They are now considered to be a general mode of intercellular communication by direct transfer of biomolecules. Emerging evidence demonstrates that EVs are involved in multiple pathological processes of brain diseases including neurodegenerative disorders. In this review, we investigate the current knowledge about EV biology. We also provide an overview of the roles of EVs in related brain diseases, particularly in neurodegenerative disorders. Finally, we discuss their potential applications as novel biomarkers as well as the developments of EV-based therapies.
Collapse
Affiliation(s)
- Yang You
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Xu H, Jia S, Xu H. Potential therapeutic applications of exosomes in different autoimmune diseases. Clin Immunol 2019; 205:116-124. [PMID: 31228581 DOI: 10.1016/j.clim.2019.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are caused by self-immune responses to autoantigens, which damage body tissues and severely affect the patient's quality of life. Therapeutic drugs are associated with adverse side effects and their beneficial effects are limited to specific populations. Evidence indicates that exosomes which are small vesicles secreted by most cell types and body fluids, and may play roles in both immune stimulation and tolerance since they are involved in many processes such as immune signaling, inflammation and angiogenesis. Exosomes have also emerged as promising tools for therapeutic delivery, given their intrinsic features such as stability, biocompatibility and a capacity for stealth. In this review, we summarize existing literature regarding the production, efficacy, action mechanism, and potential therapeutic uses of exosomes in the contexts of autoimmune diseases such as type 1 diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Sjogren's syndrome.
Collapse
Affiliation(s)
- Hui Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shaochang Jia
- Department of Bio-Treatment, Jinling Hospital, Nanjing, PR China.
| | - Hanmei Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Liu J, Li Y, Xia X, Yang X, Zhao R, Peer J, Wang H, Tong Z, Gao F, Lin H, Wu B, Huang Y, Zheng JC. Propofol reduces microglia activation and neurotoxicity through inhibition of extracellular vesicle release. J Neuroimmunol 2019; 333:476962. [PMID: 31108401 DOI: 10.1016/j.jneuroim.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Propofol is an established anesthetic widely used for induction and maintenance of anesthesia. We investigated propofol for its anti-inflammatory effects on microglia and found that propofol treatment is associated with substantial lower levels of extracellular vesicles (EVs) in immune activated microglia. Importantly, EVs collected from immune activated microglia reversed propofol-mediated anti-inflammatory and neuroprotective effects, suggesting that propofol reduces proinflammatory microglia activation and microglia-mediated neurotoxicity through inhibition of EV release. These data shed new insight into a novel molecular mechanism of propofol-mediated neuroprotective and immunomodulatory effects through inhibition of EV release.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yuju Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Yang
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Runze Zhao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin Peer
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Hongyun Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Zenghan Tong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Fengtong Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Hai Lin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Beiqing Wu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
48
|
Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Prog Neurobiol 2019; 175:96-106. [PMID: 30685501 DOI: 10.1016/j.pneurobio.2019.01.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and (shedding) microvesicles, are released by nearly all cell types and carry a cargo of proteins and nucleic acids that varies by the cell of origin. They are thought to play critical roles in normal central nervous system (CNS) function and neurological disorders. A recently revealed key characteristic of EVs is that they may travel between the CNS and peripheral circulation. This property has led to intense interest in how EVs might serve as a vehicle for toxic protein clearance and as a readily accessible source of biomarkers for CNS disorders. Furthermore, by bypassing the blood-brain barrier, modified EVs could serve as a unique drug delivery system that targets specific neuronal populations. Further work is necessary to develop and optimize techniques that enable high-yield capture of relevant EV populations, analyze individual EVs and their cargos, and validate preliminary results of EV-derived biomarkers in independent cohorts.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Parkinson's Disease Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA; Beijing Key Laboratory of Research and Transformation on Neurodegenerative Diseases Biomarkers, Department of Pathology, Peking University Third Hospital/Institute of Basic Science, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
49
|
Decoding epigenetic cell signaling in neuronal differentiation. Semin Cell Dev Biol 2019; 95:12-24. [PMID: 30578863 DOI: 10.1016/j.semcdb.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the process by which new neurons are generated in the brain. Neural stem cells (NSCs) are differentiated into neurons, which are integrated into the neural network. Nowadays, pluripotent stem cells, multipotent stem cells, and induced pluripotent stem cells can be artificially differentiated into neurons utilizing several techniques. Specific transcriptional profiles from NSCs during differentiation are frequently used to approach and observe phenotype alteration and functional determination of neurons. In this context, the role of non-coding RNA, transcription factors and epigenetic changes in neuronal development and differentiation has gained importance. Epigenetic elucidation has become a field of intense research due to distinct patterns of normal conditions and different neurodegenerative disorders, which can be explored to develop new diagnostic methods or gene therapies. In this review, we discuss the complexity of transcription factors, non-coding RNAs, and extracellular vesicles that are responsible for guiding and coordinating neural development.
Collapse
|
50
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|