1
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
2
|
Simonin EM, Wagner B. IgE-binding monocytes upregulate the coagulation cascade in allergic horses. Genes Immun 2023:10.1038/s41435-023-00207-w. [PMID: 37193769 DOI: 10.1038/s41435-023-00207-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
IgE-binding monocytes are a rare peripheral immune cell type involved in the allergic response through binding of IgE on their surface. IgE-binding monocytes are present in both healthy and allergic individuals. We performed RNA sequencing to ask how the function of IgE-binding monocytes differs in the context of allergy. Using a large animal model of allergy, equine Culicoides hypersensitivity, we compared the transcriptome of IgE-binding monocytes in allergic and non-allergic horses at two seasonal timepoints: (i) when allergic animals were clinical healthy, in the winter "Remission Phase", and (ii) during chronic disease, in the summer "Clinical Phase". Most transcriptional differences between allergic and non-allergic horses occurred only during the "Remission Phase", suggesting principal differences in monocyte function even in the absence of allergen exposure. F13A1, a subunit of fibrinoligase, was significantly upregulated at both timepoints in allergic horses. This suggested a role for increased fibrin deposition in the coagulation cascade to promote allergic inflammation. IgE-binding monocytes also downregulated CCR10 expression in allergic horses during the "Clinical Phase", suggesting a defect in maintenance of skin homeostasis, which further promotes allergic inflammation. Together, this transcriptional analysis provides valuable clues into the mechanisms used by IgE-binding monocytes in allergic individuals.
Collapse
Affiliation(s)
- Elisabeth M Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
White SD. Approach to the pruritic horse. J Am Vet Med Assoc 2023; 261:S66-S74. [PMID: 36638000 DOI: 10.2460/javma.22.10.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Pruritus in the horse may be due to several causes, the most common being a hypersensitivity response to salivary proteins in the Culicoides genera, which may coexist with atopic dermatitis, also known as an environmental allergy to pollens, molds, dust, storage mites, etc. Less common etiologies are food allergy and contact allergy, the latter often caused by owners applying various products to the skin. Other ectoparasites, such as Chorioptes mites, may also initiate pruritus. Secondary bacterial infections (usually Staphylococcus spp) may be pruritic in and of themselves. This article reviews the questions that need to be asked of owners to obtain a relevant history, always important for any organ system, but perhaps none more so than the skin. The various clinical findings such as alopecia and crusts and their location on the horse, diagnostic methods such as intradermal or serum testing for allergies, and subsequent hyposensitization are also discussed. Therapeutic options currently available for the potential underlying diseases, in particular for the hypersensitivity reactions to Culicoides spp or environmental allergens, are reviewed with the studies of hyposensitization over the last 40 years, as well as medications that may be effective. While the most common causes of pruritus in the horse are known, the current understanding of the pathophysiology still needs to be investigated, and consequently, the most effective treatments for those causes need to be improved. Newer research is discussed that may eventually add to the diagnostic and therapeutic options currently available for the pruritic horse.
Collapse
Affiliation(s)
- Stephen D. White
- School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
4
|
Simonin EM, Babasyan S, Wagner B. Peripheral CD23hi/IgE+ Plasmablasts Secrete IgE and Correlate with Allergic Disease Severity. THE JOURNAL OF IMMUNOLOGY 2022; 209:665-674. [DOI: 10.4049/jimmunol.2101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Production and secretion of IgE by B cells, plasmablasts, and plasma cells is a central step in the development and maintenance of allergic diseases. IgE can bind to one of its receptors, the low-affinity IgE receptor CD23, which is expressed on activated B cells. As a result, most B cells bind IgE through CD23 on their surface. This makes the identification of IgE producing cells challenging. In this study, we report an approach to clearly identify live IgE+ plasmablasts in peripheral blood for application by both flow cytometry analysis and in vitro assay. These IgE+ plasmablasts readily secrete IgE, upregulate specific mRNA transcripts (BLIMP-1 IRF4, XBP1, CD138, and TACI), and exhibit highly differentiated morphology all consistent with plasmablast differentiation. Most notably, we compared the presence of IgE+ plasmablasts in peripheral blood of allergic and healthy individuals using a horse model of naturally occurring seasonal allergy, Culicoides hypersensitivity. The model allows the comparison of immune cells both during periods of clinical allergy and when in remission and clinically healthy. Allergic horses had significantly higher percentages of IgE+ plasmablasts and IgE secretion while experiencing clinical allergy compared with healthy horses. Allergy severity and IgE secretion were both positively correlated to the frequency of IgE+ plasmablasts in peripheral blood. These results provide strong evidence for the identification and quantification of peripheral IgE-secreting plasmablasts and provide a missing cellular link in the mechanism of IgE secretion and upregulation during allergy.
Collapse
Affiliation(s)
- Elisabeth M. Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
5
|
Equine keratinocytes in the pathogenesis of insect bite hypersensitivity: Just another brick in the wall? PLoS One 2022; 17:e0266263. [PMID: 35913947 PMCID: PMC9342730 DOI: 10.1371/journal.pone.0266263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Equine insect bite hypersensitivity (IBH) is the most common skin disease affecting horses. It is described as an IgE-mediated, Type I hypersensitivity reaction to salivary gland proteins of Culicoides insects. Together with Th2 cells, epithelial barrier cells play an important role in development of Type I hypersensitivities. In order to elucidate the role of equine keratinocytes in development of IBH, we stimulated keratinocytes derived from IBH-affected (IBH-KER) (n = 9) and healthy horses (H-KER) (n = 9) with Culicoides recombinant allergens and extract, allergic cytokine milieu (ACM) and a Toll like receptor ligand 1/2 (TLR-1/2-L) and investigated their transcriptomes. Stimulation of keratinocytes with Culicoides allergens did not induce transcriptional changes. However, when stimulated with allergic cytokine milieu, their gene expression significantly changed. We found upregulation of genes encoding for CCL5, -11, -20, -27 and interleukins such as IL31. We also found a strong downregulation of genes such as SCEL and KRT16 involved in the formation of epithelial barrier. Following stimulation with TLR-1/2-L, keratinocytes significantly upregulated expression of genes affecting Toll like receptor and NOD-receptor signaling pathway as well as NF-kappa B signaling pathway, among others. The transcriptomes of IBH-KER and H-KER were very similar: without stimulations they only differed in one gene (CTSL); following stimulation with allergic cytokine milieu we found only 23 differentially expressed genes (e.g. CXCL10 and 11) and following stimulation with TLR-1/2-L they only differed by expression of seven genes. Our data suggests that keratinocytes contribute to the innate immune response and are able to elicit responses to different stimuli, possibly playing a role in the pathogenesis of IBH.
Collapse
|
6
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
7
|
First clinical expression of equine insect bite hypersensitivity is associated with co-sensitization to multiple Culicoides allergens. PLoS One 2021; 16:e0257819. [PMID: 34780496 PMCID: PMC8592417 DOI: 10.1371/journal.pone.0257819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis in horses incited by salivary allergens from Culicoides spp. IBH does not occur in Iceland, as the causative agents are absent, however a high prevalence is seen in horses exported to Culicoides-rich environments. AIMS To study the natural course of sensitization to Culicoides allergens and identify the primary sensitizing allergen(s) in horses exported from Iceland utilizing a comprehensive panel of Culicoides recombinant (r-) allergens. METHOD IgE microarray profiling to 27 Culicoides r-allergens was conducted on 110 serological samples from horses imported to Switzerland from Iceland that subsequently developed IBH or remained healthy. Furthermore, a longitudinal study of 31 IBH horses determined IgE profiles the summer preceding first clinical signs of IBH (TIBH-1), the summer of first clinical signs (TIBH) and the following summer (TIBH+1). In a group of Icelandic horses residing in Sweden, effects of origin (born in Iceland or Sweden) and duration of IBH (<4 years, 4-7 years, >7 years) on Culicoides-specific IgE was evaluated. Sero-positivity rates and IgE levels were compared. RESULTS At TIBH, horses were sensitized to a median of 11 r-allergens (range = 0-21), of which nine were major allergens. This was significantly higher than TIBH-1 (3, 0-16), as well as the healthy (1, 0-14) group. There was no significant increase between TIBH and TIBH+1(12, 0-23). IBH-affected horses exported from Iceland had a significantly higher degree of sensitization than those born in Europe, while duration of IBH did not significantly affect degree of sensitization. CONCLUSION Significant sensitization is only detected in serum the year of first clinical signs of IBH. Horses become sensitized simultaneously to multiple Culicoides r-allergens, indicating that IgE-reactivity is due to co-sensitization rather than cross-reactivity between Culicoides allergens. Nine major first sensitizing r-allergens have been identified, which could be used for preventive allergen immunotherapy.
Collapse
|
8
|
Ziegler A, Olzhausen J, Hamza E, Stojiljkovic A, Stoffel MH, Garbani M, Rhyner C, Marti E. An allergen-fused dendritic cell-binding peptide enhances in vitro proliferation of equine T-cells and cytokine production. Vet Immunol Immunopathol 2021; 243:110351. [PMID: 34800874 DOI: 10.1016/j.vetimm.2021.110351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023]
Abstract
Allergen-specific immunotherapy (AIT) constitutes the only curative approach for allergy treatment. There is need for improvement of AIT in veterinary medicine, such as in horses suffering from insect bite hypersensitivity, an IgE-mediated dermatitis to Culicoides. Dendritic cell (DC)-targeting represents an efficient method to increase antigen immunogenicity. It is studied primarily for its use in improvement of cancer therapy and vaccines, but may also be useful for improving AIT efficacy. Immunomodulators, like the Toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid-A (MPLA) has been shown to enhance the IL-10 response in horses, while CpG-rich oligonucleotides (CpG-ODN), acting as TLR-9 agonists, have been shown to induce Th1 or regulatory responses in horses with equine asthma. Our aim was to evaluate in vitro effects of antigen-targeting to equine DC with an antigen-fused peptide known to target human and mouse DC and investigate whether addition of MPLA or CpG-ODN would further improve the induced immune response with regard to finding optimal conditions for equine AIT. For this purpose, DC-binding peptides were fused to the model antigen ovalbumin (OVA) and to the recombinant Culicoides allergen Cul o3. Effects of DC-binding peptides on cellular antigen uptake and induction of T cell proliferation were assessed. Polarity of the immune response was analysed by quantifying IFN-γ, IL-4, IL-10, IL-17 and IFN-α in supernatants of antigen-stimulated peripheral blood mononuclear cells (PBMC) in presence or absence of adjuvants. Fusion of DC-binding peptides to OVA significantly enhanced antigen-uptake by equine DC. DC primed with DC-binding peptides coupled to OVA or Cul o3 induced a significantly higher T-cell proliferation compared to the corresponding control antigens. PBMC stimulation with DC-binding peptides coupled to Cul o3 elicited a significant increase in the pro-inflammatory cytokines IFN-γ, IL-4, IL-17, as well as the anti-inflammatory IL-10, but not of IFN-α. Adjuvant addition further enhanced the effect of the DC-binding peptides by significantly increasing the production of IFN-γ, IL-4, IL-10 and IFN-α (CpG-ODN) and IL-10 (MPLA), while simultaneously suppressing IFN-γ, IL-4 and IL-17 production (MPLA). Targeting equine DC with allergens fused to DC-binding peptides enhances antigen-uptake and T-cell activation and may be useful in increasing the equine immune response against recombinant antigens. Combination of DC-binding peptide protein fusions with adjuvants is necessary to appropriately skew the resulting immune response, depending on intended use. Combination with MPLA is a promising option for improvement of AIT efficacy in horses, while combination with CpG-ODN increases the effector immune response to recombinant antigens.
Collapse
Affiliation(s)
- Anja Ziegler
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland.
| | - Judith Olzhausen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Eman Hamza
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland; Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ana Stojiljkovic
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, CH-3001 Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, CH-3001 Bern, Switzerland
| | - Mattia Garbani
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Eliane Marti
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland
| |
Collapse
|
9
|
Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas. PLoS Negl Trop Dis 2021; 15:e0009512. [PMID: 34157020 PMCID: PMC8253393 DOI: 10.1371/journal.pntd.0009512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.
Collapse
|
10
|
Larson EM, Wagner B. Viral infection and allergy - What equine immune responses can tell us about disease severity and protection. Mol Immunol 2021; 135:329-341. [PMID: 33975251 DOI: 10.1016/j.molimm.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
Horses have many naturally occurring diseases that mimic similar conditions in humans. The ability to conduct environmentally controlled experiments and induced disease studies in a genetically diverse host makes the horse a valuable intermediate model between mouse studies and human clinical trials. This review highlights important similarities in the immune landscape between horses and humans using current research on two equine diseases as examples. First, equine herpesvirus type 1 (EHV-1) infection initiates a series of innate inflammatory signals at its mucosal entry site in the upper respiratory tract. These inflammatory markers are highly synchronized and predictable between individuals during viral respiratory infection and ultimately lead to adaptive immune induction and protection. The timing of early inflammatory signals, followed by specific adaptive immune markers correlating with immunity and protection, allow accurate outbreak tracking and also provide a foundation for understanding the importance of local mucosal immunity during other viral respiratory infections. Second, rare peripheral blood immune cells that promote allergic inflammation can be analyzed during Culicoides hypersensitivity, a naturally occurring type I IgE-mediated allergic disease of horses. Rare immune cells, such as IgE-binding monocytes or basophils, can be studied repeatedly in the horse model to unravel their larger mechanistic role in inflammation during allergic and other inflammatory diseases. We conclude with a survey of all other common equine inflammatory conditions. Together, this review serves as a reference and rationale for the horse as a non-rodent model for immunological research.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
11
|
Larson EM, Babasyan S, Wagner B. IgE-Binding Monocytes Have an Enhanced Ability to Produce IL-8 (CXCL8) in Animals with Naturally Occurring Allergy. THE JOURNAL OF IMMUNOLOGY 2021; 206:2312-2321. [PMID: 33952617 DOI: 10.4049/jimmunol.2001354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
IL-8 is a potent chemokine that recruits neutrophils and basophils to promote inflammation in many species. IL-8 is produced by many cell types, including monocytes. In this study, we report a novel role for IgE-binding monocytes, a rare peripheral immune cell type, to promote allergic inflammation through IL-8 production in a horse model of natural IgE-mediated allergy. We developed a mAb with confirmed specificity for both recombinant and native equine IL-8 for flow cytometric analysis. Equine IL-8 was produced by CD14+/MHC class II+/CD16- monocytes, including a subpopulation of IgE-binding monocytes, following stimulation with LPS. In addition, IgE cross-linking induced IL-8 production by both peripheral blood basophils and IgE-binding monocytes. IL-8 production was compared between healthy horses and those with a naturally occurring IgE-mediated skin allergy, Culicoides hypersensitivity. Allergic horses had significantly higher percentages of IL-8+ IgE-binding monocytes after IgE cross-linking. In contrast, frequencies of IL-8+ basophils after IgE cross-linking were similar in all horses, regardless of allergic disease, highlighting IgE-binding monocytes as a novel source of IL-8 during allergy. We concluded that IgE-binding monocytes from allergic individuals have an increased capacity for IL-8 production and likely contribute to the recruitment of innate immune cells during IgE-mediated allergy and promotion of inflammation during repeated allergen contact.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Novotny EN, White SJ, Wilson AD, Stefánsdóttir SB, Tijhaar E, Jonsdóttir S, Frey R, Reiche D, Rose H, Rhyner C, Schüpbach‐Regula G, Torsteinsdóttir S, Alcocer M, Marti E. Component-resolved microarray analysis of IgE sensitization profiles to Culicoides recombinant allergens in horses with insect bite hypersensitivity. Allergy 2021; 76:1147-1157. [PMID: 32780483 PMCID: PMC8246938 DOI: 10.1111/all.14556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023]
Abstract
Background Allergy to bites of blood‐sucking insects, including biting midges, can affect both human and veterinary patients. Horses are often suffering from an IgE‐mediated allergic dermatitis caused by bites of midges (Culicoides spp). With the aim to improve allergen immunotherapy (AIT), numerous Culicoides allergens have been produced as recombinant (r‐) proteins. This study aimed to test a comprehensive panel of differently expressed Culicoides r‐allergens on a cohort of IBH‐affected and control horses using an allergen microarray. Methods IgE levels to 27 Culicoides r‐allergens, including 8 previously unpublished allergens, of which 11 were expressed in more than one expression system, were determined in sera from 347 horses. ROC analyses were carried out, cut‐offs selected using a specificity of 95% and seropositivity rates compared between horses affected with insect bite hypersensitivity (IBH) and control horses. The combination of r‐allergens giving the best performing test was determined using logistic regression analysis. Results Seropositivity was significantly higher in IBH horses compared with controls for 25 r‐allergens. Nine Culicoides r‐allergens were major allergens for IBH with seven of them binding IgE in sera from > 70% of the IBH‐affected horses. Combination of these top seven r‐allergens could diagnose > 90% of IBH‐affected horses with a specificity of > 95%. Correlation between differently expressed r‐allergens was usually high (mean = 0.69, range: 0.28‐0.91). Conclusion This microarray will be a powerful tool for the development of component‐resolved, patient‐tailored AIT for IBH and could be useful for the study of allergy to biting midges in humans and other species.
Collapse
Affiliation(s)
- Ella N. Novotny
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | - Samuel J. White
- School of Animal, Rural and Environmental Sciences Nottingham Trent University, Brackenhurst Campus Southwell UK
- School of Biosciences University of Nottingham Loughborough UK
| | - A. Douglas Wilson
- Division of Veterinary Pathology, Infection and Immunity University of Bristol Langford UK
| | - Sara B. Stefánsdóttir
- Institute for Experimental Pathology Biomedical Center University of Iceland Reykjavik Iceland
| | - Edwin Tijhaar
- Cell Biology and Immunology Group Wageningen University Wageningen The Netherlands
| | - Sigridur Jonsdóttir
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | | | - Dania Reiche
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Horst Rose
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
| | | | | | - Marcos Alcocer
- School of Biosciences University of Nottingham Loughborough UK
| | - Eliane Marti
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| |
Collapse
|
13
|
Insect hypersensitivity beyond bee and wasp venom allergy. Allergol Select 2020; 4:97-104. [PMID: 33275648 PMCID: PMC7709451 DOI: 10.5414/alx02123e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
The bites of blood-feeding insects regularly induce sensitization to salivary proteins and cause local hypersensitivity reactions in over 90% of the population, representing either an IgE-mediated immediate wheal and flare reaction or a T cell-driven delayed papule. Long-lasting large local reactions and bullous reactions may cause significant discomfort and reduction in quality-of-life. Anaphylaxis is rarely reported though proven for several insects, above all mosquitoes, horse flies, and kissing bugs. Recently, salivary gland proteins have been thoroughly studied in some blood-feeding insect species, and several allergens have been identified. Interestingly, many of them belong to the same protein families as the well-known honeybee and wasp venom allergens (phospholipases, hyaluronidases, antigens 5, serine proteases) though sequence identities are mostly low. There is still insufficient evidence for the proposed cross-reactivity between salivary proteins from blood-feeding insects and Hymenoptera venom allergens.
Collapse
|
14
|
|
15
|
Larson EM, Babasyan S, Wagner B. Phenotype and function of IgE-binding monocytes in equine Culicoides hypersensitivity. PLoS One 2020; 15:e0233537. [PMID: 32442209 PMCID: PMC7244122 DOI: 10.1371/journal.pone.0233537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Human IgE-binding monocytes are identified as allergic disease mediators, but it is unknown whether IgE-binding monocytes promote or prevent an allergic response. We identified IgE-binding monocytes in equine peripheral blood as IgE+/MHCIIhigh/CD14low cells that bind IgE through an FcεRI αɣ variant. IgE-binding monocytes were analyzed monthly in Culicoides hypersensitive horses and nonallergic horses living together with natural exposure to Culicoides midges. The phenotype and frequency of IgE-binding monocytes remained consistent in all horses regardless of Culicoides exposure. All horses upregulated IgE-binding monocyte CD16 expression following initial Culicoides exposure. Serum total IgE concentration and monocyte surface IgE densities were positively correlated in all horses. We also demonstrated that IgE-binding monocytes produce IL-10, but not IL-4, IL-17A, or IFN-γ, following IgE crosslinking. In conclusion, we have characterized horse IgE-binding monocytes for the first time and further studies of these cells may provide important connections between regulation and cellular mechanisms of IgE-mediated diseases.
Collapse
Affiliation(s)
- Elisabeth M. Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Forsyth J, Halliwell RE, Harrand R. Co-reactivity between related and unrelated environmental allergens in equine allergen-specific IgE serology testing in the UK. Vet Dermatol 2019; 30:544-e165. [PMID: 31464011 DOI: 10.1111/vde.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Identification of environmental allergens in horses with allergic disease facilitates allergen avoidance and targeted immunotherapy. HYPOTHESIS/OBJECTIVES To evaluate allergenic co-reactivity between 44 environmental allergens. ANIMALS Horses with suspected allergic disease (n = 344) whose sera were submitted for environmental allergen testing. METHODS AND MATERIALS Allergen-specific IgE serological assays were performed using 44 allergens divided into six taxonomically related groups: house dust/storage mites, moulds, insects, grass, tree and weed pollens. Using pairwise comparisons, odds ratios (ORs) were calculated for each environmental pair to determine if there was increased or decreased likelihood of a positive result for one allergen, given a positive result to another. The OR significance was set (using Holm-Bonferroni correction) at P < 0.00006 for all horses (n = 344) and P < 0.00005 for horses with at least one positive reaction (n = 239). Using one-way ANOVA with Tukey's post hoc tests (significance at P < 0.05), differences in mean log e ORs between three groups, taxonomically related allergens with a statistically significant association (related-associated), related allergens lacking a significant association (related-nonassociated) and unrelated allergens were tested. RESULTS Statistically significant associations were found between both related and unrelated allergen pairs, the former being more frequent. For all horses (n = 344) and horses with at least one positive reaction (n = 239), co-reactivity ranged from 100% (grasses) to 0% (moulds). The weeds group was exceptional in having more co-reactions with another group (grasses). CONCLUSIONS AND CLINICAL IMPORTANCE Co-reactivity was shown within and between certain related allergen groups. Further studies are required to determine whether this is the result of antigenic cross-reactivity.
Collapse
Affiliation(s)
- Johanna Forsyth
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Richard E Halliwell
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Robert Harrand
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| |
Collapse
|
17
|
Jonsdottir S, Cvitas I, Svansson V, Fettelschloss-Gabriel A, Torsteinsdottir S, Marti E. New Strategies for Prevention and Treatment of Insect Bite Hypersensitivity in Horses. CURRENT DERMATOLOGY REPORTS 2019. [DOI: 10.1007/s13671-019-00279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose of Review
Treatment of equine insect bite hypersensitivity (IBH) needs to be improved. Allergen-specific immunotherapy (ASIT), the only curative treatment of allergy, currently has only a limited efficacy for treatment of IBH. This review highlights the latest findings in prophylactic and therapeutic strategies.
Recent Findings
Prophylactic vaccination against IBH using recombinant Culicoides allergen has been developed in unexposed Icelandic horses and is ready to be tested. Therapeutic virus-like particle (VLP)–based vaccines targeting equine interleukin- (IL-) 5 or IL-31 improved clinical signs of IBH by induction of anti-cytokine antibodies thus reducing eosinophil counts or allergic pruritus, respectively.
Summary
First studies for development of ASIT using pure r-Culicoides allergens have yielded promising results and need now to be tested in clinical studies for both prevention and treatment of IBH. Therapeutic vaccines inducing neutralizing antibodies against IL-5 or IL-31 will be valuable future treatments for reduction of clinical signs of IBH.
Collapse
|
18
|
François L, Hoskens H, Velie BD, Stinckens A, Tinel S, Lamberigts C, Peeters L, Savelkoul HFJ, Tijhaar E, Lindgren G, Janssens S, Ducro BJ, Buys N, Schurink AA. Genomic Regions Associated with IgE Levels against Culicoides spp. Antigens in Three Horse Breeds. Genes (Basel) 2019; 10:genes10080597. [PMID: 31398914 PMCID: PMC6723964 DOI: 10.3390/genes10080597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
Insect bite hypersensitivity (IBH), which is a cutaneous allergic reaction to antigens from Culicoides spp., is the most prevalent skin disorder in horses. Misdiagnosis is possible, as IBH is usually diagnosed based on clinical signs. Our study is the first to employ IgE levels against several recombinant Culicoides spp. allergens as an objective, independent, and quantitative phenotype to improve the power to detect genetic variants that underlie IBH. Genotypes of 200 Shetland ponies, 127 Icelandic horses, and 223 Belgian Warmblood horses were analyzed while using a mixed model approach. No single-nucleotide polymorphism (SNP) passed the Bonferroni corrected significance threshold, but several regions were identified within and across breeds, which confirmed previously identified regions of interest and, in addition, identifying new regions of interest. Allergen-specific IgE levels are a continuous and objective phenotype that allow for more powerful analyses when compared to a case-control set-up, as more significant associations were obtained. However, the use of a higher density array seems necessary to fully employ the use of IgE levels as a phenotype. While these results still require validation in a large independent dataset, the use of allergen-specific IgE levels showed value as an objective and continuous phenotype that can deepen our understanding of the biology underlying IBH.
Collapse
Affiliation(s)
- Liesbeth François
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Brandon D Velie
- School of Life & Environmental Sciences, B19-603 University of Sydney, Sydney, NSW 2006,Australia
| | - Anneleen Stinckens
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
| | - Susanne Tinel
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
| | - Chris Lamberigts
- Research Group Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, B-3001 Leuven, Belgium
| | - Liesbet Peeters
- Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Gabriella Lindgren
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Steven Janssens
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Nadine Buys
- Livestock Genetics, Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
| | - And Anouk Schurink
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
- Centre for Genetic Resources, The Netherlands (CGN), Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
19
|
Characterization of IgE-binding proteins in the salivary glands of Simulium nigrogilvum (Diptera: Simuliidae). Parasitol Res 2019; 118:2353-2359. [PMID: 31263951 DOI: 10.1007/s00436-019-06383-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.
Collapse
|
20
|
Torsteinsdottir S, Scheidegger S, Baselgia S, Jonsdottir S, Svansson V, Björnsdottir S, Marti E. A prospective study on insect bite hypersensitivity in horses exported from Iceland into Switzerland. Acta Vet Scand 2018; 60:69. [PMID: 30390694 PMCID: PMC6215642 DOI: 10.1186/s13028-018-0425-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/28/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of Culicoides spp., which occurs frequently in horses imported from Iceland to continental Europe. IBH does not occur in Iceland because Culicoides species that bite horses are not present. However, Simulium vittatum (S. vittatum) are found in Iceland. In Europe, blood basophils from IBH-affected horses release significantly more sulfidoleukotrienes (sLT) than those from healthy controls after in vitro stimulation with Culicoides nubeculosus (C. nubeculosus) and S. vittatum. Aims of the study were: (I) using the sLT release assay, to test if horses living in Iceland were sensitized to S. vittatum and (II) to determine in a longitudinal study in horses imported from Iceland to Switzerland whether the sLT release assay would allow to predict which horses would develop IBH. RESULTS Horses in Iceland, even when living in high S. vittatum areas, were usually not sensitized to S. vittatum or C. nubeculosus. Incidence of IBH in the 145 horses from the longitudinal study was 51% and mean time until IBH developed was 2.5 ± 1 year. Before import and after the first summer following import, there were no significant differences in sLT release between the endpoint healthy (H) and IBH groups. After the 2nd summer, when the number of clinically affected horses increased in the endpoint IBH group, a significantly higher sLT release after stimulation with C. nubeculosus but not with S. vittatum was observed. After the 3rd and 4th summer, the endpoint IBH group had a significantly higher sLT release with C. nubeculosus and S. vittatum than the endpoint H group. Some of the horses that remained healthy became transiently positive in the sLT release assay upon stimulation of their peripheral blood leucocytes with C. nubeculosus. CONCLUSIONS Horses in Iceland are not sensitized to S. vittatum. In horses that develop IBH, sensitization to S. vittatum is secondary to sensitization to C. nubeculosus and probably a result of an immunological cross-reactivity. A sLT release assay cannot be used to predict which horses will develop IBH. A transient positive reaction in the sLT release assay observed in horses that remained healthy suggests that immunoregulatory mechanisms may control an initial sensitization of the healthy horses.
Collapse
Affiliation(s)
- Sigurbjörg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Stephan Scheidegger
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
- Mobile Pferdepraxis, FA Osteopathie GST, Oberdettigenstrasse 50, 3043 Uettligen, Switzerland
| | - Silvia Baselgia
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| | - Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | | | - Eliane Marti
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| |
Collapse
|
21
|
Einhorn L, Hofstetter G, Brandt S, Hainisch EK, Fukuda I, Kusano K, Scheynius A, Mittermann I, Resch-Marat Y, Vrtala S, Valenta R, Marti E, Rhyner C, Crameri R, Satoh R, Teshima R, Tanaka A, Sato H, Matsuda H, Pali-Schöll I, Jensen-Jarolim E. Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy 2018; 73:1436-1446. [PMID: 29350763 PMCID: PMC6032949 DOI: 10.1111/all.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Background Companion animals are also affected by IgE‐mediated allergies, but the eliciting molecules are largely unknown. We aimed at refining an allergen microarray to explore sensitization in horses and compare it to the human IgE reactivity profiles. Methods Custom‐designed allergen microarray was produced on the basis of the ImmunoCAP ISAC technology containing 131 allergens. Sera from 51 horses derived from Europe or Japan were tested for specific IgE reactivity. The included horse patients were diagnosed for eczema due to insect bite hypersensitivity, chronic coughing, recurrent airway obstruction and urticaria or were clinically asymptomatic. Results Horses showed individual IgE‐binding patterns irrespective of their health status, indicating sensitization. In contrast to European and Japanese human sensitization patterns, frequently recognized allergens were Aln g 1 from alder and Cyn d 1 from Bermuda grass, likely due to specific respiratory exposure around paddocks and near the ground. The most prevalent allergen for 72.5% of the tested horses (37/51) was the 2S‐albumin Fag e 2 from buckwheat, which recently gained importance not only in human but also in horse diet. Conclusion In line with the One Health concept, covering human health, animal health and environmental health, allergen microarrays provide novel information on the allergen sensitization patterns of the companion animals around us, which may form a basis for allergen‐specific preventive and therapeutic concepts.
Collapse
Affiliation(s)
- L. Einhorn
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hofstetter
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - S. Brandt
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - E. K. Hainisch
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - I. Fukuda
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - K. Kusano
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - A. Scheynius
- Science for Life Laboratory; Department of Clinical Science and Education; Karolinska Institutet, and Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - I. Mittermann
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Y. Resch-Marat
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - S. Vrtala
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - C. Rhyner
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Crameri
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Satoh
- Division of Food Function Research; Food Research Institute; National Agriculture and Food Research Organization; Tsukuba Japan
| | - R. Teshima
- National Institute of Health Sciences; Tokyo Japan
| | - A. Tanaka
- Laboratory of Comparative Animal Medicine; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Sato
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - I. Pali-Schöll
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Jensen-Jarolim
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
- AllergyCare; Allergy Diagnosis and Study Center; Vienna Austria
| |
Collapse
|
22
|
Jonsdottir S, Stefansdottir SB, Kristinarson SB, Svansson V, Bjornsson JM, Runarsdottir A, Wagner B, Marti E, Torsteinsdottir S. Barley produced Culicoides allergens are suitable for monitoring the immune response of horses immunized with E. coli expressed allergens. Vet Immunol Immunopathol 2018; 201:32-37. [PMID: 29914679 DOI: 10.1016/j.vetimm.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 11/25/2022]
Abstract
Insect bite hypersensitivity is an allergic dermatitis of horses caused by bites of Culicoides midges. Sufficient amount of pure, endotoxin-free allergens is a prerequisite for development and monitoring of preventive and therapeutic allergen immunotherapy. Aims of the study were to compare the Culicoides nubeculosus (Cul n) allergens Cul n 3 and Cul n 4, produced in transgenic barley grains with the corresponding E. coli or insect cells expressed proteins for measuring antibody and cytokine responses. Allergen-specific IgG responses were measured by ELISA in sera from twelve horses not exposed to Culicoides, before and after vaccination with E. coli-rCul n 3 and 4. Before vaccination no IgG binding to the barley and insect cell produced proteins was detected and a similar increase in specific IgG was observed after vaccination. While IgG levels to the E.coli expressed proteins were higher in the post-vaccination sera, some background binding was observed pre-vaccination. In vitro re-stimulation of PBMC was performed for measurements of cytokines. E. coli expressed proteins resulted in high background in PBMC from non-vaccinated controls. The barley and insect cell expressed proteins induced similar amount of IFN-γ and IL-4 in PBMC from vaccinated horses. Barley produced allergens are promising tools for use in immunoassays.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland; Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland.
| | - Sara Bjork Stefansdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sæmundur Bjarni Kristinarson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | | | | | - Bettina Wagner
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
23
|
Ziegler A, Hamza E, Jonsdottir S, Rhyner C, Wagner B, Schüpbach G, Svansson V, Torsteinsdottir S, Marti E. Longitudinal analysis of allergen-specific IgE and IgG subclasses as potential predictors of insect bite hypersensitivity following first exposure to Culicoides in Icelandic horses. Vet Dermatol 2017; 29:51-e22. [PMID: 28980353 DOI: 10.1111/vde.12493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland because of the absence of Culicoides, but the prevalence is high in horses imported from Iceland to environments where Culicoides are present. HYPOTHESIS/OBJECTIVE Test, in a longitudinal study before and after Culicoides exposure, whether a primary sensitizing Culicoides allergen can be identified and if an increase of allergen-specific immunoglobulin (Ig)E or IgG subclasses precedes clinical signs of IBH. ANIMALS Thirty two horses imported from Iceland to Europe; 16 developed IBH and 16 remained healthy. METHODS Determination of IgE and IgG subclasses against recombinant (r)-Culicoides allergens and Culicoides extract in sera taken before first exposure to Culicoides and yearly over a period of 3-4 years. RESULTS Before Culicoides exposure, there were no significant differences in Culicoides-specific serum IgE levels between horse that developed IBH or remained healthy. Culicoides exposure induced an individual IgE response pattern (to a median of 4.5 r-allergens) in the IBH but not in the healthy end-point group. The increase in serum IgE levels to Culicoides r-allergens was concurrent with the initial onset of clinical signs of IBH. IBH-affected horses displayed significantly higher allergen-specific IgG1 and IgG5 levels than healthy controls. Recombinant Culicoides obsoletus 1 (Cul o1) and Cul o3-specific IgG5 was significantly higher in the IBH compared to the healthy end-point group, before clinical signs of IBH. CONCLUSION/CLINICAL RELEVANCE Allergen-specific serum IgE cannot be used as predictor for IBH, whereas allergen-specific IgG5 levels may have a predictive value.
Collapse
Affiliation(s)
- Anja Ziegler
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, Berne, 3012, Switzerland
| | - Eman Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, Berne, 3012, Switzerland.,Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, Reykjavik, 112, Iceland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, Davos, 7270, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gertraud Schüpbach
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, Berne, 3012, Switzerland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, Reykjavik, 112, Iceland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, Reykjavik, 112, Iceland
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, Berne, 3012, Switzerland
| |
Collapse
|
24
|
Jonsdottir S, Svansson V, Stefansdottir SB, Mäntylä E, Marti E, Torsteinsdottir S. Oral administration of transgenic barley expressing a Culicoides
allergen induces specific antibody response. Equine Vet J 2016; 49:512-518. [DOI: 10.1111/evj.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- S. Jonsdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - V. Svansson
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - S. B. Stefansdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - E. Mäntylä
- Faculty of Pharmacy; University of Iceland; Reykjavik Iceland
- ORF Genetics Ltd; Kopavogur Iceland
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Berne; Berne Switzerland
| | - S. Torsteinsdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| |
Collapse
|
25
|
Abstract
Allergic diseases in animals are increasingly gaining importance in veterinary practice and as research models. For intradermal testing and allergen immunotherapy, a good knowledge of relevant allergens for the individual species is of great importance. Currently, the knowledge about relevant veterinary allergens is based on sensitization rates identified by intradermal testing or serum testing for allergen-specific IgE; crude extracts are the basis for most evaluations. Only a few studies provide evidence about the molecular structure of (particularly) dust mite, insect and mould allergens in dogs and horses, respectively. In those species, some major allergens differ from those in humans. This position paper summarizes the current knowledge about relevant allergens in dogs, cats and horses.
Collapse
Affiliation(s)
- R S Mueller
- Centre for Clinical Veterinary Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - J Janda
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - E Jensen-Jarolim
- Comparative Medicine, Messerli Research-Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - C Rhyner
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - E Marti
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Novel in vitro diagnosis of equine allergies using a protein array and mathematical modelling approach: a proof of concept using insect bite hypersensitivity. Vet Immunol Immunopathol 2015; 167:171-7. [PMID: 26163936 DOI: 10.1016/j.vetimm.2015.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Insect bite hypersensitivity (IBH) is a seasonal recurrent skin allergy of horses caused by IgE-mediated reactions to allergens present in the saliva of biting insects of the genus Culicoides, and possibly also Simulium and Stomoxys species. In this work we show that protein microarrays containing complex extracts and pure proteins, including recombinant Culicoides allergens, can be used as a powerful technique for the diagnosis of IBH. Besides the obvious advantages such as general profiling and use of few microliters of samples, this microarray technique permits automation and allows the generation of mathematical models with the calculation of individual risk profiles that can support the clinical diagnosis of allergic diseases. After selection of variables on influence on the projection (VIP), the observed values of sensitivity and specificity were 1.0 and 0.967, respectively. This confirms the highly discriminatory power of this approach for IBH and made it possible to attain a robust predictive mathematical model for this disease. It also further demonstrates the specificity of the protein array method on identifying a particular IgE-mediated disease when the sensitising allergen group is known.
Collapse
|
27
|
Shrestha M, Eriksson S, Schurink A, Andersson LS, Sundquist M, Frey R, Broström H, Bergström T, Ducro B, Lindgren G. Genome-Wide Association Study of Insect Bite Hypersensitivity in Swedish-Born Icelandic Horses. J Hered 2015; 106:366-74. [PMID: 26026046 DOI: 10.1093/jhered/esv033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease in horses and is caused by biting midges, mainly of the genus Culicoides. The disease predominantly comprises a type I hypersensitivity reaction, causing severe itching and discomfort that reduce the welfare and commercial value of the horse. It is a multifactorial disorder influenced by both genetic and environmental factors, with heritability ranging from 0.16 to 0.27 in various horse breeds. The worldwide prevalence in different horse breeds ranges from 3% to 60%; it is more than 50% in Icelandic horses exported to the European continent and approximately 8% in Swedish-born Icelandic horses. To minimize the influence of environmental effects, we analyzed Swedish-born Icelandic horses to identify genomic regions that regulate susceptibility to IBH. We performed a genome-wide association (GWA) study on 104 affected and 105 unaffected Icelandic horses genotyped using Illumina® EquineSNP50 Genotyping BeadChip. Quality control and population stratification analyses were performed with the GenABEL package in R (λ = 0.81). The association analysis was performed using the Bayesian variable selection method, Bayes C, implemented in GenSel software. The highest percentage of genetic variance was explained by the windows on X chromosomes (0.51% and 0.36% by 73 and 74 mb), 17 (0.34% by 77 mb), and 18 (0.34% by 26 mb). Overlapping regions with previous GWA studies were observed on chromosomes 7, 9, and 17. The windows identified in our study on chromosomes 7, 10, and 17 harbored immune system genes and are priorities for further investigation.
Collapse
Affiliation(s)
- Merina Shrestha
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Susanne Eriksson
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Anouk Schurink
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Lisa S Andersson
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Marie Sundquist
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Rebecka Frey
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Hans Broström
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Tomas Bergström
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Bart Ducro
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Gabriella Lindgren
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström).
| |
Collapse
|
28
|
Jonsdottir S, Hamza E, Janda J, Rhyner C, Meinke A, Marti E, Svansson V, Torsteinsdottir S. Developing a preventive immunization approach against insect bite hypersensitivity using recombinant allergens: A pilot study. Vet Immunol Immunopathol 2015; 166:8-21. [PMID: 26004943 DOI: 10.1016/j.vetimm.2015.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/28/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of midges (Culicoides spp.). IgE-mediated reactions are often involved in the pathogenesis of this disease. IBH does not occur in Iceland due to the absence of Culicoides, but it occurs with a high frequency in Icelandic horses exported to mainland Europe, where Culicoides are present. We hypothesize that immunization with the Culicoides allergens before export could reduce the incidence of IBH in exported Icelandic horses. The aim of the present study was therefore to compare intradermal and intralymphatic vaccination using four purified recombinant allergens, in combination with a Th1 focusing adjuvant. Twelve horses were vaccinated three times with 10μg of each of the four recombinant Culicoides nubeculosus allergens. Six horses were injected intralymphatically, three with and three without IC31(®), and six were injected intradermally, in the presence or absence of IC31(®). Antibody responses were measured by immunoblots and ELISA, potential sensitization in a sulfidoleukotriene release test and an intradermal test, cytokine and FoxP3 expression with real time PCR following in vitro stimulation of PBMC. Immunization with the r-allergens induced a significant increase in levels of r-allergen-specific IgG1, IgG1/3, IgG4/7, IgG5 and IgG(T). Application of the r-allergens in IC31(®) adjuvant resulted in a significantly higher IgG1, IgG1/3, IgG4/7 allergen-specific response. Intralymphatic injection was slightly more efficient than intradermal injection, but the difference did not reach significance. Testing of the blocking activity of the sera from the horses immunized intralymphatically with IC31(®) showed that the generated IgG antibodies were able to partly block binding of serum IgE from an IBH-affected horse to these r-allergens. Furthermore, IgG antibodies bound to protein bands on blots of C. nubeculosus salivary gland extract. No allergen-specific IgE was induced and there was no indication of induction of IgE-mediated reactions, as horses neither responded to Culicoides extract stimulation in a sulfidoleukotriene release test, nor developed a relevant immediate hypersensitivity reaction to the recombinant allergens in skin test. IL-4 expression was significantly higher in horses vaccinated intralymphatically without IC31(®), as compared to horses intradermally vaccinated with IC31(®). Both routes gave higher IL-10 expression with IC31(®). Both intralymphatic and intradermal vaccination of horses with recombinant allergens in IC31(®) adjuvant induced an immune response without adverse effects and without IgE production. The horses were not sensitized and produced IgG that could inhibit allergen-specific IgE binding. We therefore conclude that both the injection routes and the IC31(®) adjuvant are strong candidates for further development of immunoprophylaxis and therapy in horses.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.
| | - Eman Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Jozef Janda
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Andreas Meinke
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
29
|
Wilson AD. Immune responses to ectoparasites of horses, with a focus on insect bite hypersensitivity. Parasite Immunol 2015; 36:560-72. [PMID: 25180696 DOI: 10.1111/pim.12142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/18/2014] [Indexed: 12/24/2022]
Abstract
Horses are affected by a wide variety of arthropod ectoparasites, ranging from lice which spend their entire life on the host, through ticks which feed over a period of days, to numerous biting insects that only transiently visit the host to feed. The presence of ectoparasites elicits a number of host responses including innate inflammatory responses, adaptive immune reactions and altered behaviour; all of which can reduce the severity of the parasite burden. All of these different responses are linked through immune mechanisms mediated by mast cells and IgE antibodies which have an important role in host resistance to ectoparasites, yet immune responses also cause severe pathological reactions. One of the best described examples of such pathological sequelae is insect bite hypersensitivity (IBH) of horses; an IgE-mediated type 1 hypersensitivity to the salivary proteins of Culicoides spp. associated with T-helper-2 production of IL4 and IL13. Importantly, all horses exposed to Culicoides have an expanded population of Culicoides antigen-specific T cells with this pattern of cytokine production, but in those which remain healthy, the inflammatory reaction is tempered by the presence of FoxP3+ CD4+ regulatory T cells that express IL10 and TGF-beta, which suppresses the IL4 production by Culicoides antigen-activated T cells.
Collapse
Affiliation(s)
- A D Wilson
- School of Clinical Veterinary Science, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
31
|
Marti E. Equine insect bite hypersensitivity: Are molecular diagnostic tests the future? Vet J 2014; 200:212-3. [DOI: 10.1016/j.tvjl.2014.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
|
32
|
van der Meide NMA, Savelkoul HFJ, Meulenbroeks C, Ducro BJ, Tijhaar E. Evaluation of a diagnostic ELISA for insect bite hypersensitivity in horses using recombinant Obsoletus complex allergens. Vet J 2013; 200:31-7. [PMID: 24703873 DOI: 10.1016/j.tvjl.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Culicoides spp. of the Obsoletus complex belong to the most important species of midge, involved in causing insect bite hypersensitivity (IBH) in horses in The Netherlands. The aim of the current study was to evaluate seven different Obsoletus complex-derived recombinant allergens (Cul o 1-Cul o 7) and to compare these with Obsoletus complex whole body extract (WBE) in an IgE ELISA, using sera of 194 clinically-confirmed cases of IBH and 175 unaffected horses. The highest test accuracy was obtained with WBE, followed by Cul o 2, 3 and 5. Two ELISAs with a combination of recombinant allergens, Combi-1 (Cul o 3, 5 and 7) and Combi-2 (Cul o 1, 2, 5 and 7) were additionally performed and both resulted in high test accuracies close to that obtained with WBE. Combi-1 resulted in the best sensitivity and specificity, both 89%. Both Combi-1 and Combi-2 performed less well with samples collected in winter, but over 70% of the IBH-affected horses could still be identified. In conclusion, a combination of three Obsoletus complex recombinant allergens (Cul o 3, 5 and 7) could potentially replace Obsoletus complex WBE in an IgE ELISA for diagnosis of IBH in horses.
Collapse
Affiliation(s)
- Nathalie M A van der Meide
- Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Chantal Meulenbroeks
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart J Ducro
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
33
|
Hamza E, Akdis CA, Wagner B, Steinbach F, Marti E. In vitroinduction of functional allergen-specific CD4+ CD25highTreg cells in horses affected with insect bite hypersensitivity. Clin Exp Allergy 2013; 43:889-901. [DOI: 10.1111/cea.12131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/28/2013] [Accepted: 03/28/2013] [Indexed: 11/30/2022]
Affiliation(s)
- E. Hamza
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - C. A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); Davos Switzerland
| | - B. Wagner
- Department of Population Medicine and Diagnostic Sciences; Cornell University; Ithaca NY USA
| | - F. Steinbach
- Virology Department; Veterinary Laboratories Agency (AHVLA); Surrey UK
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
34
|
Peeters LM, Janssens S, Goddeeris BM, De Keyser K, Wilson AD, Kaufmann C, Schaffartzik A, Marti E, Buys N. Evaluation of an IgE ELISA with Culicoides spp. extracts and recombinant salivary antigens for diagnosis of insect bite hypersensitivity in Warmblood horses. Vet J 2013; 198:141-7. [PMID: 23891138 DOI: 10.1016/j.tvjl.2013.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Abstract
Insect bite hypersensitivity (IBH) in horses represents an immunoglobulin E (IgE)-mediated hypersensitivity to salivary antigens from biting midges (Culicoides spp.). The aim of this study was to evaluate and compare the performances of IgE ELISAs using recombinant Culicoides spp. Obsoletus group salivary gland antigens or crude whole body extracts ('ObsWBE'), C. nubeculosus recombinant proteins (Culn1, 3, 4, 5, 7, 8 and 10) and Obsoletus group recombinant proteins (Culo1 and 2). IgE levels were measured in plasma of 343 Warmblood horses classified as IBH-affected (n=167) and IBH-unaffected (n=176) according to the owners' descriptions. IBH-affected horses were subdivided based on the severity of their clinical signs at sampling and whether or not their IBH history was considered to be classical. The accuracies of the tests increased when clinical signs at sampling were more pronounced or when the IBH history could be considered as classical. A combination of IgE levels against the three best performing Culicoides spp. recombinant proteins (Culn4, Culo1 and Culo2) and ObsWBE resulted in the best performing test. When IBH-affected horses showing a classical history of the disease and severe clinical signs were compared with IBH-unaffected horses, the Youden's index at the optimal cut-off for the three tests in combination was 0.67. This optimal cut-off had a sensitivity of 70%, a specificity of 97% and a total accuracy of 92%. The performance of the IgE ELISA was affected by the severity of IBH clinical signs at sampling and was improved when IgE levels against several recombinant proteins were combined.
Collapse
Affiliation(s)
- L M Peeters
- Department of Biosystems, Katholieke Universiteit Leuven, BE-3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chattopadhyay P, Goyary D, Dhiman S, Rabha B, Hazarika S, Veer V. Immunomodulating effects and hypersensitivity reactions caused by Northeast Indian black fly salivary gland extract. J Immunotoxicol 2013; 11:126-32. [PMID: 23879793 DOI: 10.3109/1547691x.2013.809038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genus Simulium, black fly (Diptera), comprises >1800 species worldwide, of which 67 species under six subgenera have been well studied in India. While at the extreme, black fly bites can cause onchocerciasis or river blindness, the majority of clinical observations indicate mainly severe pain and continuous itching at bite sites. This investigation experimentally observed that black fly salivary extract (BFSE) causes unique biologic effects including immunomodulation, anti-coagulation, and hypersensitivity reactions in Wistar rats. Salivary glands from black flies were isolated, extracted in saline, and then ≈800 ng extract (BFSE) subcutaneously injected into rats. To evaluate potential immunosuppressive activity of the BFSE, serum levels of interleukins [IL]-6 and -10 and tumor necrosis factor [TNF]-α were assayed. To assess the BFSE impact on coagulation, activated partial thromboplastin time (aPTT), prothrombin time (PT), and bleeding time, as well as generation of coagulation activated factors I, IX, and X were analyzed. Anaphylaxis induction was monitored via electrocardiogram (ECG) and measures of blood pressure and rectal temperature. The data showed that BFSE treatment resulted in a significantly prolonged aPTT, PT, and bleeding time and reversibly inhibited generation of coagulation activated factors I, IX, and X. The extract also led to a prolonged (up to 48 h) suppression of serum IL-6, IL-10, and TNFα production. While these results suggest that BFSE possesses anti-thrombotic, anti-coagulant, and immunomodulatory activities, importantly, they also indicate that the extract has a capacity to induce anaphylaxis and acute cardiotoxicity.
Collapse
|
36
|
Raskova V, Citek J. Incidence of Insect Bite Hypersensitivity in a Small Population of Warmblood Horse Breed in the Czech Republic. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
van der Meide NMA, Roders N, Sloet van Oldruitenborgh-Oosterbaan MM, Schaap PJ, van Oers MM, Leibold W, Savelkoul HFJ, Tijhaar E. Cloning and expression of candidate allergens from Culicoides obsoletus for diagnosis of insect bite hypersensitivity in horses. Vet Immunol Immunopathol 2013; 153:227-39. [PMID: 23561552 DOI: 10.1016/j.vetimm.2013.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 11/26/2022]
Abstract
Insect bite hypersensitivity (IBH) is an IgE-mediated (Type I) hypersensitivity reaction induced by allergens from biting midges of the Culicoides spp. The aim of the present study was to identify, clone and express recombinant allergens from C. obsoletus, the main species found feeding on horses in the Netherlands, by sequence homology searches on the C. obsoletus specific RNA database, with previously described allergens from C. nubeculosus and C. sonorensis. BLAST searches with these described allergens resulted in similarity hits with 7 genes coding for C. obsoletus allergens. These allergens were expressed as hexahistidine tagged recombinant proteins in E. coli. Allergens were termed Cul o 1-Cul o 7. A maltase (Cul o 1) plus Cul s 1 (maltase of C. sonorensis) were additionally expressed in insect cells using the baculovirus expression system to compare homologous allergens from different species produced with different expression systems in diagnostic in vitro and in vivo tests. We demonstrate that IBH affected horses in the Netherlands show higher IgE levels to Cul o 1 than to Cul s 1, as determined by an IgE ELISA. Furthermore, we show that Cul o 1 produced in E. coli is at least as suitable for in vitro diagnosis of IBH affected horses as Cul o 1 produced in the baculovirus/insect cell expression system. The resulting proteins were evaluated for their ability to discriminate IBH affected and healthy horses by ELISA and intradermal testing. The frequency of positive test results by ELISA within IBH affected horses ranged from 38% to 67% for the different allergens. When results of IgE-binding to Cul o 1-Cul o 7 were combined the test had a sensitivity of 92% and specificity of 85%. The capability of the allergens to induce Type I hypersensitivity reaction in IBH affected horses was demonstrated by an intradermal test. The results show that E. coli expressed recombinant allergens from C. obsoletus are valuable tools to determine the allergen specific sensitisation profile (component resolved diagnosis) in horses with IBH in countries were C. obsoletus is the most abundant species and may facilitate in the development of future immunotherapy.
Collapse
|
38
|
van der Meide NMA, Meulenbroeks C, van Altena C, Schurink A, Ducro BJ, Wagner B, Leibold W, Rohwer J, Jacobs F, van Oldruitenborgh-Oosterbaan MMS, Savelkoul HFJ, Tijhaar E. Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses. Vet Immunol Immunopathol 2012; 149:245-54. [PMID: 22906994 DOI: 10.1016/j.vetimm.2012.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/15/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis in horses caused by the bites of Culicoides species. The aim of the present study was to evaluate the applicability of whole body extracts of C. obsoletus (the main species found feeding on horses in the Netherlands), C. nubeculosus (rarely found in The Netherlands) and C. sonorensis (typical for North America) for diagnosis of IBH in horses in The Netherlands. Blood and serum samples of 10 clinically confirmed IBH affected and 10 healthy control horses were used to evaluate the IgE titers (ELISA) against the Culicoides whole body extracts of the three Culicoides species. Basophil degranulation was assessed by histamine release test (HRT) after stimulation with these extracts at 5, 0.5 and 0.05 μg/ml. IBH affected horses had significantly higher IgE titers against C. obsoletus than against C. nubeculosus and C. sonorensis. Furthermore, C. obsoletus induced significantly higher histamine release in whole blood of IBH affected horses compared to the other extracts at 0.5 μg/ml. Western blot data revealed IgE binding to many proteins in C. obsoletus extract. This interaction was absent or weak in C. nubeculosus and C. sonorensis extracts for IBH affected horses. Results on individual level indicate that the HRT is more sensitive than ELISA in diagnosing IBH. However, ELISA is more practical as a routine test, therefore the ELISA was further evaluated using C. obsoletus extract on 103 IBH affected and 100 healthy horses, which resulted in a test sensitivity and specificity of 93.2% and 90.0%, respectively. The IgE ELISA readings enabled the analysis of the predicted probability of being IBH affected. From an optical density 450nm value of 0.33 onwards, the probability of IBH affected was more than 0.9. The results presented in this paper show that the use of native Culicoides spp. that feed on horse, is important for improved diagnosis and that the described ELISA based on C. obsoletus can be used routinely to diagnose IBH in countries where this species is the main Culicoides feeding on horses.
Collapse
|
39
|
Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1660. [PMID: 22629480 PMCID: PMC3358328 DOI: 10.1371/journal.pntd.0001660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022] Open
Abstract
Background Phlebotomus tobbi is a vector of Leishmania infantum, and P. sergenti is a vector of Leishmania tropica. Le. infantum and Le. tropica typically cause visceral or cutaneous leishmaniasis, respectively, but Le. infantum strains transmitted by P. tobbi can cause cutaneous disease. To better understand the components and possible implications of sand fly saliva in leishmaniasis, the transcriptomes of the salivary glands (SGs) of these two sand fly species were sequenced, characterized and compared. Methodology/Principal Findings cDNA libraries of P. tobbi and P. sergenti female SGs were constructed, sequenced, and analyzed. Clones (1,152) were randomly picked from each library, producing 1,142 high-quality sequences from P. tobbi and 1,090 from P. sergenti. The most abundant, secreted putative proteins were categorized as antigen 5-related proteins, apyrases, hyaluronidases, D7-related and PpSP15-like proteins, ParSP25-like proteins, PpSP32-like proteins, yellow-related proteins, the 33-kDa salivary proteins, and the 41.9-kDa superfamily of proteins. Phylogenetic analyses and multiple sequence alignments of putative proteins were used to elucidate molecular evolution and describe conserved domains, active sites, and catalytic residues. Proteomic analyses of P. tobbi and P. sergenti SGs were used to confirm the identification of 35 full-length sequences (18 in P. tobbi and 17 in P. sergenti). To bridge transcriptomics with biology P. tobbi antigens, glycoproteins, and hyaluronidase activity was characterized. Conclusions This analysis of P. sergenti is the first description of the subgenus Paraphlebotomus salivary components. The investigation of the subgenus Larroussius sand fly P. tobbi expands the repertoire of salivary proteins in vectors of Le. infantum. Although P. tobbi transmits a cutaneous form of leishmaniasis, its salivary proteins are most similar to other Larroussius subgenus species transmitting visceral leishmaniasis. These transcriptomic and proteomic analyses provide a better understanding of sand fly salivary proteins across species and subgenera that will be vital in vector-pathogen and vector-host research. Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions.
Collapse
|
40
|
Schaffartzik A, Hamza E, Janda J, Crameri R, Marti E, Rhyner C. Equine insect bite hypersensitivity: what do we know? Vet Immunol Immunopathol 2012; 147:113-26. [PMID: 22575371 DOI: 10.1016/j.vetimm.2012.03.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/26/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of the horse caused by bites of insects of the genus Culicoides and is currently the best characterized allergic disease of horses. This article reviews knowledge of the immunopathogenesis of IBH, with a particular focus on the causative allergens. Whereas so far hardly any research has been done on the role of antigen presenting cells in the pathogenesis of IBH, recent studies suggest that IBH is characterized by an imbalance between a T helper 2 (Th2) and regulatory T cell (T(reg)) immune response, as shown both locally in the skin and with stimulated peripheral blood mononuclear cells. Various studies have shown IBH to be associated with IgE-mediated reactions against salivary antigens from Culicoides spp. However, until recently, the causative allergens had not been characterized at the molecular level. A major advance has now been made, as 11 Culicoides salivary gland proteins have been identified as relevant allergens for IBH. Currently, there is no satisfactory treatment of IBH. Characterization of the main allergens for IBH and understanding what mechanisms induce a healthy or allergic immune response towards these allergens may help to develop new treatment strategies, such as immunotherapy.
Collapse
Affiliation(s)
- A Schaffartzik
- Swiss Institute of Allergy and Asthma Research-SIAF, University of Zürich, Obere Strasse 22, CH-7270 Davos, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Selective cloning, characterization, and production of the Culicoides nubeculosus salivary gland allergen repertoire associated with equine insect bite hypersensitivity. Vet Immunol Immunopathol 2010; 139:200-9. [PMID: 21071100 DOI: 10.1016/j.vetimm.2010.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 10/05/2010] [Accepted: 10/08/2010] [Indexed: 11/24/2022]
Abstract
Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.
Collapse
|