1
|
Graaf-Rau A, Schmies K, Breithaupt A, Ciminski K, Zimmer G, Summerfield A, Sehl-Ewert J, Lillie-Jaschniski K, Helmer C, Bielenberg W, Grosse Beilage E, Schwemmle M, Beer M, Harder T. Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets. NPJ Vaccines 2024; 9:127. [PMID: 39003272 PMCID: PMC11246437 DOI: 10.1038/s41541-024-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.
| | - Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | | | - Carina Helmer
- SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany
| | | | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
2
|
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038737. [PMID: 31988203 PMCID: PMC7919397 DOI: 10.1101/cshperspect.a038737] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species. Transmission of distinct human seasonal lineages to pigs, followed by sustained within-host transmission and rapid adaptation and evolution, represent a considerable challenge for pig health and production. Consequently, although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, extensive diversity can be found in the hemagglutinin (HA) and neuraminidase (NA) genes, as well as the remaining six genes. We review the complicated global epidemiology of IAV in swine and the inextricably entangled implications for public health and influenza pandemic planning.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Divya Venkatesh
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| |
Collapse
|
3
|
Deblanc C, Quéguiner S, Gorin S, Chastagner A, Hervé S, Paboeuf F, Simon G. Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses 2020; 12:E1155. [PMID: 33053905 PMCID: PMC7599989 DOI: 10.3390/v12101155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
The surveillance of swine influenza A viruses in France revealed the emergence of an antigenic variant following deletions and mutations that are fixed in the HA-encoding gene of the European human-like reassortant swine H1N2 lineage. In this study, we compared the outcomes of the parental (H1huN2) and variant (H1huN2Δ146-147) virus infections in experimentally-inoculated piglets. Moreover, we assessed and compared the protection that was conferred by an inactivated vaccine currently licensed in Europe. Three groups of five unvaccinated or vaccinated piglets were inoculated with H1huN2 or H1huN2Δ146-147 or mock-inoculated, respectively. In unvaccinated piglets, the variant strain induced greater clinical signs than the parental virus, in relation to a higher inflammatory response that involves TNF-α production and a huge afflux of granulocytes into the lung. However, both infections led to similar levels of virus excretion and adaptive (humoral and cellular) immune responses in blood. The vaccinated animals were clinically protected from both infectious challenges and did not exhibit any inflammatory responses, regardless the inoculated virus. However, whereas vaccination prevented virus shedding in H1huN2-infected animals, it did not completely inhibit the multiplication of the variant strain, since live virus particles were detected in nasal secretions that were taken from H1huN2Δ146-147-inoculated vaccinated piglets. This difference in the level of vaccine protection was probably related to the poorer ability of the post-vaccine antibodies to neutralize the variant virus than the parental virus, even though post-vaccine cellular immunity appeared to be equally effective against both viruses. These results suggest that vaccine antigens would potentially need to be updated if this variant becomes established in Europe.
Collapse
Affiliation(s)
- Céline Deblanc
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Stéphane Gorin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Amélie Chastagner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Séverine Hervé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Gaëlle Simon
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| |
Collapse
|
4
|
Irradiation by a Combination of Different Peak-Wavelength Ultraviolet-Light Emitting Diodes Enhances the Inactivation of Influenza A Viruses. Microorganisms 2020; 8:microorganisms8071014. [PMID: 32650492 PMCID: PMC7409356 DOI: 10.3390/microorganisms8071014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock. This study aimed to determine the ideal irradiation by ultraviolet-light emitting diodes (UV-LEDs) for IAV disinfection. We irradiated the IAV H1N1 subtype with 4.8 mJ/cm2 UV using eight UV-LEDs [peak wavelengths (WL) = 365, 310, 300, 290, 280, 270, and 260 nm)] or a mercury low pressure (LP)-UV lamp (Peak WL = 254 nm). Inactivation was evaluated by the infection ratio of Madin–Darby canine kidney (MDCK) cells or chicken embryonated eggs. Irradiation by the 260 nm UV-LED showed the highest inactivation among all treatments. Because the irradiation-induced inactivation effects strongly correlated with damage to viral RNA, we calculated the correlation coefficient (RAE) between the irradiant spectrum and absorption of viral RNA. The RAE scores strongly correlated with the inactivation by the UV-LEDs and LP-UV lamp. To increase the RAE score, we combined three different peak WL UV-LEDs (hybrid UV-LED). The hybrid UV-LED (RAE = 86.3) significantly inactivated both H1N1 and H6N2 subtypes to a greater extent than 260 nm (RAE = 68.6) or 270 nm (RAE = 42.2) UV-LEDs. The RAE score is an important factor for increasing the virucidal effects of UV-LED irradiation.
Collapse
|
5
|
Abstract
Influenza A viruses (IAVs) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs and humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. Bidirection transmission of IAV between pigs and people has altered the evolutionary dynamics of IAV, and a "One Health" approach is required to ameliorate morbidity and mortality in both hosts and improve control strategies. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes but in the remaining six genes as well. Human and swine IAVs have demonstrated a particular propensity for interspecies transmission, leading to regular and sometimes sustained incursions from man to pig and vice versa. The diversity of IAVs in swine remains a critical challenge in the diagnosis and control of this important pathogen for swine health and in turn contributes to a significant public health risk.
Collapse
Affiliation(s)
- Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA.
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
6
|
Gutiérrez AH, Rapp-Gabrielson VJ, Terry FE, Loving CL, Moise L, Martin WD, De Groot AS. T-cell epitope content comparison (EpiCC) of swine H1 influenza A virus hemagglutinin. Influenza Other Respir Viruses 2018; 11:531-542. [PMID: 29054116 PMCID: PMC5705686 DOI: 10.1111/irv.12513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 02/03/2023] Open
Abstract
Background Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T‐cell epitope cross‐conservation may play an important role in cross‐strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no similar correlate of protection has been identified for T‐cell epitopes. Objective We developed a computational method (EpiCC) that facilitates pairwise comparison of protein sequences based on an immunological property—T‐cell epitope content—rather than sequence identity, and evaluated its ability to classify swine IAV strain relatedness to estimate cross‐protective potential of a vaccine strain for circulating viruses. Methods T‐cell epitope relatedness scores were assessed for 23 IAV HA sequences representing the major H1 swine IAV phylo‐clusters circulating in North American swine and HA sequences in a commercial inactivated vaccine (FluSure XP®). Scores were compared to experimental data from previous efficacy studies. Results Higher EpiCC scores were associated with greater protection by the vaccine against strains for 23 field IAV strain vaccine comparisons. A threshold for EpiCC relatedness associated with full or partial protection in the absence of cross‐reactive HI antibodies was identified. EpiCC scores for field strains for which FluSure protective efficacy is not yet available were also calculated. Conclusion EpiCC thresholds can be evaluated for predictive accuracy of protection in future efficacy studies. EpiCC may also complement HI cross‐reactivity and phylogeny for selection of influenza strains in vaccine development.
Collapse
Affiliation(s)
- Andres H Gutiérrez
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | | | | | - Crystal L Loving
- Virus and Prion Diseases Research Unit, NADC, USDA ARS, Ames, IA, USA
| | - Leonard Moise
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,EpiVax Inc., Providence, RI, USA
| | | | - Anne S De Groot
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,EpiVax Inc., Providence, RI, USA
| |
Collapse
|
7
|
Olson ZF, Sandbulte MR, Souza CK, Perez DR, Vincent AL, Loving CL. Factors affecting induction of peripheral IFN-γ recall response to influenza A virus vaccination in pigs. Vet Immunol Immunopathol 2017; 185:57-65. [DOI: 10.1016/j.vetimm.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
|
8
|
|
9
|
Rajao DS, Sandbulte MR, Gauger PC, Kitikoon P, Platt R, Roth JA, Perez DR, Loving CL, Vincent AL. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 2016; 491:79-88. [PMID: 26874588 DOI: 10.1016/j.virol.2016.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Control of influenza A virus (IAV) in pigs is done by vaccination of females to provide maternally-derived antibodies (MDA) through colostrum. Our aim was to evaluate if MDA interfere with IAV infection, clinical disease, and transmission in non-vaccinated piglets. In the first study, naïve sows were vaccinated with H1N2-δ1 whole inactivated virus (WIV) vaccine. In a follow-up study seropositive sows to 2009 pandemic H1N1 (H1N1pdm09) were boosted with H1N1pdm09 WIV or secondary experimental infection (EXP). MDA-positive pigs were challenged with homologous or heterologous virus, and MDA-negative control groups were included. WIV-MDA piglets were protected from homologous infection. However, piglets with WIV-derived MDA subsequently challenged with heterologous virus developed vaccine associated enhanced respiratory disease (VAERD), regardless of history of natural exposure in the sows. Our data indicates that although high titers of vaccine-derived MDA reduced homologous virus infection, transmission, and disease, MDA alone was sufficient to induce VAERD upon heterologous infection.
Collapse
Affiliation(s)
- Daniela S Rajao
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Matthew R Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 2630 Veterinary Medicine, Ames, IA 50011, United States
| | - Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Ratree Platt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - James A Roth
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, University of Georgia, 953 College Station Rd, Athens, GA 30602, United States
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States.
| |
Collapse
|
10
|
Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines (Basel) 2015; 3:22-73. [PMID: 26344946 PMCID: PMC4494241 DOI: 10.3390/vaccines3010022] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Pamela K Zaabel
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Sandbulte MR, Platt R, Roth JA, Henningson JN, Gibson KA, Rajão DS, Loving CL, Vincent AL. Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies. Virology 2014; 464-465:45-54. [PMID: 25043588 DOI: 10.1016/j.virol.2014.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/14/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Live-attenuated influenza virus (LAIV) prime-boost vaccination previously conferred protection against heterologous H3N2 swine influenza challenge, including in piglets with maternally derived antibodies (MDA). Conversely, a whole-inactivated virus (WIV) vaccine was associated with enhanced disease. This study was aimed at identifying immune correlates of cross-protection. Piglets with and without MDA received intramuscular adjuvanted WIV or intranasal LAIV, and were challenged with heterologous H3N2. WIV induced cross-reactive IgG, inhibited by MDA, and a moderate T cell response. LAIV elicited mucosal antibodies and T cells cross-reactive to the heterologous challenge strain. The presence of MDA at LAIV vaccination blocked lung and nasal antibody production, but did not interfere with T cell priming. Even without mucosal antibodies, MDA-positive LAIV vaccinates were protected, indicating a likely role for T cells. Based on the data, one LAIV dose can induce cell-mediated immunity against antigenically divergent H3N2 influenza virus despite passive antibody interference with humoral immune responses.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Ratree Platt
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA, USA
| | - James A Roth
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Jamie N Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Kathleen A Gibson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Daniela S Rajão
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA.
| |
Collapse
|
12
|
Khurana S, Loving CL, Manischewitz J, King LR, Gauger PC, Henningson J, Vincent AL, Golding H. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci Transl Med 2014; 5:200ra114. [PMID: 23986398 DOI: 10.1126/scitranslmed.3006366] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci 2014; 97:412-21. [PMID: 25000875 DOI: 10.1016/j.rvsc.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system.
Collapse
Affiliation(s)
- M Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - K Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - I Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - C Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Z Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
14
|
Abstract
Swine influenza is an acute respiratory disease of pigs caused by influenza A virus (IAV) and characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. IAV is one of the most prevalent respiratory pathogens of swine, resulting in substantial economic burden to pork producers. In the past 10-15 years, a dramatic evolution of the IAV in U.S. swine has occurred, resulting in the co-circulation of many antigenically distinct IAV strains, derived from 13 phylogenetically distinct hemagglutinin clusters of H1 and H3 viruses. Vaccination is the most common strategy to prevent influenza in pigs, however, the current diverse IAV epidemiology poses a challenge for the production of efficacious and protective vaccines. A concern regarding the use of traditional inactivated vaccines is the possibility of inducing vaccine-associated enhanced respiratory disease (VAERD) when vaccine virus strains are mismatched with the infecting strain. In this review, we discuss the current epidemiology and pathogenesis of swine influenza in the United States, different vaccines platforms with potential to control influenza in pigs, and the factors associated with vaccine-associated disease enhancement.
Collapse
|
15
|
Abstract
Influenza A viruses (IAV) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs as well as humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. This overlap between human and animal health is a prime example of the "One Health" concept. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes, but in the other 6 genes as well. Human and swine IAV have demonstrated a particular propensity for interspecies transmission in the past century, leading to regular and sometimes sustained, incursions from man to pig and vice versa. The diversity of IAV in swine remains one of the critical challenges in diagnosis and control of this important pathogen for swine health, and in turn contributes to a significant public health risk.
Collapse
|
16
|
Gauger PC, Loving CL, Lager KM, Janke BH, Kehrli ME, Roth JA, Vincent AL. Vaccine-Associated Enhanced Respiratory Disease Does Not Interfere with the Adaptive Immune Response Following Challenge with Pandemic A/H1N1 2009. Viral Immunol 2013; 26:314-21. [DOI: 10.1089/vim.2013.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Phillip C. Gauger
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Crystal L. Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa
| | - Bruce H. Janke
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa
| | - James A. Roth
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa
| |
Collapse
|
17
|
Abstract
Influenza virus infects a wide variety of species including humans, pigs, horses, sea mammals and birds. Weight loss caused by influenza infection and/or co-infection with other infectious agents results in significant financial loss in swine herds. The emergence of pandemic H1N1 (A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans and livestock constitutes a concerning public health threat. Influenza virus contains eight single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current vaccines provide limited cross protection to heterologous challenge. In pigs, this presents a major obstacle for vaccine development. Different strategies are under development to produce vaccines that provide better cross-protection for swine. Moreover, overriding interfering maternal antibodies is another goal for influenza vaccines in order to permit effective immunization of piglets at an early age. Herein, we present a review of influenza virus infection in swine, including a discussion of current vaccine approaches and techniques used for novel vaccine development.
Collapse
|
18
|
Lefevre EA, Carr BV, Inman CF, Prentice H, Brown IH, Brookes SM, Garcon F, Hill ML, Iqbal M, Elderfield RA, Barclay WS, Gubbins S, Bailey M, Charleston B. Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes. PLoS One 2012; 7:e32400. [PMID: 22427834 PMCID: PMC3302873 DOI: 10.1371/journal.pone.0032400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination. Both vaccines elicited strong antibody responses, which included high levels of influenza-specific IgG1 and haemagglutination inhibition titres to H1 virus. Immunisation with the adjuvanted split vaccine induced significantly higher interferon gamma production, increased frequency of interferon gamma-producing cells and proliferation of CD4−CD8+ (cytotoxic) and CD4+CD8+ (helper) T cells, after in vitro re-stimulation. Despite significant differences in the magnitude and breadth of immune responses in the two vaccinated and mock treated groups, similar quantities of viral RNA were detected from the nasal cavity in all pigs after live virus challenge. The present study provides support for the use of the pig as a valid experimental model for influenza infections in humans, including the assessment of protective efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Eric A Lefevre
- Institute for Animal Health, Compton near Newbury, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|