1
|
Zahid A, Eiza NU, Khalid M, Irshad HU, Shabbir MAB, Ali A, Chaudhry TH, Ahmed S, Maan MK, Huang L. Targeting inflammation for the treatment of endometritis in bovines. Microb Pathog 2024; 188:106536. [PMID: 38199446 DOI: 10.1016/j.micpath.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The uterine endometrial surface of bovines is in constant exposureconstantly exposed with to a multitude ofmany microbial populations that changes throughout the post-partum phase in terms of complexity and dynamics. These microbes contribute to the host pathology, leading to severe economic losses along withnd reproductive capabilities. The basic primary interface that occurs between the internal tissues of the body of the hostbetween the host body's internal tissues and the microbes is the endometrial surface of the uterus. As a result of the infinite pathogenic population, there is always a danger for the opportunistic organisms to attack. Therefore, it is paramount that any interactions, especially microbial microbes with the endometrial surface, are regulated by the host cells. However, the inflammatory response as the defense mechanism contributes a pivotal roleis pivotal in host immunity and pathology. The inflammatory cascade and pathways are important essential to eliminate this clinical problem. In this review, we will discuss and explain how the inflammation and the various components of the immune system play their role in host pathology and therapeutic strategies, taking into account the interface between the host and the microbes on the surface of the endometrium. This review is also instrumental in further explanation of inflammatory uterine disease by discussing the response of inflammation to external insult.
Collapse
Affiliation(s)
- Ayesha Zahid
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Ul Eiza
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muntaha Khalid
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Usman Irshad
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abu Bakr Shabbir
- Department of Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ahsan Ali
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tamoor Hamid Chaudhry
- Public Health Laboratory Division, National Institute of Health, Islamabad, Pakistan
| | - Saeed Ahmed
- Department of Microbiology, National University of Medical Sciences, Islamabad, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues/ MAO Key Laboratory for the Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Lee S, Yoo I, Cheon Y, Ka H. Conceptus-derived cytokines interleukin-1β and interferon-γ induce the expression of acute phase protein serum amyloid A3 in endometrial epithelia at the time of conceptus implantation in pigs. Anim Biosci 2023; 36:441-450. [PMID: 36397697 PMCID: PMC9996260 DOI: 10.5713/ab.22.0334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Serum amyloid A3 (SAA3), an acute phase response protein, plays important roles in opsonization, antimicrobial activity, chemotactic activity, and immunomodulation, but its expression, regulation, and function at the maternal-conceptus interface in pigs are not fully understood. Therefore, we determined the expression of SAA3 in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy. METHODS Endometrial tissues from pigs at various stages of the estrous cycle and pregnancy and with conceptuses derived from somatic cell nuclear transfer (SCNT), conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy were obtained and the expression of SAA3 was analyzed. The effects of the steroid hormones, interleukin-1β (IL1B), and interferon-γ (IFNG) on the expression of SAA3 were determined in endometrial explant cultures. RESULTS SAA3 was expressed in the endometrium during the estrous cycle and pregnancy, with the highest level on day 12 of pregnancy. The expression of SAA3 in the endometrium was significantly higher on day 12 of pregnancy than during the estrous cycle. Early-stage conceptuses and chorioallantoic tissues during mid to late pregnancy also expressed SAA3. The expression of SAA3 was primarily localized to luminal epithelial cells in the endometrium. In endometrial explant cultures, the expression of SAA3 was induced by increasing doses of IL1B and IFNG. Furthermore, the expression of SAA3 decreased significantly in the endometria of pigs carrying conceptuses derived from SCNT on day 12 of pregnancy. CONCLUSION These results suggest that the expression of SAA3 in the endometrium during the implantation period increases in response to conceptus-derived IL1B and IFNG. The failure of those appropriate interactions between the implanting conceptus and the endometrium leads to dysregulation of endometrial SAA3 expression, which could result in pregnancy failure. In addition, SAA3 could be a specific endometrial epithelial marker for conceptus implantation in pigs.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Korea
| | - Inkyun Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Korea
| |
Collapse
|
3
|
Crookenden MA, Burke CR, Mitchell MD, Phyn CVC, Roche JR, Heiser A. Effect of nonsteroidal anti-inflammatory drugs on the inflammatory response of bovine endometrial epithelial cells in vitro. J Dairy Sci 2023; 106:2651-2666. [PMID: 36653292 DOI: 10.3168/jds.2021-21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/30/2022] [Indexed: 01/19/2023]
Abstract
Chronic postpartum uterine infection detrimentally affects subsequent fertility. Nonsteroidal anti-inflammatory drugs (NSAID) are used to alleviate pain and treat inflammatory conditions in transition dairy cows with varying success. To screen the efficacy of NSAID in the absence of animal experiments, we have established an in vitro model to study uterine inflammation. Inflammation was induced in cultured bovine endometrial epithelial cells by challenging cells with an inflammation cocktail: lipopolysaccharide and proinflammatory cytokines, interleukin-1β (IL1β) and tumor necrosis factor α (TNFα). Release of the inflammation markers, serum amyloid A (SAA) and α-1-acid glycoprotein (αAGP), was measured by ELISA. Concentration of these markers was used to indicate the effectiveness in dampening inflammation of 5 NSAID: meloxicam, flunixin meglumine, aspirin, ketoprofen, and tolfenamic acid. Three NSAID, meloxicam, flunixin meglumine, and tolfenamic acid, were successful at dampening the release of SAA and αAGP into cell-culture supernatant, and the corresponding treated cells were selected for down-stream mRNA expression analysis. Expression of 192 genes involved in regulation of inflammatory pathways were investigated using Nanostring. Of the genes investigated, 81 were above the mRNA expression-analysis threshold criteria and were included in expression analysis. All SAA genes investigated (SAA2, SAA3, M-SAA3.2) were upregulated in response to the inflammation cocktail, relative to mRNA expression in control cells; however, AGP mRNA expression was below the expression analysis threshold and was, therefore, excluded from analysis. Treatment with NSAID downregulated genes involved in regulating chemokine signaling (e.g., CXCL2, CXCR4, CXCL5, and CXCL16) and genes that regulate the eicosanoid pathway (e.g., LTA4H, PTGS2, PLA2G4A, and PTGDS). Of the 5 NSAID investigated, meloxicam, flunixin meglumine, and tolfenamic acid are recommended for further investigation into treatment of postpartum uterine inflammation. The results from this study confirm the immunomodulatory properties of the endometrial epithelium in response to inflammatory stimuli and suggest that NSAID may be beneficial in alleviating uterine inflammation.
Collapse
Affiliation(s)
- M A Crookenden
- Hopkirk Research Institute, AgResearch, Palmerston North 4442, New Zealand.
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - M D Mitchell
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia
| | - C V C Phyn
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - J R Roche
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - A Heiser
- Hopkirk Research Institute, AgResearch, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
El-Deeb W, Abdelghani MA, Alhaider A, Fayez M. Research on acute phase proteins and inflammatory cytokines biomarkers in dromedary camels (Camelus dromedarius) with clinical endometritis. Trop Anim Health Prod 2022; 54:361. [DOI: 10.1007/s11250-022-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
5
|
Zhang S, Wang D, Yan Z. Increasing of matrix metalloproteinase 3 in bovine endometritis. Theriogenology 2021; 175:83-88. [PMID: 34547631 DOI: 10.1016/j.theriogenology.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase 3 (MMP3), a key member of the MMPs family, is involved in the modulation of endometrial inflammation and innate immunity. However, the role of MMP3 in bovine endometritis remains unknown. To investigate the role of MMP3 in bovine endometritis, endometrial MMP3 expression were determined in uterine biopsies from twenty 40-60 days postpartum dairy cows, which six were healthy cows and fourteen were endometritic cows. Moreover, MMP3 expression were also detected at different intensity of inflammatory response, which was induced by graded concentrations (0, 1, 5, 10 μg/ml) of LPS in bovine endometrial epithelial cells (BEECs) in vitro. RT-qPCR was used to test the mRNA levels of MMP3 in tissues or cells. Western blot was conducted to measure protein levels, and enzyme-linked immunosorbent assay (ELISA) was used for TNF-α and IL-1β in cell supernatant. Results showed that MMP3 mRNA and protein levels significantly increased and positive correlative with severity of endometritis in vivo. Likewise, MMP3 expression also positive correlative with intensity of LPS inflammatory response in BEECs in vitro. These results indicate that increasing of MMP3 directly correlates with bovine endometritis, and its increasing may contribute to progression of bovine endometritis.
Collapse
Affiliation(s)
- Shidong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China.
| | - Dongsheng Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China; Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, 730050, PR China
| |
Collapse
|
6
|
Wojtysiak K, Ryszka W, Stefaniak T, Król J, Kozdrowski R. Changes in the Secretion of Anti-Inflammatory Cytokines and Acute-Phase Proteins in the Uterus after Artificial Insemination in the Mare. Animals (Basel) 2020; 10:ani10122438. [PMID: 33352707 PMCID: PMC7766701 DOI: 10.3390/ani10122438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Semen deposition into the uterus during mating or artificial insemination induces a rapid inflammatory response, and, in susceptible mares, persistent endometritis can develop. Cytokines are mediators involved in the regulation of the inflammatory process, and acute phase proteins are the most sensitive indicators of the inflammatory process. Therefore, the aim of this research was to determine the secretion of anti-inflammatory cytokines and acute-phase proteins in the uterus before and after artificial insemination in the mare. The obtained results indicate that the status of the mare before artificial insemination has little effect on the response measured shortly after artificial insemination. The presence of intrauterine fluid during estrus is not connected with the inflammation parameters investigated in this study at 7 h post artificial insemination. Detailed examination of the mare’s reproductive tract before and after artificial insemination guarantees high fertility. Abstract The objective of the study was to evaluate the concentrations of interleukin-1 receptor antagonist (IL-1RA), interleukin-10 (IL-10), serum amyloid A (SAA) and haptoglobin (Hp) in uterine lavage fluid before and after artificial insemination (AI). Based on ultrasound examination, mares were divided into: Group 1 (n = 9), no fluid was detected in the uterus during estrus and 7 h after AI; Group 2 (n = 8), no fluid was detected in the uterus during estrus but 7 h after AI fluid was detected in the uterus; Group 3 (n = 8), fluid was detected in the uterus during estrus and also 7 h after AI. In all groups of mares, a significant increase in polymorphonuclear cells (PMN) and a significant increase in IL-1RA and SAA were recorded 7 h after AI. The obtained results show that, regardless of the status of the mare before AI, the endometrial response characterized by PMN influx, and SAA, Hp, IL-1RA and IL-10 production, is similar. The presence of intrauterine fluid during estrus is not connected with PMN influx but can impact uterine IL-1RA production at this time.
Collapse
Affiliation(s)
- Katarzyna Wojtysiak
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wroclaw, Poland;
| | | | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Jarosław Król
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Roland Kozdrowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
7
|
Wang X, Li Q, Xie T, Yuan M, Sheng X, Qi X, Xing K, Liu F, Guo Y, Xiao L, Ni H. Exosomes from bovine endometrial epithelial cells ensure trophoblast cell development by miR-218 targeting secreted frizzled related protein 2. J Cell Physiol 2020; 236:4565-4579. [PMID: 33230823 DOI: 10.1002/jcp.30180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Endometritis is a common disease affecting fertility in cows during the perinatal period, which disturbs the molecular milieu of the uterine environment and impairs embryo development and implantation. Exosomes are important extracellular components that transmit a variety of micro RNAs (miRNAs), which perform key regulatory functions. In this study, we investigated plasma exosomal miRNAs from cows with endometritis and from cultured endometrial epithelial cells (EECs) challenged with lipopolysaccharide (LPS) to explore the role of EEC-derived exosomes and their miRNAs in bovine endometritis. Plasma exosomes were collected from nine healthy dairy cows and nine dairy cows with endometritis, and culture supernatant exosomes were isolated from EECs challenged with or without LPS. Exosomal RNA was extracted using commercial kits and miRNA profiles were generated using RNA-seq. We found that miR-218 was differentially expressed in EECs under conditions of endometrial inflammation. Inhibition studies suggested that reduced levels of miR-218 in EEC-derived exosomes when transferred into placental trophoblast cells impaired embryonic development and decreased placental trophoblast cell migration by targeting secreted frizzled related protein 2. We propose that exosomal miR-218 secreted from EECs acts as a driver of embryonic development and differentiation. In addition, exosomal miR-218 may provide a valuable diagnostic marker for bovine endometritis.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qianru Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Tongtong Xie
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyi Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fang Liu
- College of Economics and Management, Beijing University of Agriculture, Beijing, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Murata E, Kozaki S, Murakami T, Shimizu K, Okada A, Ishiguro N, Inoshima Y. Differential expression of serum amyloid A1 and A3 in bovine epithelia. J Vet Med Sci 2020; 82:764-770. [PMID: 32378645 PMCID: PMC7324830 DOI: 10.1292/jvms.19-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serum amyloid A (SAA) is both an amyloidogenic protein of amyloid A amyloidosis and an acute phase protein in most animal species. Although SAA isoforms, such as SAA1, 2, 3, and 4, have been identified in cattle, their biological functions are not completely understood. Previous studies using mice indicated that SAA3 mRNA expression increased by stimulation with Escherichia coli and lipopolysaccharide (LPS) in colonic epithelial cells, and subsequently the SAA3 protein enhanced the expression of mucin2 (MUC2) mRNA, which is the major component of the colonic mucus layer. These results suggest that SAA3 plays a role in host innate immunity against bacterial infection in the intestine. In this study, a novel anti-bovine SAA3 monoclonal antibody was produced and SAA3 expression levels in bovine epithelia were examined in vitro and in vivo using real-time PCR and immunohistochemistry (IHC). SAA3 mRNA expression, but not that of SAA1, was enhanced by LPS stimulus in bovine small intestinal and mammary glandular epithelial cells in vitro. Moreover, in bovine epithelia (small intestine, mammary gland, lung, and uterus) obtained from four Holstein dairy cows from a slaughterhouse, SAA3 mRNA expression was higher than that of SAA1. Furthermore, using IHC, SAA3 protein expression was observed in bovine epithelia, whereas SAA1 protein was not. These results suggest that in cattle, SAA3 plays an immunological role against bacterial infection in epithelial tissues, including the small intestine, mammary gland, lung, and uterus.
Collapse
Affiliation(s)
- Eriko Murata
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Satoi Kozaki
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
| | - Naotaka Ishiguro
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
9
|
Li T, Liu B, Guan H, Mao W, Wang L, Zhang C, Hai L, Liu K, Cao J. PGE2 increases inflammatory damage in Escherichia coli-infected bovine endometrial tissue in vitro via the EP4-PKA signaling pathway. Biol Reprod 2020; 100:175-186. [PMID: 30010723 DOI: 10.1093/biolre/ioy162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/13/2018] [Indexed: 11/15/2022] Open
Abstract
Endometritis is the most common bovine uterine disease following parturition. The role of prostaglandin E2 (PGE2) in the regulation of endometrial inflammation and repair is well understood. Excess PGE2 is also generated in multiple inflammatory diseases, including endometritis. However, it remains unclear whether PGE2 is associated with pathogen-induced inflammatory damage to the endometrium. To clarify the role of PGE2 in pathogen-induced inflammatory damage, this study evaluated the production of PGE2, inflammatory factors, and damage-associated molecular patterns (DAMPs) in cultured Escherichia coli-infected bovine endometrial tissue. PGE2 production was significantly higher in E. coli-infected tissue, and in E. coli-infected tissue treated with 15-prostaglandin dehydrogenase (15-PGDH) inhibitors, as compared to uninfected tissue. Phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) were also upregulated in E. coli-infected tissue, while concentrations of arachidonic acid (AA), leukotrienes, DAMPs, and other proinflammatory factors increased. The accumulation of PGE2 clearly damaged the cultured tissue. Treatment with the COX-2, mPGES-1, EP4, and protein kinase A (PKA) inhibitors decreased the production of PGE2, inflammatory factors, and DAMPs, simultaneously alleviating the E. coli-induced endometrial tissue damage. Therefore, the PGE2 that was generated by COX-2 and mPGES-1 accumulated, and this pathogenic PGE2 increased inflammatory damage by upregulating inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. This upregulation of inflammatory factors and DAMPs might be regulated by the EP4-PKA signaling pathway.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Hong Guan
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lili Hai
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| |
Collapse
|
10
|
Cui L, Wang Y, Wang H, Dong J, Li Z, Li J, Qian C, Li J. Different effects of cortisol on pro-inflammatory gene expressions in LPS-, heat-killed E.coli-, or live E.coli-stimulated bovine endometrial epithelial cells. BMC Vet Res 2020; 16:9. [PMID: 31918707 PMCID: PMC6953302 DOI: 10.1186/s12917-020-2231-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial infections are common in postpartum dairy cows. Cortisol level has been observed to increase in dairy cows during peripartum period, and is associated with the endometrial innate immunity against pathogens like E.coli. However, the mechanism underlying how cortisol regulates E.coli-induced inflammatory response in bovine endometrial epithelial cells (BEEC) remains elusive. Results Cortisol decreased the expressions of IL1β, IL6, TNF-α, IL8, and TLR4 mRNA in BEEC treated with LPS or heat-killed E.coli, but up-regulated these gene expressions in BEEC stimulated by live E.coli. Conclusion Cortisol exerted the anti-inflammatory action on LPS- or heat-killed E.coli-stimulated BEEC, but the pro-inflammatory action on live E.coli-induced BEEC.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Yali Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Zixiang Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Esposito G, Raffrenato E, Lukamba SD, Adnane M, Irons PC, Cormican P, Tasara T, Chapwanya A. Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet. J Anim Sci 2020; 98:skz391. [PMID: 31917830 PMCID: PMC6984754 DOI: 10.1093/jas/skz391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.
Collapse
Affiliation(s)
- Giulia Esposito
- Department of Animal Sciences, Faculty of Agricultural Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Emiliano Raffrenato
- Department of Animal Sciences, Faculty of Agricultural Science, Stellenbosch University, Stellenbosch, South Africa
| | - Somwe D Lukamba
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mounir Adnane
- Institute of Veterinary Sciences, Ibn-Khaldoun University, Tiaret, Algeria
| | - Pete C Irons
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- School of Veterinary and Life Science, Murdoch University, Perth, Australia
| | - Paul Cormican
- Department of Animal and Grassland Research, Animal Bioscience Research Centre, Teagasc, Ireland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Aspinas Chapwanya
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| |
Collapse
|
12
|
Zhang C, Wang L, Li T, Mao W, Liu B, Cao J. EP2/4 Receptors Promote the Synthesis of PGE 2 Increasing Tissue Damage in Bovine Endometrial Explants Induced by Escherichia coli. J Pharmacol Exp Ther 2019; 372:175-184. [PMID: 31732699 DOI: 10.1124/jpet.119.262444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The bovine uterine is easily contaminated with bacteria during coitus or parturition. A previous study suggested that prostaglandin E2 (PGE2) promoted Escherichia coli-infected bovine endometrial tissue inflammatory damage via cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). However, it remains unclear which PGE2 receptors regulate the proinflammatory effect of PGE2 In this study, we evaluated the effect of PGE2 and its mediated receptors on E. coli-infected endometrium explants isolated from the bovine uterus. The E. coli-infected bovine endometrial explants were cultured in vitro, and the study used EP2/4 receptor agonists to investigate the responses of COX-2, mPGES-1, PGE2, proinflammatory factors, and damage-associated molecular patterns (DAMPs). The expression of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs was significantly increased after infection with E. coli; however, the high expression levels caused by E. coli were reduced following treatment with COX-2 and mPGES-1 inhibitors. In addition, the expression levels of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs were higher in treatment with EP2/4 receptor agonists in E. coli-infected endometrium explants, and their promotable effects were effectively blocked by EP2/4 receptor antagonists. These findings provide evidence that PGE2 may promote the progress of inflammation in endometrial explants infected with E. coli in bovines. Furthermore, EP2/4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines. SIGNIFICANCE STATEMENT: PGE2 promoted E. coli-infected bovine endometrial tissue damage via COX-2 and mPGES-1. However, this proinflammatory effect of PGE2 depends on which receptors are affected by PGE2, and this remains unclear. In this study, it was investigated that EP2 and EP4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
13
|
Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim Health Res Rev 2019; 20:72-85. [PMID: 31895016 DOI: 10.1017/s1466252319000057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important infectious disease agent that causes significant reproductive and economic losses in the cattle industry worldwide. Although BVDV infection is known to cause poor fertility in cattle, a greater part of the underlying mechanisms particularly associated with early reproductive losses are not clearly understood. Previous studies reported viral compromise of reproductive function in infected bulls. In females, BVDV infection is thought to be capable of killing the oocyte, embryo or fetus directly, or to induce lesions that result in fetal abortion or malformation. BVDV infections may also induce immune dysfunction, and predispose cattle to other diseases that cause poor health and fertility. Other reports also suggested BVDV-induced disruption of the reproductive endocrine system, and a disruption of leukocyte and cytokine functions in the reproductive organs. More recent studies have provided evidence of viral-induced suppression of endometrial innate immunity that may predispose to uterine disease. Furthermore, there is new evidence that BVDV may potentially disrupt the maternal recognition of pregnancy or the immune protection of the conceptus. This review brings together the previous reports with the more recent findings, and attempts to explain some of the mechanisms linking this important virus to infertility in cattle.
Collapse
|
14
|
Kharayat NS, Sharma G C, Kumar GR, Bisht D, Chaudhary G, Singh SK, Das GK, Garg AK, Kumar H, Krishnaswamy N. Differential expression of endometrial toll-like receptors (TLRs) and antimicrobial peptides (AMPs) in the buffalo (Bubalus bubalis) with endometritis. Vet Res Commun 2019; 43:261-269. [PMID: 31407222 DOI: 10.1007/s11259-019-09761-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/05/2019] [Indexed: 01/28/2023]
Abstract
Toll like receptors (TLRs) and β-defensins expressed in the endometrium are part of the innate uterine defense mechanism (UDM). In the present study, transcriptional profile of TLRs (1-3, 6-8, 10, and) and β-defensins such as lingual antimicrobial peptide (LAP), tracheal antimicrobial peptide (TAP) and bovine neutrophil beta-defensin 4 (BNBD4) were studied. Bubaline genitalia were collected from abattoir and the endometrium was categorized into one of the following seven groups (n = 7/group) based on cyclicity and endometritis: follicular non-endometritis (FNE), luteal non-endometritis (LNE), follicular cytological endometritis (FCE), luteal cytological endometritis (LCE), follicular purulent endometritis (FPE), luteal purulent endometritis (LPE) and acyclic non-endometritis (ANE). Cytological endometritis (CE) was diagnosed by uterine cytology while purulent endometritis (PE) was diagnosed by the presence of purulent or mucopurulent exudate in the uterine lumen. Real time PCR was performed and the relative fold change was analysed. TLR1 and BNBD4 transcripts were not found in the buffalo endometrium. Of all the innate immune genes studied, upregulation of TLR and β-defensins was mostly contributed by the inflammatory status of endometrium. Further, there was a prominent upregulation of TAP in buffaloes with endometritis. However, no association could be found between the inflammatory status of the endometrium and phase of estrous cycle with respect to the expression of TLRs and β-defensins.
Collapse
Affiliation(s)
- Nitish Singh Kharayat
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Chethan Sharma G
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gandham Ravi Kumar
- Division of Animal Biotechnology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Deepika Bisht
- Division of Animal Biotechnology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gangaram Chaudhary
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sanjay Kumar Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gautum Kumar Das
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Anil Kumar Garg
- Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Narayanan Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India.
| |
Collapse
|
15
|
Wang X, Tian F, Chen C, Feng Y, Sheng X, Guo Y, Ni H. Exosome-derived uterine microRNAs isolated from cows with endometritis impede blastocyst development. Reprod Biol 2019; 19:204-209. [PMID: 31196738 DOI: 10.1016/j.repbio.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 12/27/2022]
Abstract
As a common disease of cows occurring during their perinatal period, endometritis is known to affect fertility. At present, the studies on endometritis mainly focus on preventing microbial invasion. However, the mechanism that uterine inflammation affects embryo activity and implantation is unclear. Mainly containing lipids, proteins, mRNAs, and microRNAs, exosomes widely exist in various tissues and body fluids. Exosome extractions were used by commercial kits and confirmed through morphological examinations and Western blot. After exosomes' mRNA profiles were generated using RNA sequencing, it was investigated how uterine cavity fluid exosomes affect the developmental competence of in vitro fertilization (IVF) embryos in case of endometritis. In this study, the isolated exosomes were spherical particles with a diameter of 30-150 nm according to the transmission electron microscopy. Identified with Western blotting, positive CD63 and CD9 expressions showed that the isolated exosomes could be used for the subsequent tests. We found 118 differentially expressed miRNAs in the exosomes of the uterine cavity fluid in healthy cows and those with endometritis, among which, 52 miRNAs were down regulated and 66 up regulated. Furthermore, the qRT-PCR results confirmed the up-regulation of three miRNAs and down-regulation of six miRNAs, which were consistent with the deep sequencing results. IVF embryos co-incubated with the endometritis exosomes significantly decreased the blastocyst formation rate in comparison with those co-incubated with the healthy exosomes (21.84+3.17 vs. 32.37+2.69). Therefore, exosome miRNAs may be a cause of infertility in cows with endometritis.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Feng Tian
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chaolei Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yan Feng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
16
|
MANIMARAN AYYASAMY, KUMARESAN ARUMUGAM, SARKAR SOUVENDRANATH, BOYA SANJANNA, SREELA L, MOOVENTHAN P, WANKHADE PRATIKR. Differential expression of bovine major acute phase proteins, cytokines and metabolic indicator genes in clinical endometritis cows. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i4.89139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Among the uterine diseases, clinical endometritis (CE) is a major challenge to livestock farming as it causes sub- or infertility problems in dairy animals. The aim of this study was to evaluate the expression of cytokines (IL- 1β, TNF-α, IL-6, and IL-8), acute phase proteins [APPs; haptoglobin (Hp), serum amyloid A (SAA) and alpha-1 acid glycoprotein (AGP)] and energy indicators [leptin and insulin-like growth factor (IGF)-1] genes in uterine tissue of CE affected cows. The uterine biopsy from CE cows (4) and non-endometritis cows (4) was processed for quantitative real-time PCR to study the mRNA expression of these innate immune molecules. We observed that mRNA expression of SAA, IL-1β, IL-8 and leptin genes were significantly up-regulated while, TNF-α and IGF-I genes were significantly down-regulated in CE cows. It can be concluded that bovine APPs, cytokines and energy indicators genes are differentially expressed in CE affected cows.
Collapse
|
17
|
Li T, Mao W, Liu B, Gao R, Zhang S, Wu J, Fu C, Deng Y, Liu K, Shen Y, Cao J. LP induced/mediated PGE 2 synthesis through activation of the ERK/NF-κB pathway contributes to inflammatory damage triggered by Escherichia coli-infection in bovine endometrial tissue. Vet Microbiol 2019; 232:96-104. [PMID: 31030852 DOI: 10.1016/j.vetmic.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/31/2023]
Abstract
The bovine endometrium is constantly challenged with pathogenic bacteria, especially with Escherichia coli. In previous studies, we showed that prostaglandin E2 (PGE2) synthesis was increased in E. coli-infected bovine endometrial tissue, which promoted the development of inflammatory damage. However, the molecular mechanism underlying this accumulation of PGE2 remained undefined. Lipoprotein (LP) is one of critical outer membrane protein in E. coli, which regulates inflammatory response. In this study, we determined the role of LP in PGE2 accumulation in bovine endometrial tissue by infecting the tissue with wild endometrial pathogenic E. coli and E. coli LP deletion mutant (JE5505) strains. We demonstrate that JE5505 was less effective than pathogenic E. coli in inducing the production of PGE2,IL-6, TNF-α, HMGB-1, and HABP1 and that the induction of cytokines was dependent on the activation of MAPKs, as revealed by rapid phosphorylation of ERK1/2/NF-κB in the endometrial tissues, furthermore, LP also induced PGE2 synthessis and cytokine secretion. Additionally, ERK and NF-κB inhibitors significantly inhibited PGE2 production and cytokine secretion and reduced or attenuated tissue damage in JE5505-infected and LP induced endometrial tissues. What is more important, we reported PGE2 introduction increased the expression of pro-inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. Taken together, these results indicate that LP is involved in the accumulation of PGE2 through the activation of the ERK/NF-κB pathway that induces the production of pro-inflammatory factors and damage-associated molecular patterns (DAMPs) in E. coli-infected bovine endometrial tissue. These results should help in better understanding and management of postpartum inflammatory diseases in dairy cows.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Shuangyi Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Changqi Fu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China.
| |
Collapse
|
18
|
Burkhardt NB, Röll S, Staudt A, Elleder D, Härtle S, Costa T, Alber A, Stevens MP, Vervelde L, Schusser B, Kaspers B. The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Front Immunol 2019; 10:124. [PMID: 30774632 PMCID: PMC6367253 DOI: 10.3389/fimmu.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
Collapse
Affiliation(s)
- Nina B. Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susanne Röll
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anke Staudt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Taiana Costa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Schusser
- Reproductive Biotechnology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
19
|
Shen Y, Feng S, Liu B, Mao W, Gao R, Wu J, Deng Y, Gao L, Zhang S, Li Q, Cao J. Prostaglandin E2 promotes Pam3CSK4-induced inflammation in endometrial epithelial cells of cattle. Anim Reprod Sci 2019; 200:51-59. [DOI: 10.1016/j.anireprosci.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
20
|
Adnane M, Meade KG, O'Farrelly C. Cervico-vaginal mucus (CVM) - an accessible source of immunologically informative biomolecules. Vet Res Commun 2018; 42:255-263. [PMID: 30117040 PMCID: PMC6244541 DOI: 10.1007/s11259-018-9734-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
Abstract
Cervico-vaginal mucus (CVM), the product of epithelial cells lining the uterus, cervix and vagina, is secreted to facilitate uterine lubrication and microbial clearance. Predominantly composed of water and mucins, CVM also contains high levels of immuno-active proteins such as immunoglobulin A (IgA), lactoferrin and lysozyme which protect against infection by blocking adhesion and mediating microbial killing. The repertoire of cytokines, chemokines and antimicrobial peptides is predominantly generated by the secretions of endometrial epithelial cells into the uterine lumen and concentrated in the CVM. The quantity and relative proportions of these inflammatory biomarkers are affected by diverse factors including the estrus cycle and health status of the animal and therefore potentially provide important diagnostic and prognostic indicators. We propose that measuring molecular signatures in bovine CVM could be a useful approach to identifying and monitoring genital tract pathologies in beef and dairy cows.
Collapse
Affiliation(s)
- Mounir Adnane
- School of Biochemistry and Immunology & School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
- Institute of Veterinary Sciences, Tiaret, Algeria
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology & School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
21
|
Endometrial expression of the acute phase molecule SAA is more significant than HP in reflecting the severity of endometritis. Res Vet Sci 2018; 121:130-133. [PMID: 30408641 DOI: 10.1016/j.rvsc.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023]
Abstract
This study investigated the correlation between endometrial local expressions of serum amyloid A (SAA) and haptoglobin (Hp) and severity of endometritis in 20 Chinese Holstein dairy cows at 40-60 days postpertum, aged 3-6, and 2-5 parities. Endometrial biopsies were collected and categorized into normal, mild endometritis, and severe endometritis based on clinical signs and histopathology. The protein and mRNA expression of SAA and Hp in endometrial tissue were measured using western blot and real-time PCR, respectively. Furthermore, bovine endometrial epithelial cells were isolated and cultured in vitro. The protein and mRNA expression of SAA and Hp were also determined in the cells treated with increasing concentrations of lipopolysaccharide (LPS; 0, 1, 5, 10 μg/ml). The results showed that both of protein and mRNA of SAA was increased in endometritis or in LPS-stimulated cells, and the increases were positively correlated with severity of endometritis in vivo or LPS stimulation strength in vitro. Meanwhile, protein expression of Hp were also increased in endometritis or in LPS-stimulated cells, but the increases were negatively correlative with severity of inflammation as well as mRNA expression of Hp in vivo or in vitro. Therefore, our results suggest that endometrial local expression of SAA is more significant than Hp as a potential biomarker to assess severity of endometritis in cows.
Collapse
|
22
|
Lyu A, Chen JJ, Wang HC, Yu XH, Zhang ZC, Gong P, Jiang LS, Liu FH. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury. J Zhejiang Univ Sci B 2018; 18:481-491. [PMID: 28585424 DOI: 10.1631/jzus.b1600224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Bovine endometritis is one of the most common reproductive disorders in cattle. The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and to uncover the underlying mechanisms. METHODS bEECs were stimulated with different concentrations (1, 10, 30, 50, and 100 μg/ml) of LPS for 3, 6, 9, 12, and 18 h. MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression of pro-inflammatory cytokines. Western blotting was used to assess levels of inflammation-related proteins. RESULTS Treatment of bEECs with 30 µg/ml LPS for 12 h induced cell injury and reduced cell viability. Punicalagin (5, 10, or 20 µg/ml) pretreatment significantly decreased LPS-induced productions of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in bEECs. Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB (NF-κB) by suppressing the production of inhibitor κBα (IκBα) and phosphorylation of p65. Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). CONCLUSIONS Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.
Collapse
Affiliation(s)
- An Lyu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jia-Jia Chen
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Hui-Chuan Wang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Hong Yu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhi-Cong Zhang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ping Gong
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Shu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Feng-Hua Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
23
|
Gärtner MA, Peter S, Jung M, Drillich M, Einspanier R, Gabler C. Increased mRNA expression of selected pro-inflammatory factors in inflamed bovine endometrium in vivo as well as in endometrial epithelial cells exposed to Bacillus pumilus in vitro. Reprod Fertil Dev 2018; 28:982-994. [PMID: 25562589 DOI: 10.1071/rd14219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022] Open
Abstract
Endometrial epithelium plays a crucial role in the first immune response to invading bacteria by producing cytokines and chemokines. The aim of this study was to investigate the first inflammatory response of the endometrium in vivo and in vitro. Gene expression of several pro-inflammatory factors and Toll-like receptors (TLR2, -4, -6) was determined in endometrial cytobrush samples obtained from healthy cows and cows with clinical or subclinical endometritis. Endometrial epithelial cells were co-cultured with an isolated autochthonous uterine bacterial strain Bacillus pumilus. Total RNA was extracted from in vivo and in vitro samples and subjected to real-time reverse transcription polymerase chain reaction. CXC ligands (CXCL) 1/2 and CXC chemokine receptor (CXCR) 2 mRNA expression was higher in cows with subclinical endometritis and CXCL3 mRNA expression was higher in cows with clinical endometritis compared with healthy cows. B. pumilus induced cell death of epithelial cells within 24h of co-culturing. The presence of B. pumilus resulted in significantly higher mRNA expression of interleukin 1α (IL1A), IL6, IL8, CXCL1-3 and prostaglandin-endoperoxide synthase 2 in co-cultured cells compared with untreated controls. The maximum increase was mainly detected after 2h. These results support the hypothesis that bacterial infection of endometrial cells might induce prompt synthesis of pro-inflammatory cytokines resulting in a local inflammatory reaction.
Collapse
Affiliation(s)
- Martina A Gärtner
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Sarah Peter
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Markus Jung
- Institute for the Reproduction of Farm Animals Schönow, Bernauer Allee 10, 16321 Bernau, Germany
| | - Marc Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Christoph Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
24
|
Dadarwal D, Palmer C, Griebel P. Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017; 104:62-71. [DOI: 10.1016/j.theriogenology.2017.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
25
|
Zhang SD, Dong SW, Wang DS, Oguejiofor CF, Fouladi-Nashta AA, Yang ZQ, Yan ZT. Differential proteomic profiling of endometrium and plasma indicate the importance of hydrolysis in bovine endometritis. J Dairy Sci 2017; 100:9324-9337. [DOI: 10.3168/jds.2016-12365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/29/2017] [Indexed: 12/13/2022]
|
26
|
de Moraes CN, Maia L, de Oliveira E, de Paula Freitas Dell'Aqua C, Chapwanya A, da Cruz Landim-Alvarenga F, Oba E. Shotgun proteomic analysis of the secretome of bovine endometrial mesenchymal progenitor/stem cells challenged or not with bacterial lipopolysaccharide. Vet Immunol Immunopathol 2017; 187:42-47. [PMID: 28494928 DOI: 10.1016/j.vetimm.2017.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
The use of the conditioned medium (CM) for diseases treatment is based on its enrichment with biomolecules with therapeutic properties and themselves have a beneficial effect. Secretome of bovine endometrial mesenchymal progenitor/stem cells (eMSCs) using a proteomics approach is until now unknown. This work aimed to evaluate the secretome of bovine eMSCs-CM challenged or not with lipopolysaccharide (LPS). For this, eMSCs characterized were challenged (TG) or not (CG). The CM was collected 12h after stimulation and submitted to mass spectrometry analysis. The classification of identified proteins was done by PANTHER according to biological processes, molecular function, cellular component and protein class. 397 protein groups were identified in TG and 302 in CG. We observed positive enrichment for antibacterial response proteins, macrophage activation function, receptor-mediated endocytosis, hydrolase activity, inhibitory enzyme in TG, and for activity structural molecule and intermediate filament cytoskeleton in the CG. Our experimental model shows that eMSCs respond to LPS in the concentration used and can be used to study immune-inflammatory response, besides of the secretion of proteins mainly related to tissue remodeling, immune response and angiogenesis which is an interesting feature for use in cell therapy.
Collapse
Affiliation(s)
- Carolina Nogueira de Moraes
- Department of Animal Reproduction and Radiology, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Leandro Maia
- Department of Animal Reproduction and Radiology, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Aspinas Chapwanya
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Basseterre, Saint Kitts and Nevis
| | | | - Eunice Oba
- Department of Animal Reproduction and Radiology, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
27
|
Stojkovic B, Mullen MP, Donofrio G, McLoughlin RM, Meade KG. Interleukin 8 haplotypes drive divergent responses in uterine endometrial cells and are associated with somatic cell score in Holstein-Friesian cattle. Vet Immunol Immunopathol 2017; 184:18-28. [DOI: 10.1016/j.vetimm.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 01/26/2023]
|
28
|
Oguejiofor CF, Cheng Z, Fouladi-Nashta AA, Wathes DC. Bovine Endometrial Cells Mount Innate Immune Response to the Intracellular Ligands CL097 and Poly(dA:dT) Indicating Roles against Uterine Viruses. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojas.2017.72010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wagener K, Pothmann H, Prunner I, Peter S, Erber R, Aurich C, Drillich M, Gabler C. Endometrial mRNA expression of selected pro-inflammatory factors and mucins in repeat breeder cows with and without subclinical endometritis. Theriogenology 2016; 90:237-244. [PMID: 28166974 DOI: 10.1016/j.theriogenology.2016.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Repeat breeder cows (RBC) are defined as cyclic cows without clinical abnormalities that fail to conceive after at least three subsequent inseminations. Previous studies have elucidated cellular defence mechanisms in the bovine uterus but detailed information on inflammatory events of endometrial cells in RBC is still lacking. Thus, the objective of this study was to analyse endometrial mRNA expression of selected transcripts associated with uterine inflammatory processes. Cytobrush samples from 91 RBC and 11 synchronised heifers with no history of gynaecological abnormalities (controls, CON) were collected. The proportion of polymorphonuclear neutrophils in these samples was used for the diagnosis of subclinical endometritis (SE). Ultrasonography and progesterone blood concentrations were used to determine ovarian activity and the stage of the oestrous cycle. Total RNA was isolated from the cytobrush samples and subjected to reverse transcription-quantitative PCR for interleukins (IL) 1A, IL1B, IL6, IL8, chemokine CXL ligand (CXCL) 3, CXCL5, prostaglandin-endoperoxide synthase 2 (PTGS2), tracheal antimicrobial peptide (TAP) and mucin (MUC) 4, MUC5, MUC6, MUC12 and MUC16. CXCL3 mRNA was higher (2-fold) and PTGS2 mRNA lower (6-fold) expressed in RBC compared with CON (P < 0.05). After subdivision of RBC in animals with (RBC-SE) and without SE (RBC-noSE), these differences remained significant between RBC-noSE and CON. Higher mRNA abundances of IL1A and IL1B were found in RBC-SE compared with RBC-noSE (3- and 4-fold; P < 0.05). No differences in the mRNA expression of IL6, IL8, CXCL5 and TAP were observed between RBC-SE, RBC-noSE and CON. MUC4 and MUC12 mRNA was more highly expressed in RBC than in CON (P < 0.05). In RBC-noSE, a 5- and 14-fold higher MUC4 and MUC12 mRNA expression was noticed compared with CON (P < 0.05). A significantly lower mRNA expression of MUC5 and MUC16 (7- and 4-fold) was detected in RBC in the luteal phase compared with RBC in the follicular phase, whereas such a down-regulation was not observed for MUC4 and MUC12. In conclusion, we demonstrated different PTGS2 and CXCL3 mRNA expression between RBC and control heifers, which might be related to subfertility in RBC. Further studies are required to confirm that an unregulated MUC4 and MUC12 mRNA expression may contribute to subfertility of RBC. These findings provide a valid basis for further research on regulatory mechanisms of mRNA expression in subfertile cows.
Collapse
Affiliation(s)
- K Wagener
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - H Pothmann
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - I Prunner
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - S Peter
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - R Erber
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Gabler
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
30
|
Ibrahim M, Peter S, Gärtner M, Michel G, Jung M, Einspanier R, Gabler C. Increased mRNA expression of selected antimicrobial peptides around ovulation and during inflammatory processes in the bovine endometrium postpartum. Theriogenology 2016; 86:2040-53. [DOI: 10.1016/j.theriogenology.2016.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
|
31
|
de Moraes CN, Maia L, Dias MC, Dell'Aqua CPF, da Mota LSLS, Chapwanya A, Landim-Alvarenga FDC, Oba E. Bovine endometrial cells: a source of mesenchymal stem/progenitor cells. Cell Biol Int 2016; 40:1332-1339. [PMID: 27699929 DOI: 10.1002/cbin.10688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
Endometrial mesenchymal stem/progenitor cells (eMSCs) are multipotent cells known to modulate the immune system and have clinical application for human and animal health. This makes these bovines cells attractive for dual use as cellular therapy and experimental model. The aim of this study was to isolate, evaluate the differentiation potential, immunophenotypic and immunocytochemistry characteristics, chromosomal stability, cloning efficiency, and cryopreservation response of bovine eMSCs collected in two phases of the estrous cycle. For this, cells were isolated and submitted to differentiation for adipogenic and osteogenic lineage. The cells were then characterized by flow cytometer (FC) (vimentin, CD29, CD44, MHC-II, CD34) and immunocytochemistry (vimentin, pan-cytokeratin, CD44) and submitted to cytogenetic and cloning efficiency assay. The cells were also cryopreserved using two different medium of cryopreservation and analyzed by FC for viability, necrosis, late-apoptosis + necrosis, and initial apoptosis rates before and after cryopreservation. We obtained homogeneous cell populations which have fibroblastic morphology and adherence to plastic. These cells expressed high levels of markers CD29, CD44, and vimentin, low expression levels for CD34 and no MHC-II. The cells were chromosomally stable (2n = 60) with high cloning efficiency and no difference (P > 0.05) between medium of cryopreservation or phase was observed after thawing. We showed the presence and differentiation potential of bovine eMSCs, with chromosomal stability and great response to cryopreservation with both medium, which has implications for build biobanks or development of new therapeutic approaches to combat uterine diseases or to study.
Collapse
Affiliation(s)
- Carolina Nogueira de Moraes
- Department of Animal Reproduction and Radiology, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Leandro Maia
- Department of Animal Reproduction and Radiology, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Marianne Camargos Dias
- Department of Animal Reproduction and Radiology, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Camila P Freitas Dell'Aqua
- Department of Animal Reproduction and Radiology, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St Kitts and Nevis
| | | | - Eunice Oba
- Department of Animal Reproduction and Radiology, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
32
|
Moran B, Cummins SB, Creevey CJ, Butler ST. Transcriptomics of liver and muscle in Holstein cows genetically divergent for fertility highlight differences in nutrient partitioning and inflammation processes. BMC Genomics 2016; 17:603. [PMID: 27514375 PMCID: PMC4982134 DOI: 10.1186/s12864-016-2938-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Background The transition between pregnancy and lactation is a major physiological change for dairy cows. Complex systemic and local processes involving regulation of energy balance, galactopoiesis, utilisation of body reserves, insulin resistance, resumption of oestrous cyclicity and involution of the uterus can affect animal productivity and hence farm profitability. Here we used an established Holstein dairy cow model of fertility that displayed genetic and phenotypic divergence in calving interval. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility traits (‘Fert+’; n = 8) or very poor genetic merit for fertility traits (‘Fert-’; n = 8). We used RNA sequencing to investigate gene expression profiles in both liver and muscle tissue biopsies at three distinct time-points: late pregnancy, early lactation and mid lactation (-18, 1 and 147 days relative to parturition, respectively). Results We found 807 and 815 unique genes to be differentially expressed in at least one time-point in liver and muscle respectively, of which 79 % and 83 % were only found in a single time-point; 40 and 41 genes were found differentially expressed at every time-point indicating possible systemic or chronic dysregulation. Functional annotation of all differentially expressed genes highlighted two physiological processes that were impacted at every time-point in the study, These were immune and inflammation, and metabolic, lipid and carbohydrate-binding. Conclusion These pathways have previously been identified by other researchers. We show that several specific genes which are differentially regulated, including IGF-1, might impact dairy fertility. We postulate that an increased burden of reactive oxidation species, coupled with a chronic inflammatory state, might reduce dairy cow fertility in our model. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2938-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruce Moran
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean B Cummins
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Christopher J Creevey
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Stephen T Butler
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
33
|
Manimaran A, Kumaresan A, Jeyakumar S, Mohanty TK, Sejian V, Kumar N, Sreela L, Prakash MA, Mooventhan P, Anantharaj A, Das DN. Potential of acute phase proteins as predictor of postpartum uterine infections during transition period and its regulatory mechanism in dairy cattle. Vet World 2016; 9:91-100. [PMID: 27051191 PMCID: PMC4819357 DOI: 10.14202/vetworld.2016.91-100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 01/08/2023] Open
Abstract
Among the various systemic reactions against infection or injury, the acute phase response is the cascade of reaction and mostly coordinated by cytokines-mediated acute phase proteins (APPs) production. Since APPs are sensitive innate immune molecules, they are useful for early detection of inflammation in bovines and believed to be better discriminators than routine hematological parameters. Therefore, the possibility of using APPs as a diagnostic and prognostic marker of inflammation in major bovine health disorders including postpartum uterine infection has been explored by many workers. In this review, we discussed specifically importance of postpartum uterine infection, the role of energy balance in uterine infections and potential of APPs as a predictor of postpartum uterine infections during the transition period and its regulatory mechanism in dairy cattle.
Collapse
Affiliation(s)
- A Manimaran
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - A Kumaresan
- Theriogenology Laboratory, ICAR - National Dairy Research Institute, Karnal-132 001, Haryana, Uttar Pradesh, India
| | - S Jeyakumar
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - T K Mohanty
- Theriogenology Laboratory, ICAR - National Dairy Research Institute, Karnal-132 001, Haryana, Uttar Pradesh, India
| | - V Sejian
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - Narender Kumar
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - L Sreela
- ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - M Arul Prakash
- ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - P Mooventhan
- ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - A Anantharaj
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - D N Das
- Southern Regional Station, ICAR - National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| |
Collapse
|
34
|
Loyi T, Kumar H, Nandi S, Patra MK. Expression of pathogen recognition receptors and pro-inflammatory cytokine transcripts in clinical and sub-clinical endometritis cows. Anim Biotechnol 2015; 26:194-200. [PMID: 25800269 DOI: 10.1080/10495398.2014.987389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was carried out to examine the expression profile of pathogen recognition receptors (CD14 and toll-like receptor 4) and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNFα) in endometrial tissue of cows with endometritis at different stages of estrous cycle. Genital tracts were collected from 60 cows at slaughter from the killing village. The genitalia were examined for clinical endometritis (CE) and subclinical endometritis (SCE) through physical examination, white side test of cervico-vaginal mucus, endometrial cytology and histopathology. The stage of estrous cycle for each genitalia was determined by visual examination of both the ovaries and classified as either follicular (F) or luteal (L). Depending on the degree of inflammation and stage of estrous cycle, the genitalia were categorized in four groups i.e., FCE, FSCE, LCE, and LSCE with six genitalia in each group. Furthermore, 12 healthy genitalia comprise of six each of follicular (FN) and luteal (LN) were included as control. Endometrial tissue scrapings were collected ex vivo from all the genitalia. Total RNA was extracted and cDNA was transcribed for each sample and relative quantification of mRNA of target genes was done by real-time PCR. The results revealed a significant up-regulation of CD14 (11 fold) and IL-8 (13 fold) in follicular stage and IL-6 (8 fold) and TNFα (29 fold) in luteal stages in SCE cows. However, the majority of pro-inflammatory cytokine and pathogen recognition receptors expressed at significant higher level in both follicular and luteal stages in cows with CE. Thus, it is concluded that the endometrial transcripts of pathogen recognition receptors and pro-inflammatory cytokines expressed differentially in cows with endometritis, whereas the fold change is dependent on the severity of inflammation and the stage of cyclicity. Therefore, endometrial transcript profile with a defined threshold level could be used as a possible diagnostic marker in cows with SCE.
Collapse
Affiliation(s)
- Tumnyak Loyi
- a Animal Reproduction Division , Indian Veterinary Research Institute , Izatnagar , Bareilly , India
| | | | | | | |
Collapse
|
35
|
Oguejiofor CF, Cheng Z, Abudureyimu A, Fouladi-Nashta AA, Wathes DC. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol Reprod 2015; 93:100. [PMID: 26353891 DOI: 10.1095/biolreprod.115.128868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/17/2015] [Indexed: 11/01/2022] Open
Abstract
The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy.
Collapse
Affiliation(s)
- Chike F Oguejiofor
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Zhangrui Cheng
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Ayimuguli Abudureyimu
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom Life Science and Engineering College, Northwest University for Nationalities, Lanzhou, China
| | - Ali A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - D Claire Wathes
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
36
|
Sodium houttuyfonate inhibits inflammation by blocking the MAPKs/NF-κB signaling pathways in bovine endometrial epithelial cells. Res Vet Sci 2015; 100:245-51. [PMID: 25935757 DOI: 10.1016/j.rvsc.2015.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/12/2022]
Abstract
Sodium houttuyfonate (SH) has traditionally been used for the therapy of inflammatory diseases. In this research, we tried to assess the anti-inflammatory effects of SH on LPS-induced bovine endometrial epithelial cell (bEEC) inflammation. SH cell toxicity was measured using the MTT and LDH assays, and inflammatory cytokine expression was assessed by ELISA, qRT-PCR and Western blotting. We demonstrated that SH was not cytotoxic to bEECs, and that it significantly decreased the LPS-induced mRNA and protein expression of tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6 and IL-8. Furthermore, in LPS-induced bEECs, SH inhibited IκBα degradation and NF-κB p65 phosphorylation, and suppressed the phosphorylation of the mitogen-activated protein kinases (MAPKs), p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). In conclusion, we found that SH could effectively block the NF-κB-mediated signaling pathway and reduce the inflammatory process, thereby exerting a protective effect on bEECs.
Collapse
|
37
|
Brodzki P, Kostro K, Krakowski L, Marczuk J. Inflammatory cytokine and acute phase protein concentrations in the peripheral blood and uterine washings of cows with subclinical endometritis in the late postpartum period. Vet Res Commun 2015; 39:143-9. [PMID: 25846950 PMCID: PMC4427656 DOI: 10.1007/s11259-015-9635-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 01/24/2023]
Abstract
The aim of the study was to evaluate the concentrations of proinflammatory cytokines: tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), anti-inflammatory cytokine interleukin-10 (IL-10), and acute phase proteins (APPs)—haptoglobin (Hp) and serum amyloid A (SAA) in serum and uterine washings of cows with subclinical endometritis, and compare them to healthy animals. The study was performed on 24 cows on day 60 after delivery. The cows were divided into two groups based on the results of cytological tests: 12 cows with subclinical endometritis and 12 healthy cows. Experimental material consisted of blood serum and uterine washings. The levels of the following cytokines in the study material were determined with ELISA: TNF-α, IL-6, IL-10 and APPs - Hp and SAA. The results show that the levels of TNF-α (p < 0.01), IL-6, IL-10 as well as SAA and Hp were significantly higher in the serum of cows with subclinical endometritis compared to the controls (p < 0.001). Uterine washings had significantly higher levels of IL-6, IL-10, and Hp in the experimental cows compared to the controls (p < 0.001). The demonstrated differences in the concentration of cytokines and APP between cows with subclinical endometritis and healthy cows, in both the serum and uterine washings, may suggest the usefulness of these parameters in the diagnosis of subclinical endometritis in cows in the late postpartum period.
Collapse
Affiliation(s)
- Piotr Brodzki
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612, Lublin, Poland,
| | | | | | | |
Collapse
|
38
|
Detection and characterisation of Lactobacillus spp. in the bovine uterus and their influence on bovine endometrial epithelial cells in vitro. PLoS One 2015; 10:e0119793. [PMID: 25803719 PMCID: PMC4372290 DOI: 10.1371/journal.pone.0119793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022] Open
Abstract
Bacterial infections and inflammation of the uterus are common in dairy cattle after parturition. In particular, pathogenic bacteria that cause endometritis have been the focus of research in cattle reproduction in the last ten years. The aim of the present study was to identify commensal lactobacilli in the bovine uterus and to examine their influence on the synthesis of pro-inflammatory factors in bovine endometrial epithelial cells in vitro. Lactobacillus species were isolated from healthy bovine uteri and further characterised. Bovine endometrial epithelial cells in the second passage (n = 5 animals) were co-cultured with the autochthonous isolates L. buchneri, L. ruminis and L. amylovorus as well as with a commercially available L. vaginalis in different multiplicities of infection (MOI = 1, 5 and 10, respectively). Endometrial epithelial cells cultured without bacteria served as controls. At distinct points in time (2, 4 and 6 h) total RNA was extracted from co-cultured epithelial cells and subjected to reverse transcription quantitative PCR of pro-inflammatory factors. Furthermore, the release of such factors by co-cultured epithelial cells was measured by ELISA or EIA after 24 and 48 h. L. ruminis and L. amylovorus induced increased interleukin (IL) IL1A, IL6, IL8 and prostaglandin-endoperoxide synthase 2 mRNA levels and the release of IL8 and prostaglandin F2α in endometrial epithelial cells compared with control cells. In contrast, L. buchneri did not significantly influence the expression and release of these factors. Toll-like receptors 2 and 6 transcripts were found unchanged in co-cultured and untreated epithelial cells in vitro. However, endometrial epithelial cells of each animal showed individual differences in the response to bacterial load. These results suggest that Lactobacillus species are present in the bovine uterus, revealing immunomodulatory properties.
Collapse
|
39
|
Brodzki P, Kostro K, Brodzki A, Ziętek J. The concentrations of inflammatory cytokines and acute-phase proteins in the peripheral blood and uterine washings in cows with pyometra. Reprod Domest Anim 2015; 50:417-22. [PMID: 25704413 DOI: 10.1111/rda.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/31/2015] [Indexed: 01/01/2023]
Abstract
The development of pyometra in cows depends largely on the state of local immunity of the uterus. The objective of the study was to evaluate the concentration of the following proinflammatory cytokines: tumour necrosis factor (TNF-α) and interleukin-6 (IL-6); anti-inflammatory cytokine: interleukin-10 (IL-10); and acute-phase proteins (APPs): haptoglobin (Hp) and serum amyloid A (SAA), in serum and uterine washings in cows with pyometra and healthy animals. The study was performed on 20 cows divided into two groups based on the results of cytological and ultrasonographic tests: a pyometra and a healthy group (10 cows per group). Experimental material consisted of blood serum and uterine washings. The levels of the following cytokines, TNF-α, IL-6, IL-10 and APPs - Hp and SAA, in the study material were determined by ELISA. The results showed that the values of TNF-α, IL-6, IL-10 as well as SAA and Hp were significantly higher in serum of cows with pyometra compared to controls (p < 0.001). The uterine washings had significantly higher levels of IL-6, IL-10, and Hp in pyometra cows compared to the control (p < 0.001). Our results indicate that it is possible to monitor the course of pyometra in cows based on the evaluation of the concentration of cytokines and Hp in the serum and uterine washings. Simultaneous evaluation of selected indicators of antagonistic interaction can be helpful in determining the current status of local immunity of the uterus. On this basis, it could be possible to properly select an adjunctive therapy in the form of immunomodulating preparations.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | | | | | |
Collapse
|
40
|
Brodzki P, Kostro K, Brodzki A, Wawron W, Marczuk J, Kurek Ł. Inflammatory cytokines and acute-phase proteins concentrations in the peripheral blood and uterus of cows that developed endometritis during early postpartum. Theriogenology 2015; 84:11-8. [PMID: 25765299 DOI: 10.1016/j.theriogenology.2015.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/10/2023]
Abstract
The aim of the study was to evaluate the level of proinflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6]), anti-inflammatory cytokine (interleukin-10 [IL-10]), and acute-phase proteins (haptoglobin [Hp] and serum amyloid A [SAA]) in serum and uterine washings in cows that developed endometritis during the early postpartum period. The study was carried out on 40 cows. The experimental group consisted of 20 cows with subclinical endometritis and the control group of 20 cows without endometritis. Analyses in both groups of cows were carried out at 5, 22, and 40 days postpartum (DPP). Experimental material consisted of the blood serum and uterine washings. The levels of the following cytokines: TNF-α, IL-6, IL-10 and acute-phase proteins: Hp and SAA were determined using ELISA. Our study reported that the levels of TNF-α, IL-6, IL-10, Hp, and SAA at 22 DPP were higher in cows with subclinical endometritis (P < 0.001). The levels of TNF-α (P = 0.01), IL-6 and IL-10 (P = 0.001), and Hp (P < 0.001) at 40 DPP were higher in cows with subclinical endometritis compared to healthy cows. The level of IL-10 in uterine washings at 5 DPP was higher (P = 0.001), whereas of SAA was lower (P = 0.01) in cows with subclinical endometritis. At 22 DPP, the levels of IL-6, IL-10, and Hp were higher (P < 0.001) in cows with endometritis. At 40 DPP, the level of TNF-α was lower, whereas these of IL-10 and Hp were elevated (P < 0.001) in cows with endometritis compared to healthy cows. The results indicate that the evaluation of the levels of cytokines and Hp in serum, but primarily in uterine washings, can be an important diagnostic indicator in cows that developed subclinical endometritis. High levels of IL-10 in cows with subclinical endometritis may contribute to the weakening of local resistance mechanisms of the uterus and lead to the persistence of the inflammation in the postpartum period. The present study also shows that the simultaneous examination of selected parameters of antagonistic interactions allows for better assessment of the current state of local immunity in the uterus.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, Lublin, Poland.
| | - K Kostro
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - A Brodzki
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Lublin, Poland
| | - W Wawron
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, Lublin, Poland
| | - J Marczuk
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Ł Kurek
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
41
|
Gaffney PM, Barr B, Rowe JD, Bett C, Drygiannakis I, Giannitti F, Trejo M, Ghassemian M, Martin P, Masliah E, Sigurdson CJ. Protein profiling of isolated uterine AA amyloidosis causing fetal death in goats. FASEB J 2014; 29:911-9. [PMID: 25422367 DOI: 10.1096/fj.14-256081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pathologic amyloid accumulates in the CNS or in peripheral organs, yet the mechanism underlying the targeting of systemic amyloid deposits is unclear. Serum amyloid A (SAA) 1 and 2 are produced predominantly by the liver and form amyloid most commonly in the spleen, liver, and kidney. In contrast, SAA3 is produced primarily extrahepatically and has no causal link to amyloid formation. Here, we identified 8 amyloidosis cases with amyloid composed of SAA3 expanding the uterine wall of goats with near-term fetuses. Uterine amyloid accumulated in the endometrium, only at the site of placental attachment, compromising maternal-fetal gas and nutrient exchange and leading to fetal ischemia and death. No other organ contained amyloid. SAA3 mRNA levels in the uterine endometrium were as high as SAA2 in the liver, yet mass spectrometry of the insoluble uterine peptides identified SAA3 as the predominant protein, and not SAA1 or SAA2. These findings suggest that high local SAA3 production led to deposition at this unusual site. Although amyloid A (AA) amyloid deposits typically consist of an N-terminal fragment of SAA1 or SAA2, here, abundant C-terminal peptides indicated that the uterine amyloid was largely composed of full-length SAA3. The exclusive deposition of SAA3 amyloid in the uterus, together with elevated uterine SAA3 transcripts, suggests that the uterine amyloid deposits were due to locally produced SAA3. This is the first report of SAA3 as a cause of amyloidosis and of AA amyloid deposited exclusively in the uterus.
Collapse
Affiliation(s)
- Patricia M Gaffney
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Bradd Barr
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Joan D Rowe
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Cyrus Bett
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ioannis Drygiannakis
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Federico Giannitti
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Margarita Trejo
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Majid Ghassemian
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Patrice Martin
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eliezer Masliah
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Christina J Sigurdson
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| |
Collapse
|
42
|
Brodzki P, Kostro K, Brodzki A, Niemczuk K, Lisiecka U. Cytometric analysis of surface molecules of leucocytes and phagocytic activity of granulocytes and monocytes/macrophages in cows with pyometra. Reprod Domest Anim 2014; 49:858-64. [PMID: 25124985 DOI: 10.1111/rda.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/19/2014] [Indexed: 01/17/2023]
Abstract
Pyometra is a serious problem in dairy cow herds, causing large economic losses due to infertility. The development of pyometra depends mainly on the immunological status of the cow. The aim of the study was a comparative evaluation of selected indicators involving non-specific and specific immunity in cows with pyometra and in cows without inflammation of the uterus. The study was performed in 20 cows, which were divided into two groups: pyometra group and healthy group, each comprising 10 cows, based on the results of cytological and ultrasonographic tests. A flow cytometric analysis was performed for the surface molecules CD4, CD8, CD14, CD21, CD25 and CD4(+) CD25(+) on leucocytes, and the phagocytic activity was determined from granulocytes and monocytes/macrophages in the peripheral blood and uterine washings, respectively. It was demonstrated that the percentage of phagocytic granulocytes and monocytes/macrophages in both the peripheral blood and uterine washings was significantly lower in cows with pyometra compared with the healthy group (p < 0.001). Significantly (p ≤ 0.001) lower percentage of CD4(+) , CD14(+) , CD25(+) and CD4(+) CD25(+) phenotype leucocytes was also observed in the peripheral blood of cows from the pyometra group, along with a significantly higher (p < 0.001) percentage of CD8(+) and CD21(+) lymphocytes as compared to the healthy group. The results of work indicate that disfunction of cell immunity coexisting with pyometra may be caused by a bacterial infection and the presence of blocking agents (IL-10), released by the increasing number of CD8(+) lymphocytes what leads to the advanced inflammation of uterus.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | | | | | | | |
Collapse
|
43
|
Sheldon IM, Cronin JG, Healey GD, Gabler C, Heuwieser W, Streyl D, Bromfield JJ, Miyamoto A, Fergani C, Dobson H. Innate immunity and inflammation of the bovine female reproductive tract in health and disease. Reproduction 2014; 148:R41-51. [PMID: 24890752 DOI: 10.1530/rep-14-0163] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian reproductive physiology and the development of viviparity co-evolved with inflammation and immunity over millennia. Many inflammatory mediators contribute to paracrine and endocrine signalling, and the maintenance of tissue homeostasis in the female reproductive tract. However, inflammation is also a feature of microbial infections of the reproductive tract. Bacteria and viruses commonly cause endometritis, perturb ovarian follicle development and suppress the endocrine activity of the hypothalamus and pituitary in cattle. Innate immunity is an evolutionary ancient system that orchestrates host cell inflammatory responses aimed at eliminating pathogens and repairing damaged tissue. Pattern recognition receptors on host cells bind pathogen-associated molecular patterns and damage-associated molecular patterns, leading to the activation of intracellular MAPK and NFκB signalling pathways and the release of inflammatory mediators. Inflammatory mediators typically include the interleukin cytokines IL1β and IL6, chemokines such as IL8, interferons and prostaglandins. This review outlines the mechanisms of inflammation and innate immunity in the bovine female reproductive tract during health and disease condition.
Collapse
Affiliation(s)
- I Martin Sheldon
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - James G Cronin
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Gareth D Healey
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Christoph Gabler
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Wolfgang Heuwieser
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Dominik Streyl
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - John J Bromfield
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Akio Miyamoto
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Chrys Fergani
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Hilary Dobson
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| |
Collapse
|
44
|
Brodzki P, Kostro K, Brodzki A, Lisiecka U, Kurek L, Marczuk J. Phenotyping of leukocytes and granulocyte and monocyte phagocytic activity in the peripheral blood and uterus of cows with endometritis. Theriogenology 2014; 82:403-10. [PMID: 24857644 DOI: 10.1016/j.theriogenology.2014.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
This study was a comparative evaluation of selected immunological parameters in peripheral blood and uterine wash samples from cows with a normal postpartum period compared with cows with endometritis. We aimed to determine the usefulness of these parameters in monitoring the puerperium. In total, 40 cows were included in the study: 20 had endometritis (experimental group), and 20 did not have uterine inflammation (control group). Animals were chosen on the basis of cytological and bacteriological test results. The tests were conducted 5, 22, and 40 days postpartum. In both groups, flow cytometric analysis of the surface molecules CD4, CD8, CD21, CD25, and CD14 in the peripheral blood and uterine washings was performed. Granulocyte and monocyte phagocytic activity was determined using a commercial Phagotest kit that was adapted for flow cytometry. The percentage of phagocytic granulocytes and monocytes in both the peripheral blood and the uterine washings was significantly lower for cows in the experimental group compared with the control group (P < 0.01). A significant decrease (P < 0.01) in the percentage of CD4+, CD25+, CD14+, and CD4 + CD25(high) leukocyte subpopulations was also observed in the peripheral blood of cows with endometritis. A significant decrease (P < 0.01) in CD21+ lymphocytes and an increase in CD8+ lymphocytes was detected in uterine washings. The results of this work indicate that cell immunity dysfunction may be the main factor causing advanced inflammation of the uterus in endometritis. Knowledge of the immunological mechanisms observed in cows with endometritis might aid in choosing the correct immunomodulating agent-based adjuvant therapy.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, Głęboka, Lublin, Poland.
| | - K Kostro
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - A Brodzki
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - U Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - L Kurek
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - J Marczuk
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| |
Collapse
|
45
|
Ajevar G, Muthu S, Sarkar M, Kumar H, Das GK, Krishnaswamy N. Transcriptional profile of endometrial TLR4 and 5 genes during the estrous cycle and uterine infection in the buffalo (Bubalus bubalis). Vet Res Commun 2014; 38:171-6. [PMID: 24531997 DOI: 10.1007/s11259-014-9594-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
Abstract
Endometritis is one of the leading causes of infertility in the cattle and buffalo and innate immune mechanism plays an important role in clearing the infection. In this regard, endometrial expression and function of Toll Like Receptors (TLR) are focus of investigation in the recent years. In this study, we report the transcriptional profiles of TLR4 and 5 in the buffalo endometrium during the follicular, early, mid and late luteal phases of estrous cycle and 'subclinical and clinical endometritis' and also at true anestrus (n = 10 for each stage) using RT-PCR and qRT-PCR as they are the ligands for the lipopolysaccharide and flagellin components of E.coli, the most common cause of postpartum endometritis. We found a significant positive correlation between TLR4 and 5 in all the groups (r = 0.696-0.803; P < 0.05) except late luteal phase (r = 0.522; P > 0.05). Chi-square analysis showed that the qualitative expression of endometrial TLR4 and 5 transcripts was significantly associated with the phase of estrous cycle and also with uterine infection (P < 0.05). Further, using true anestrus category as a calibrator group, relative quantitation of TLR4 and 5 revealed that the transcriptional expression of TLR4 and 5 genes were highly upregulated (24.6-83.3 folds) during endometritis conditions and moderately upregulated during mid-luteal phase (6.8-16.2) of the estrous cycle (P < 0.05). The results suggested a role of progesterone in the expression of TLR4 and 5.
Collapse
Affiliation(s)
- Ganesan Ajevar
- Division of Animal Reproduction, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, India, 243 122
| | | | | | | | | | | |
Collapse
|
46
|
Meade KG, Cormican P, Narciandi F, Lloyd A, O'Farrelly C. Bovine β-defensin gene family: opportunities to improve animal health? Physiol Genomics 2014; 46:17-28. [DOI: 10.1152/physiolgenomics.00085.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent analysis of the bovine genome revealed an expanded suite of β-defensin genes that encode what are referred to as antimicrobial or host defense peptides (HDPs). Whereas primate genomes also encode α- and θ-defensins, the bovine genome contains only the β-defensin subfamily of HDPs. β-Defensins perform diverse functions that are critical to protection against pathogens but also in regulation of the immune response and reproduction. As the most comprehensively studied subclass of HDPs, β-defensins possess the widest taxonomic distribution, found in invertebrates as well as plants, indicating an ancient point of origin. Cross-species comparison of the genomic arrangement of β-defensin gene repertoire revealed them to vary in number among species presumably due to differences in pathogenic selective pressures but also genetic drift. β-Defensin genes exist in a single cluster in birds, but four gene clusters exist in dog, rat, mouse, and cow. In humans and chimpanzees, one of these clusters is split in two as a result of a primate-specific pericentric inversion producing five gene clusters. A cluster of β-defensin genes on bovine chromosome 13 has been recently characterized, and full genome sequencing has identified extensive gene copy number variation on chromosome 27. As a result, cattle have the most diverse repertoire of β-defensin genes so far identified, where four clusters contain at least 57 genes. This expansion of β-defensin HDPs may hold significant potential for combating infectious diseases and provides opportunities to harness their immunological and reproductive functions in commercial cattle populations.
Collapse
Affiliation(s)
- K. G. Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - P. Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - F. Narciandi
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland; and
| | - A. Lloyd
- Department of Science & Health, Carlow Institute of Technology, Co. Carlow, Ireland
| | - C. O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland; and
| |
Collapse
|