1
|
Lee J, Lee CW, Suarez DL, Lee SA, Kim T, Spackman E. Efficacy of commercial recombinant HVT vaccines against a North American clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus in chickens. PLoS One 2024; 19:e0307100. [PMID: 39012858 PMCID: PMC11251577 DOI: 10.1371/journal.pone.0307100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.
Collapse
MESH Headings
- Animals
- Chickens/virology
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza in Birds/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- North America
- Vaccination
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
Collapse
Affiliation(s)
- Jiho Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Chang-Won Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - David L. Suarez
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Scott A. Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Taejoong Kim
- U.S. Department of Agriculture, Endemic Poultry Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Erica Spackman
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Zhang JF, Shang K, Kim SW, Park JY, Wei B, Jang HK, Kang M, Cha SY. Simultaneous construction strategy using two types of fluorescent markers for HVT vector vaccine against infectious bursal disease and H9N2 avian influenza virus by NHEJ-CRISPR/Cas9. Front Vet Sci 2024; 11:1385958. [PMID: 38812565 PMCID: PMC11135205 DOI: 10.3389/fvets.2024.1385958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Recently, herpesvirus of turkeys (HVT), which was initially employed as a vaccine against Marek's disease (MD), has been shown to be a highly effective viral vector for producing recombinant vaccines that can simultaneously express the protective antigens of multiple poultry diseases. Prior to the development of commercial HVT-vectored dual-insert vaccines, the majority of HVT-vectored vaccines in use only contained a single foreign gene and were often generated using time-consuming and inefficient traditional recombination methods. The development of multivalent HVT-vectored vaccines that induce simultaneous protection against several avian diseases is of great value. In particular, efficacy interference between individual recombinant HVT vaccines can be avoided. Herein, we demonstrated the use of CRISPR/Cas9 gene editing technology for the insertion of an IBDV (G2d) VP2 expression cassette into the UL45/46 region of the recombinant rHVT-HA viral genome to generate the dual insert rHVT-VP2-HA recombinant vaccine. The efficacy of this recombinant virus was also evaluated in specific pathogen-free (SPF) chickens. PCR and sequencing results showed that the recombinant virus rHVT-VP2-HA was successfully constructed. Vaccination with rHVT-VP2-HA produced high levels of specific antibodies against IBDV (G2d) and H9N2/Y280. rHVT-VP2-HA can provide 100% protection against challenges with IBDV (G2d) and H9N2/Y280. These results demonstrate that rHVT-VP2-HA is a safe and highly efficacious vaccine for the simultaneous control of IBDV (G2d) and H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
4
|
Denesvre C, You Y, Rémy S, Vychodil T, Courvoisier K, Penzes Z, Bertzbach LD, Kheimar A, Kaufer BB. Impact of viral telomeric repeat sequences on herpesvirus vector vaccine integration and persistence. PLoS Pathog 2024; 20:e1012261. [PMID: 38805555 PMCID: PMC11161090 DOI: 10.1371/journal.ppat.1012261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Yu You
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Sylvie Rémy
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Tereza Vychodil
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Katia Courvoisier
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Zoltán Penzes
- Ceva Santé Animale, Ceva-Phylaxia, Budapest, Hungary
| | - Luca D. Bertzbach
- Leibniz Institute of Virology (LIV), Department of Viral Transformation, Hamburg, Germany
| | - Ahmed Kheimar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Elbestawy A, Ellakany H, Sedeik M, Gado A, Abdel-Latif M, Noreldin A, Orabi A, Radwan I, El-Ghany WA. Superior Efficacy of Apathogenic Genotype I (V4) over Lentogenic Genotype II (LaSota) Live Vaccines against Newcastle Disease Virus Genotype VII.1.1 in Pathogen-Associated Molecular Pattern-H9N2 Vaccinated Broiler Chickens. Vaccines (Basel) 2023; 11:1638. [PMID: 38005970 PMCID: PMC10674370 DOI: 10.3390/vaccines11111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
A comparison of the efficacy of apathogenic genotype I (V4) and lentogenic genotype II (LaSota) strains of live Newcastle disease virus (NDV) vaccines was performed following vaccination with pathogen-associated molecular pattern (PAMP) H9N2 avian influenza vaccine and challenge with velogenic NDV genotype VII.1.1 (vNDV-VII.1.1). Eight groups (Gs) of day-old chicks were used (n = 25). Groups 1-4 received a single dose of PAMP-H9N2 subcutaneously, while Gs (1, 5) and (2, 6) received eye drops of V4 and LaSota, respectively, as two doses. All Gs, except for 4 and 8, were intramuscularly challenged with vNDV-VII.1.1 at 28 days of age. No signs were detected in Gs 1, 5, 4, and 8. The mortality rates were 0% in Gs 1, 4, 5, and 8; 40% in G2; 46.66% in G6; and 100% in Gs 3 and 7. Lesions were recorded as minimal in Gs 1 and 5, but mild to moderate in Gs 2 and 6. The lowest significant viral shedding was detected in Gs 1, 2, and 5. In conclusion, two successive vaccinations of broilers with a live V4 NDV vaccine provided higher protection against vNDV-VII.1.1 challenge than LaSota. PAMP-H9N2 with live NDV vaccines induced more protection than the live vaccine alone.
Collapse
Affiliation(s)
- Ahmed Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Hany Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mahmoud Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ahmed Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mervat Abdel-Latif
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ismail Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Wafaa Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| |
Collapse
|
7
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
8
|
Fellahi S, Rawi T, Fagrach A, Berrada L, Delvecchio A, Touzani CD, Houadfi ME, Kichou F, Lemiere S. Assessing the Efficacy of Recombinant Newcastle Disease Virus Vaccines (Double-Insert vHVT-IBD-ND and Single-Insert vHVT-ND) Followed by a Vaccination with a Live Newcastle Disease Vaccine Against a Moroccan Velogenic Newcastle Disease Challenge in Commercial Broilers. Avian Dis 2022; 66:396-403. [PMID: 36715470 DOI: 10.1637/aviandiseases-d-22-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
The advent of turkey herpesvirus (HVT) vector vaccine technology (vHVT) has made a huge improvement in the prevention and control of several poultry diseases. The objective of this study was to compare, under experimental conditions, the protection conferred by different vaccination programs based on an HVT double-insert (infectious bursal disease {IBD] and Newcastle disease [ND]) vector vaccine (vHVT-IBD-ND) and an HVT single-insert (vHVT-ND) vector vaccine followed by a vaccination with a live ND vaccine at Day 1 only or at Days 1 and 14. Commercial broilers were vaccinated by the recombinant ND virus vaccines subcutaneously at 1 day old, in the hatchery, and challenged at 30 days of age using the Moroccan ND virus velogenic viscerotropic JEL strain. The results showed that the tested vaccine induced 95% to 100% clinical protection against mortality and clinical signs. The humoral immune response to vaccination was detected from 3 wk of age using enzyme-linked immunosorbent assay and hemagglutination inhibition tests. ND challenge virus shedding was significantly reduced in the vaccinated birds as compared to controls. Significant reduction of the cloacal shedding suggests that the vHVT-IBD-ND vaccine stimulates actively the immunity against the tested ND challenge virus. No significant differences were found between the vaccination programs based on vHVT-IBD-ND or on vHVT-ND.
Collapse
Affiliation(s)
- Siham Fellahi
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000), ,
| | - Taoufik Rawi
- Boehringer Ingelheim animal health, 69007, Lyon, France
| | - Asma Fagrach
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000)
| | - Lamiae Berrada
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000)
| | | | - Charifa Drissi Touzani
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000)
| | - Mohammed El Houadfi
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000)
| | - Faouzi Kichou
- Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco (10000)
| | | |
Collapse
|
9
|
Hu Z, He X, Deng J, Hu J, Liu X. Current situation and future direction of Newcastle disease vaccines. Vet Res 2022; 53:99. [PMID: 36435802 PMCID: PMC9701384 DOI: 10.1186/s13567-022-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Shah AU, Wang Z, Zheng Y, Guo R, Chen S, Xu M, Zhang C, Liu Y, Wang J. Construction of a Novel Infectious Clone of Recombinant Herpesvirus of Turkey Fc-126 Expressing VP2 of IBDV. Vaccines (Basel) 2022; 10:vaccines10091391. [PMID: 36146468 PMCID: PMC9501487 DOI: 10.3390/vaccines10091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The increased virulence of infectious bursal disease virus (IBDV) is a threat to the chicken industry. The construction of novel herpesvirus of turkey-vectored (HVT) vaccines expressing VP2 of virulent IBDV may be a promising vaccine candidate for controlling this serious disease in chickens. We generated a novel infectious clone of HVT Fc-126 by inserting mini-F sequences in lieu of the glycoprotein C (gC) gene. Based on this bacterial artificial chromosome (BAC), a VP2 expression cassette containing the pMCMV IE promoter and a VP2 sequence from the virulent IBDV NJ09 strain was inserted into the noncoding area between the UL55 and UL56 genes to generate the HVT vector VP2 recombinant, named HVT-VP2-09. The recovered vectored mutant HVT-VP2-09 exhibited higher titers (p = 0.0202 at 36 h) or similar growth kinetics to the parental virus HVT Fc-126 (p = 0.1181 at 48 h and p = 0.1296 at 64 h). The high reactivation ability and strong expression of VP2 by HVT-VP2-09 in chicken embryo fibroblasts (CEFs) were confirmed by indirect immunofluorescence (IFA) and Western blotting. The AGP antibodies against IBDV were detected beginning at 3 weeks post-inoculation (P.I.) of HVT-VP2-09 in 1-day-old SPF chickens. Seven of ten chickens immunized with HVT-VP2-09 were protected post-challenge (P.C.) with the virulent IBDV NJ09 strain. In contrast, all chickens in the challenge control group showed typical IBD lesions in bursals, and eight of ten died P.C. In this study, we demonstrated that (i) a novel HVT BAC with the whole genome of the Fc-126 strain was obtained with the insertion of mini-F sequences in lieu of the gC gene; (ii) HVT-VP2-09 harboring the VP2 expression cassette from virulent IBDV exhibited in vitro growth properties similar to those of the parental HVT virus in CEF cells; and (iii) HVT-VP2-09 can provide efficient protection against the IBDV NJ09 strain.
Collapse
Affiliation(s)
- Abid Ullah Shah
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Food Quality and Safety, State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhisheng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Food Quality and Safety, State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-25-84395605
| |
Collapse
|
11
|
Heterologous prime-boost vaccination programs against Newcastle disease virus genotype VII in chickens. Comp Immunol Microbiol Infect Dis 2022; 87:101836. [DOI: 10.1016/j.cimid.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022]
|
12
|
A Recombinant Turkey Herpesvirus Expressing the F Protein of Newcastle Disease Virus Genotype XII Generated by NHEJ-CRISPR/Cas9 and Cre-LoxP Systems Confers Protection against Genotype XII Challenge in Chickens. Viruses 2022; 14:v14040793. [PMID: 35458523 PMCID: PMC9030537 DOI: 10.3390/v14040793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we developed a new recombinant virus rHVT-F using a Turkey herpesvirus (HVT) vector, expressing the fusion (F) protein of the genotype XII Newcastle disease virus (NDV) circulating in Peru. We evaluated the viral shedding and efficacy against the NDV genotype XII challenge in specific pathogen-free (SPF) chickens. The F protein expression cassette was inserted in the unique long (UL) UL45–UL46 intergenic locus of the HVT genome by utilizing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene-editing technology via a non-homologous end joining (NHEJ) repair pathway. The rHVT-F virus, which expressed the F protein stably in vitro and in vivo, showed similar growth kinetics to the wild-type HVT (wtHVT) virus. The F protein expression of the rHVT-F virus was detected by an indirect immunofluorescence assay (IFA), Western blotting, and a flow cytometry assay. The presence of an NDV-specific IgY antibody was detected in serum samples by an enzyme-linked immunosorbent assay (ELISA) in SPF chickens vaccinated with the rHVT-F virus. In the challenge experiment, the rHVT-F vaccine fully protects a high, and significantly reduced, virus shedding in oral at 5 days post-challenge (dpc). In conclusion, this new rHVT-F vaccine candidate is capable of fully protecting SPF chickens against the genotype XII challenge.
Collapse
|
13
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Gubbins S, Stegeman JA, Antoniou S, Aznar I, Broglia A, Van der Stede Y, Zancanaro G, Roberts HC. Assessment of the control measures of the category A diseases of Animal Health Law: Newcastle disease. EFSA J 2021; 19:e06946. [PMID: 34900005 PMCID: PMC8638556 DOI: 10.2903/j.efsa.2021.6946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Newcastle disease (ND). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period (21 days) was assessed as effective in non-vaccinated chicken and turkey flocks, although large uncertainty remains surrounding the effectiveness of this period in vaccinated galliform flocks and flocks of other bird species. It was also concluded that the protection (3 km radius) and the surveillance (10 km radius) zones contain 99% of the infections from an infectious establishment. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to ND.
Collapse
|
14
|
Maekawa D, Riblet SM, Whang P, Alvarado I, García M. A Cell Line Adapted Infectious Laryngotracheitis Virus Strain (BΔORFC) for in ovo and Hatchery Spray Vaccination Alone or in Combination with a Recombinant HVT-LT Vaccine. Avian Dis 2021; 65:500-507. [PMID: 34699149 DOI: 10.1637/aviandiseases-d-20-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
To produce more-stable, live attenuated vaccines for infectious laryngotracheitis virus (ILTV), deletion of genes related to virulence has been extensively pursued. Although its function remains unknown, the open reading frame C (ORF C) is among the genes potentially associated with viral virulence that is nonessential for replication in vitro. Earlier results indicated that the ILT virus with deletion of the ORF C gene (BΔORFC) was suitable and safe for eye drop administration but was not sufficiently attenuated for in ovo administration. The objective of this study was to evaluate the safety and protection efficacy of a cell line-adapted, gene-deleted strain (BΔORFC) of ILTV when administered in ovo and/or spray (SP) by itself, or in combination with the recombinant HVT-LT (rHVT-LT) vaccine. Results indicated that vaccination with the BΔORFC strain, either by itself or in combination with an rHVT-LT vaccine, did not affect hatchability, and only marginal signs of respiratory distress were recorded for groups of chickens that received the BΔORFC strain via SP. The replication and seroconversion induced by the BΔORFC strain after in ovo and SP administration was very limited, whereas the replication of the rHVT-LT vaccine was delayed when combined with the BΔORFC strain in ovo. Compared to rHVT-LT or BΔORFC when administered alone, dual vaccination with rHVT-LT + BΔORFC was more effective in mitigating clinical signs of the disease and reducing challenge virus load in the trachea. To our knowledge, this study provides the first proof of concept that ILTV strains can be sufficiently attenuated for early vaccination in ovo or at hatch; also, this study documented the benefits of using a dual (recombinant and live attenuated) hatchery vaccination strategy for ILTV.
Collapse
Affiliation(s)
- Daniel Maekawa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Sylva M Riblet
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Patrick Whang
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
15
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
16
|
Dimitrov KM, Taylor TL, Marcano VC, Williams-Coplin D, Olivier TL, Yu Q, Gogal RM, Suarez DL, Afonso CL. Novel Recombinant Newcastle Disease Virus-Based In Ovo Vaccines Bypass Maternal Immunity to Provide Full Protection from Early Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9101189. [PMID: 34696297 PMCID: PMC8538074 DOI: 10.3390/vaccines9101189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically important poultry diseases. Despite intensive efforts with current vaccination programs, this disease still occurs worldwide, causing significant mortality even in vaccinated flocks. This has been partially attributed to a gap in immunity during the post-hatch period due to the presence of maternal antibodies that negatively impact the replication of the commonly used live vaccines. In ovo vaccines have multiple advantages and present an opportunity to address this problem. Currently employed in ovo ND vaccines are recombinant herpesvirus of turkeys (HVT)-vectored vaccines expressing Newcastle disease virus (NDV) antigens. Although proven efficient, these vaccines have some limitations, such as delayed immunogenicity and the inability to administer a second HVT vaccine post-hatch. The use of live ND vaccines for in ovo vaccination is currently not applicable, as these are associated with high embryo mortality. In this study, recombinant NDV-vectored experimental vaccines containing an antisense sequence of avian interleukin 4 (IL4R) and their backbones were administered in ovo at different doses in 18-day-old commercial eggs possessing high maternal antibodies titers. The hatched birds were challenged with virulent NDV at 2 weeks-of-age. Post-hatch vaccine shedding, post-challenge survival, challenge virus shedding, and humoral immune responses were evaluated at multiple timepoints. Recombinant NDV (rNDV) vaccinated birds had significantly reduced post-hatch mortality compared with the wild-type LaSota vaccine. All rNDV vaccines were able to penetrate maternal immunity and induce a strong early humoral immune response. Further, the rNDV vaccines provided protection from clinical disease and significantly decreased virus shedding after early virulent NDV challenge at two weeks post-hatch. The post-challenge hemagglutination-inhibition antibody titers in the vaccinated groups remained comparable with the pre-challenge titers, suggesting the capacity of the studied vaccines to prevent efficient replication of the challenge virus. Post-hatch survival after vaccination with the rNDV-IL4R vaccines was dose-dependent, with an increase in survival as the dose decreased. This improved survival and the dose-dependency data suggest that novel attenuated in ovo rNDV-based vaccines that are able to penetrate maternal immunity to elicit a strong immune response as early as 14 days post-hatch, resulting in high or full protection from virulent challenge, show promise as a contributor to the control of Newcastle disease.
Collapse
Affiliation(s)
- Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
- Texas A&M Veterinary Medical Diagnostic Laboratory, 483 Agronomy Road, College Station, TX 77843, USA
| | - Tonya L. Taylor
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Valerie C. Marcano
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Timothy L. Olivier
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Qingzhong Yu
- Endemic Poultry Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA;
| | - Robert M. Gogal
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
- Correspondence: ; Tel.: +1-800-817-7160
| |
Collapse
|
17
|
Hu Z, Liu X. "Antigen Camouflage and Decoy" Strategy to Overcome Interference From Maternally Derived Antibody With Newcastle Disease Virus-Vectored Vaccines: More Than a Simple Combination. Front Microbiol 2021; 12:735250. [PMID: 34512613 PMCID: PMC8432293 DOI: 10.3389/fmicb.2021.735250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Cottingham E, Johnstone T, Hartley CA, Devlin JM. Use of feline herpesvirus as a vaccine vector offers alternative applications for feline health. Vet Microbiol 2021; 261:109210. [PMID: 34416538 DOI: 10.1016/j.vetmic.2021.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022]
Abstract
Herpesviruses are attractive vaccine vector candidates due to their large double stranded DNA genome and latency characteristics. Within the scope of veterinary vaccines, herpesvirus-vectored vaccines have been well studied and commercially available vectored vaccines are used to help prevent diseases in different animal species. Felid alphaherpesvirus 1 (FHV-1) has been characterised as a vector candidate to protect against a range of feline pathogens. In this review we highlight the methods used to construct FHV-1 based vaccines and their outcomes, while also proposing alternative uses for FHV-1 as a viral vector.
Collapse
Affiliation(s)
- Ellen Cottingham
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Thurid Johnstone
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Carol A Hartley
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joanne M Devlin
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
19
|
Reemers S, Verstegen I, Basten S, Hubers W, van de Zande S. A broad spectrum HVT-H5 avian influenza vector vaccine which induces a rapid onset of immunity. Vaccine 2021; 39:1072-1079. [PMID: 33483211 DOI: 10.1016/j.vaccine.2021.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Current methods to combat highly pathogenic avian influenza (HPAI) outbreaks in poultry rely on stamping out and preventive culling, which can lead to high economic losses and invoke ethical resistance. Emergency vaccination could be an alternative as vaccination is one of the most efficient and cost-effective measures to protect poultry from HPAI infection, preventing spreading to other poultry and greatly reducing the potential transmission to humans. Current conventional inactivated AI vaccines may be useful for combating AI outbreaks, but do not fulfil all targets of an ideal AI vaccine, including mass applicability and rapid onset of immunity. We aimed to further investigate the potential of Herpesvirus of Turkeys (HVT) as a vector containing a recombinant H5 hemagglutinin of HPAI H5N1. This HVT-H5 vector was analysed in vitro, tested for onset of immunity against AI challenge, breadth of protection, reduction of virus shedding, and induction of both antibody and cellular responses in SPF layers or broiler chicks containing maternal derived antibodies (MDA+). In SPF layers HVT-H5 provided full protection to lethal challenges with 4 antigenically diverse HPAI H5N1 strains from 2 weeks post vaccination (w.p.v.), while in MDA+ birds full protection was provided from 3 w.p.v. to homologous challenge. Also shedding of challenge virus was reduced in both SPF and MDA+ birds. HVT-H5 induced a protective HI titre (≥4) to 11 HPAI H5N1 strains at 3 w.p.v. in 3-week-old SPF layers and to HPAI H5N8 A/ch/Neth/14015531/2014. Besides inducing a protective antibody response HVT-H5 also induced an influenza-specific T cell response. This data demonstrates that HVT-H5 vaccine appears to fulfil many of the criteria for an ideal AI vaccine including early onset of immunity, a broad protection, reduced virus shedding, protection in presence of AI-MDA and could be a useful tool in the combat of AI outbreaks worldwide.
Collapse
Affiliation(s)
- Sylvia Reemers
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, the Netherlands.
| | - Iwan Verstegen
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, the Netherlands
| | - Stephanie Basten
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, the Netherlands
| | - Willem Hubers
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, the Netherlands
| | | |
Collapse
|
20
|
Efficacy of a Turkey Herpesvirus Vectored Newcastle Disease Vaccine against Genotype VII.1.1 Virus: Challenge Route Affects Shedding Pattern. Vaccines (Basel) 2021; 9:vaccines9010037. [PMID: 33440698 PMCID: PMC7826937 DOI: 10.3390/vaccines9010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
The control of Newcastle disease (ND) highly relies on vaccination. Immunity provided by a ND vaccine can be characterized by measuring the level of clinical protection and reduction in challenge virus shedding. The extent of shedding depends a lot on the characteristics of vaccine used and the quality of vaccination, but influenced also by the genotype of the challenge virus. We demonstrated that vaccination of SPF chicks with recombinant herpesvirus of turkey expressing the F-gene of genotype I ND virus (rHVT-ND) provided complete clinical protection against heterologous genotype VII.1.1 ND virus strain and reduced challenge virus shedding significantly. 100% of clinical protection was achieved already by 3 weeks of age, irrespective of the challenge route (intra-muscular or intra-nasal) and vaccination blocked cloacal shedding almost completely. Interestingly, oro-nasal shedding was different in the two challenge routes: less efficiently controlled following intra-nasal than intra-muscular challenge. Differences in the shedding pattern between the two challenge routes indicate that rHVT-ND vaccine induces strong systemic immunity, that is capable to control challenge virus dissemination in the body (no cloacal shedding), even when it is a heterologous strain, but less efficiently, although highly significantly (p < 0.001) suppresses the local replication of the challenge virus in the upper respiratory mucosa and consequent oro-nasal shedding.
Collapse
|
21
|
Mardivirus Infection and Persistence in Feathers of a Chicken Model Harboring a Local Autoimmune Response. Microorganisms 2020; 8:microorganisms8101613. [PMID: 33092272 PMCID: PMC7589623 DOI: 10.3390/microorganisms8101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek’s disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens’ feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.
Collapse
|
22
|
Tatár-Kis T, Fischer EA, Cazaban C, Walkó-Kovács E, Homonnay ZG, Velkers FC, Palya V, Stegeman JA. A Herpesvirus of Turkey-Based Vector Vaccine Reduces Transmission of Newcastle Disease Virus in Commercial Broiler Chickens with Maternally Derived Antibodies. Vaccines (Basel) 2020; 8:vaccines8040614. [PMID: 33081359 PMCID: PMC7720113 DOI: 10.3390/vaccines8040614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Newcastle Disease is one of the most important infectious poultry diseases worldwide and is associated with high morbidity, mortality, and economic loss. In several countries, vaccination is applied to prevent and control outbreaks; however, information on the ability of vaccines to reduce transmission of ND virus (NDV) is sparse. Here we quantified the transmission of velogenic NDV among 42-day-old broilers. Chickens were either vaccinated with a single dose of a vector vaccine expressing the F protein (rHVT-ND) at day-old in the presence of maternally derived antibodies or kept unvaccinated. Seeders were challenged 8 h before the co-mingling with the corresponding contacts from the same group. Infection was monitored by daily testing of cloacal and oro-nasal swabs with reverse transcription-real-time PCR and by serology. Vaccinated birds were completely protected against clinical disease and virus excretion was significantly reduced compared to the unvaccinated controls that all died during the experiment. The reproduction ratio, which is the average number of secondary infections caused by an infectious bird, was significantly lower in the vaccinated group (0.82 (95% CI 0.38-1.75)) than in the unvaccinated group (3.2 (95% CI 2.06-4.96)). Results of this study demonstrate the potential of rHVT-ND vaccine in prevention and control of ND outbreaks.
Collapse
Affiliation(s)
- Timea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary; (T.T.-K.); (E.W.-K.); (Z.G.H.); (V.P.)
| | - Egil A.J. Fischer
- Population Health Department, Veterinary Medicine Faculty, Utrecht University, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (F.C.V.)
| | - Christophe Cazaban
- Science and Investigation Department, Ceva Animal Health, 33500 Libourne, France;
| | - Edit Walkó-Kovács
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary; (T.T.-K.); (E.W.-K.); (Z.G.H.); (V.P.)
| | - Zalan G. Homonnay
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary; (T.T.-K.); (E.W.-K.); (Z.G.H.); (V.P.)
| | - Francisca C. Velkers
- Population Health Department, Veterinary Medicine Faculty, Utrecht University, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (F.C.V.)
| | - Vilmos Palya
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary; (T.T.-K.); (E.W.-K.); (Z.G.H.); (V.P.)
| | - J. Arjan Stegeman
- Population Health Department, Veterinary Medicine Faculty, Utrecht University, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (F.C.V.)
- Correspondence:
| |
Collapse
|
23
|
Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020; 38:6990-7001. [PMID: 32951939 DOI: 10.1016/j.vaccine.2020.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.
Collapse
Affiliation(s)
- Carina Romanutti
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leticia Keller
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Flavia Adriana Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
24
|
Rauw F, Ngabirano E, Gardin Y, Palya V, Lambrecht B. Effectiveness of a Simultaneous rHVT-F(ND) and rHVT-H5(AI) Vaccination of Day-Old Chickens and the Influence of NDV- and AIV-Specific MDA on Immune Response and Conferred Protection. Vaccines (Basel) 2020; 8:vaccines8030536. [PMID: 32948028 PMCID: PMC7565404 DOI: 10.3390/vaccines8030536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The recombinant herpesvirus of turkey (rHVT) vaccines targeting Newcastle disease (ND) and H5Nx avian influenza (AI) have been demonstrated efficient in chickens when used individually at day-old. Given the practical field constraints associated with administering two vaccines separately and in the absence of a currently available bivalent rHVT vector vaccine expressing both F(ND) and H5(AI) antigens, the aim of this study was to investigate whether interference occurs between the two vaccines when simultaneously administered in a single shot. The studies have been designed to determine (i) the ND and AI-specific protection and antibody response conferred by these vaccines inoculated alone or in combination at day-old, (ii) the influence of maternally-derived antibodies (MDA), and (iii) the potential interference between the two vaccine. Our results demonstrate that their combined administration is efficient to protect chickens against clinical signs of velogenic Newcastle disease virus (vNDV) and H5-highly pathogenic avian influenza virus (HPAIV) infections. Viral shedding following co-vaccination is also markedly reduced, while slightly lower NDV- and AIV-specific antibody responses are observed. NDV- and AIV-specific MDA show negative effects on the onset of the specific antibody responses. However, if AIV-specific MDA reduce the protection against H5-HPAIV induced by rHVT-H5(AI) vaccine, it was not observed for ND.
Collapse
Affiliation(s)
- Fabienne Rauw
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
- Correspondence:
| | - Eva Ngabirano
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
| | - Yannick Gardin
- CEVA Santé Animale, Avenue de la Ballastière 10, 33 500 Libourne, France;
| | - Vilmos Palya
- CEVA Phylaxia, Szállás utca 5, 1107 Budapest, Hungary;
| | - Bénédicte Lambrecht
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
| |
Collapse
|
25
|
Nassif S, Zaki F, Mourad A, Fouad E, Saad A, Setta A, Felföldi B, Mató T, Kiss I, Palya V. Herpesvirus of turkey-vectored avian influenza vaccine offers cross-protection against antigenically drifted H5Nx highly pathogenic avian influenza virus strains. Avian Pathol 2020; 49:547-556. [PMID: 32615785 DOI: 10.1080/03079457.2020.1790502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the different vaccines used to control highly pathogenic avian influenza, an HVT vector-based live recombinant avian influenza vaccine, expressing the haemagglutinin gene of an H5N1 HPAI virus, has been used by the poultry industry since 2012. The objective of the study presented in this paper was to test the efficacy of the commercially available HVT-based recombinant H5 vaccine against antigenically drifted H5N1, H5N8 and H5N2 HPAI virus circulating in Egypt recently. Groups of SPF chicks vaccinated at day-old with the HVT-based recombinant H5 vaccine were challenged, along with non-vaccinated controls, with 106 EID50 each of H5N1, H5N2 or H5N8 HPAI virus at 28 days of age. The birds were monitored for clinical protection and virus shedding during a 10-day postchallenge period. Clinical protection levels were 90%, 90% and 80% following challenge with the H5N1, H5N2 and H5N8 field isolates, respectively. Challenge virus shedding was significantly reduced in vaccinated groups, with up to 40%, 30% and 20% of non-shedders, and 3.8, 3.3 and 2.8 log10 reduction in the amount of excreted virus following challenge with H5N1, H5N2 and H5N8 viruses, respectively. Analyses of the amino acid sequences of the HA proteins of challenge viruses and serological relatedness with the vaccine insert revealed significant antigenic divergences between the vaccine and the challenge viruses. These results provide further evidence of the potential of HVT-based recombinant H5 vaccine to provide cross-protection against antigenically drifted HPAI H5Nx viruses with strong control on virus shedding.
Collapse
Affiliation(s)
- Samir Nassif
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Farid Zaki
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahlam Mourad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Esraa Fouad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Asem Saad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahmed Setta
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Ceva-Phylaxia, Ceva Sante Animale, Cairo, Egypt
| | | | - Tamás Mató
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Istvan Kiss
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Vilmos Palya
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| |
Collapse
|
26
|
Ferreira HL, Reilley AM, Goldenberg D, Ortiz IRA, Gallardo RA, Suarez DL. Protection conferred by commercial NDV live attenuated and double recombinant HVT vaccines against virulent California 2018 Newcastle disease virus (NDV) in chickens. Vaccine 2020; 38:5507-5515. [PMID: 32591288 DOI: 10.1016/j.vaccine.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Vaccines against virulent Newcastle disease virus (NDV) are widely available and can be protective, but improved vaccination protocols are needed to prevent clinical disease and reduce virus circulation. The present study evaluated the efficacy of two commercial vaccines alone or in combination: a live attenuated NDV vaccine (LV) and a recombinant herpesvirus of turkeys vector expressing the fusion protein of NDV and the virus protein 2 of infectious bursal disease virus (rHVT-ND-IBD). Chickens were vaccinated with one of four vaccination protocols: live vaccine (LV) at 1 and 11 days of age (DOA), rHVT ND-IBD and LV at 1 DOA, rHVT ND-IBD at 1 DOA boosted with an LV at 11 DOA, and rHVT ND-IBD at 1 DOA. The vaccinated birds were challenged at different time points (3 or 4 weeks of age) with the California 2018 virus. The mortality, clinical signs, mean death time (MDT), humoral response before and after vaccination, and virus shedding after challenge were evaluated. All vaccination protocols were able to prevent mortality, reduce virus shedding, and induce antibody levels before the challenge at 3 and 4 weeks-old. Overall, the antibody levels before the challenge at 4 weeks were significantly higher in all groups vaccinated with the rHVT ND-IBD when compared to levels in 3 week old birds. The combination of recombinant rHVT ND-IBD with a live vaccine at one-day-old seems to be a better combination, due to the absence of clinical signs, higher antibody levels pre and post-challenge, and reduced virus shedding at any time point after the challenge at 3 or 4 weeks of age with the California 2018 virus.
Collapse
Affiliation(s)
- Helena L Ferreira
- US National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Rd., Athens, GA 30605, USA; Department of Veterinary Medicine, FZEA-USP, University of Sao Paulo, Pirassununga-SP 13635900, Brazil
| | | | - Dana Goldenberg
- US National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Rd., Athens, GA 30605, USA
| | - Ivan R A Ortiz
- Merck Animal Health, 35500 West 91st St, DeSoto, KS 66018, USA
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - David L Suarez
- US National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Rd., Athens, GA 30605, USA.
| |
Collapse
|
27
|
Yilmaz A, Turan N, Bayraktar E, Tali HE, Aydin O, Umar S, Cakan B, Sadeyen JR, Baigent S, Iqbal M, Nair V, Yilmaz H. Molecular characterisation and phylogenetic analysis of Marek's disease virus in Turkish layer chickens. Br Poult Sci 2020; 61:523-530. [PMID: 32316760 DOI: 10.1080/00071668.2020.1758301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. There is no current data about the genotypes of Marek's disease virus (MDV) in Turkish poultry flocks; hence, this study was performed to analyse CVI988/Rispens, turkey herpesvirus (HVT) vaccine viruses and MDV field viruses as well as to perform phylogenetic analysis of MDV in Turkish layer chickens. 2. In 2017 and 2018, a total of 602 spleen samples from 49 layer flocks were collected from the Marmara, West Black Sea and Aegean regions. DNA was extracted from the spleen samples and the samples were analysed by real-time PCR probe assay to detect CVI988/Rispens and HVT vaccine viruses and MDV field strains. Samples found positive for MDV by real-time PCR were subjected to PCR using the Meq gene primers for phylogenetic analysis. 3. Amongst 49 flocks, virulent MDV was detected in nine flocks. CVI988/Rispens and HVT vaccine strains were detected in 47 flocks and HVT in all 49 flocks. Splenomegaly, hepatomegaly and tumours in the oviduct were observed in chickens of affected flocks. Virulent MDV was detected in 120 out of 602 spleen samples. Sequencing and phylogenetic analyses showed that MDVs detected in this study were closely related to MDV strains from Italy, Poland, Saudi Arabia, Iraq, India and China but showed diversity with MDV strains from Egypt and Hungary. Multiple sequence analysis of the Meq protein revealed several point mutations in deduced amino acid sequences. Interestingly, CVI988/Rispens vaccine virus from China (AF493555) showed mutations at position 66 (G66R) and 71 (S66A) along with two other vaccine strains from China (GU354326.1) and Russia (EU032468.1), in comparison with the other vaccine strain CVI988/Rispens (DQ534538). The molecular analyses of the Meq gene suggested that Turkish field strains of MDV are in the class of virulent or very virulent pathotypes. 4. The results have shown that MDV still affects poultry health, and the phylogenetic and amino acid variation data obtained will help in vaccination and control strategies.
Collapse
Affiliation(s)
- A Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - N Turan
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - E Bayraktar
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - H E Tali
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - O Aydin
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - S Umar
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - B Cakan
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - J-R Sadeyen
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - S Baigent
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - M Iqbal
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - V Nair
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - H Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| |
Collapse
|
28
|
Gimeno IM, Cortes AL, Reilley A, Barbosa T, Alvarado I, Koopman R, Martinez A. Study of Efficacy and Replication of Recombinant Vector Vaccines by Using Turkey Herpesvirus Combined with Other Marek's Disease Vaccines. Avian Dis 2020; 63:335-341. [PMID: 31251535 DOI: 10.1637/11987-103018-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022]
Abstract
Several recombinant turkey herpesviruses (rHVTs) have been developed within the past decades, and they are now used commercially worldwide. In broiler chickens, rHVTs are usually administered alone, but in long-living birds they are used in combination with Marek's disease (MD) vaccines of other serotypes (i.e., CVI988). The objectives of this work were to 1) evaluate protection against MD conferred by HVT and two rHVTs when combined with CVI988 and 2) optimize the use of rHVT in combination with CVI988 to maximize replication of rHVT without compromising MD protection. Various vaccine protocols, all using rHVT or HVT at the recommended dose (RD), were evaluated. Protocols evaluated included in ovo vaccination with HVT+CVI988 or rHVT+CVI988 (using either the double dose [DD] or the RD of CVI988), day of age vaccination of rHVT+CVI988 at DD, and revaccination protocols using rHVT in ovo followed by CVI988 at DD at day of age. Our results show that, when combined with CVI988, HVT and rHVTs confer a similar level of protection against MD (>90%) regardless of whether CVI988 was used at RD or at DD. However, the combination of rHVT with CVI988 at DD resulted in reduced replication rates of rHVT (60%-76% vs. 95%-100%). Our results show that such a negative effect could be avoided without jeopardizing MD protection by administering CVI988 at RD (if combined in ovo with rHVT) or administered rHVT first in ovo followed by CVI988 at DD at day of age.
Collapse
Affiliation(s)
- I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC 27607,
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC 27607
| | - A Reilley
- MSD Animal Health, Madison, NJ 07940
| | - T Barbosa
- MSD Animal Health, Madison, NJ 07940
| | | | - R Koopman
- MSD Animal Health, Madison, NJ 07940
| | - A Martinez
- Cobb-Vantress Inc., Siloam Springs, AR 72761
| |
Collapse
|
29
|
Rémy S, Le Pape G, Gourichon D, Gardin Y, Denesvre C. Chickens can durably clear herpesvirus vaccine infection in feathers while still carrying vaccine-induced antibodies. Vet Res 2020; 51:24. [PMID: 32093754 PMCID: PMC7041111 DOI: 10.1186/s13567-020-00749-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Marek’s disease (MD) is a major disease of chickens induced by Marek’s disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14–26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.
Collapse
Affiliation(s)
- Sylvie Rémy
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France
| | - Gilles Le Pape
- Anastats, 14 rue de la Bretonnerie, 37000, Tours, France
| | | | | | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France.
| |
Collapse
|
30
|
Sultan HA, Talaat S, Elfeil WK, Selim K, Kutkat MA, Amer SA, Choi KS. Protective efficacy of the Newcastle disease virus genotype VII-matched vaccine in commercial layers. Poult Sci 2020; 99:1275-1286. [PMID: 32111305 PMCID: PMC7587656 DOI: 10.1016/j.psj.2019.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023] Open
Abstract
Newcastle disease virus (NDV) is a major threat to the poultry industry worldwide, with a diversity of genotypes associated with severe economic losses in all poultry sectors. Class II genotype VII NDV are predominant in the Middle East and Asia, despite intensive vaccination programs using conventional live and inactivated NDV vaccines. In Egypt, the disease is continuously spreading, causing severe economical losses in the poultry industry. In this study; the protective efficacy of a commercial, inactivated recombinant genotype VII NDV–matched vaccine (KBNP-C4152R2L strain) against challenge with the velogenic NDV strain (Chicken/USC/Egypt/2015) was evaluated in commercial layers. Two vaccination regimes were used; live NDV genotype II (LaSota) vaccine on days 10, 18, and 120, with either the inactivated NDV genotype II regime or inactivated NDV genotype VII–matched vaccine regime on days 14, 42, and 120. The 2 regimes were challenged at the peak of egg production on week 26. Protection by the 2 regimes was evaluated after experimental infection, based on mortality rate, clinical signs, gross lesions, virus shedding, seroconversion, and egg production schedule. The results show that these 2 vaccination regimes protected commercial layer chickens against mortality, but some birds showed mild clinical signs and reduced egg production temporarily. However, the combination of live NDV genotype II and recombinant inactivated genotype VII vaccines provided better protection against virus shedding (20% and 0% vs. 60% and 40%) as assessed in tracheal swabs and (20% and 0% vs. 20% and 20%) in cloacal swabs collected at 3 and 5 D post challenge (dpc), respectively. In addition, egg production levels in birds receiving the inactivated NDV genotype VII–matched vaccine regime and in those given inactivated genotype II vaccines were 76.6, 79, 82, and 87.4% and 77.7, 72.5, 69, and 82.5% at 7, 14, 21, and 28 dpc, respectively. The results of this study indicate that recombinant genotype-matched inactivated vaccine along with a live attenuated vaccine can reduce virus shedding and improve egg production in commercial layers challenged with a velogenic genotype VII virus under field conditions. This regime may ensure a proper control strategy in layers.
Collapse
Affiliation(s)
- Hesham A Sultan
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, Sadat City University, Menoufiya 32958, Egypt; Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| | - Shaimaa Talaat
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, Sadat City University, Menoufiya 32958, Egypt
| | - Wael K Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Karim Selim
- Virology Division, Animal Health Research Institute, Agriculture Research Centre, Dokki, Egypt
| | - Mohamed A Kutkat
- Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Sameh A Amer
- Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Kang-Seuk Choi
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
31
|
A Recombinant Turkey Herpesvirus Expressing F and HN Genes of Avian Avulavirus-1 (AAvV-1) Genotype VI Confers Cross-Protection against Challenge with Virulent AAvV-1 Genotypes IV and VII in Chickens. Viruses 2019; 11:v11090784. [PMID: 31450681 PMCID: PMC6784189 DOI: 10.3390/v11090784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023] Open
Abstract
Newcastle disease (ND) is responsible for significant economic losses in the poultry industry. The disease is caused by virulent strains of Avian avulavirus 1 (AAvV-1), a species within the family Paramyxoviridae. We developed a recombinant construct based on the herpesvirus of turkeys (HVT) as a vector expressing two genes: F and HN (HVT-NDV-F-HN) derived from the AAvV-1 genotype VI ("pigeon variant" of AAvV-1). This recombinant viral vaccine candidate was used to subcutaneously immunize one group of specific pathogen-free (SPF) chickens and two groups of broiler chickens (20 one-day-old birds/group). Humoral immune response was evaluated by hemagglutination-inhibition test and enzyme-linked immunosorbent assay (ELISA). The efficacy of the immunization was assessed in two separate challenge studies performed at 6 weeks of age with the use of virulent AAvV-1 strains representing heterologous genotypes IV and VII. The developed vaccine candidate elicited complete protection in SPF chickens since none of the birds became sick or died during the 2-week observation period. In the broiler groups, 90% and 100% clinical protection were achieved after challenges with AAvV-1 of IV and VII genotypes, respectively. We found no obvious relationship between antibody levels and protection assessed in broilers in the challenge study. The developed recombinant HVT-NDV-F-HN construct containing genes from a genotype VI AAvV-1 offers promising results as a potential vaccine candidate against ND in chickens.
Collapse
|
32
|
A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle. PLoS One 2019; 14:e0215605. [PMID: 31002724 PMCID: PMC6474629 DOI: 10.1371/journal.pone.0215605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/05/2019] [Indexed: 02/05/2023] Open
Abstract
Recombinant herpesvirus vaccine vectors offer distinct advantages in next-generation vaccine development, primarily due to the ability to establish persistent infections to provide sustainable antigen responses in the host. Recombinant bovine herpesvirus-4 (BoHV-4) has been previously shown to elicit protective immunity in model laboratory animal species against a variety of pathogens. For the first time, we describe the induction of antigen-specific immune responses to two delivered antigens in the host species after intranasal nebulization of recombinant BoHV-4 expressing the chimeric peptide containing the bovine viral diarrhea virus (BVDV) glycoprotein E2 and the bovine herpesvirus 1 (BoHV-1) glycoprotein D (BoHV-4-A-CMV-IgK-gE2gD-TM). In this study, four cattle were immunized via intranasal nebulization with the recombinant BoHV-4 construct. Two of the cattle were previously infected with wild-type BoHV-4, and both developed detectable serologic responses to BVDV and BoHV-1. All four immunized cattle developed detectable viral neutralizing antibody responses to BVDV, and one steer developed a transient viral neutralizing response to BoHV-1. Approximately one year after immunization, immunosuppressive doses of the glucocorticoid dexamethasone were administered intravenously to all four cattle. Within two weeks of immunosuppression, all animals developed viral neutralizing antibody responses to BoHV-1, and all animals maintained BVDV viral neutralizing capacity. Overall, nebulization of BoHV-4-A-CMV-IgK-gE2gD-TM persistently infects cattle, is capable of eliciting antigen-specific immunity following immunization, including in the presence of pre-existing BoHV-4 immunity, and recrudescence of the virus boosts the immune response to BoHV-4-vectored antigens. These results indicate that BoHV-4 is a viable and attractive vaccine delivery platform for use in cattle.
Collapse
|
33
|
Liu L, Wang T, Wang M, Tong Q, Sun Y, Pu J, Sun H, Liu J. Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza. Virology 2019; 529:7-15. [PMID: 30641481 DOI: 10.1016/j.virol.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
H9N2 avian influenza viruses (AIVs) were prevailing in chickens, causing great economic losses and public health threats. In this study, turkey herpesviruses (HVT) was cloned as an infectious bacterial artificial chromosomes (BAC). Recombinant HVT (rHVT-H9) containing hemagglutinin (HA) gene from H9N2 virus were constructed via galactokinase (galK) selection and clustered regularly interspaced short palindromic repeats/associated 9 (CRISPR/Cas9) gene editing system. The recombinant rHVT-H9 showed no difference with parent HVT in plague morphology and virus replication kinetics. H9 protein expression of rHVT-H9 could be detected by western blot and indirect immunofluorescence assay (IFA) in vitro and in vivo. Immunization with rHVT-H9 could induce robust humoral and cellular immunity in chickens. In the challenge study, no chicken shed H9N2 virus from oropharynx and cloaca, and no H9N2 virus was found in viscera in vaccination groups. The result suggests that rHVT-H9 provides effective protection against H9N2 AIV in chickens.
Collapse
Affiliation(s)
- Litao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Palya V, Tatár-Kis T, Walkóné Kovács E, Kiss I, Homonnay Z, Gardin Y, Kertész K, Dán Á. Efficacy of a Recombinant Turkey Herpesvirus AI (H5) Vaccine in Preventing Transmission of Heterologous Highly Pathogenic H5N8 Clade 2.3.4.4b Challenge Virus in Commercial Broilers and Layer Pullets. J Immunol Res 2018; 2018:3143189. [PMID: 30584541 PMCID: PMC6280313 DOI: 10.1155/2018/3143189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Outbreaks caused by the highly pathogenic avian influenza virus (HPAIV) H5N8 subtype clade 2.3.4.4 were first reported in 2014 in South Korea then spread very rapidly in Asia, to Europe, and for the first time, to North America. Efficacy of a recombinant HVT-AI (H5) vaccine (rHVT-H5) to provide clinical protection as well as to significantly reduce the shedding of an H5N8 challenge virus has already been demonstrated in SPF chickens. The aim of our studies was to test the efficacy of the same rHVT-H5 vaccine in controlling the transmission of a recent Hungarian HPAIV H5N8 challenge virus in commercial chickens. Broilers and layers were vaccinated at day old according to the manufacturer's recommendation and then challenged with a 2017 Hungarian HPAIV H5N8 (2.3.4.4b) isolate at 5 or 7 weeks of age, respectively. Evaluation of clinical protection, reduction of challenge virus shedding, and transmission to vaccinated contact birds was done on the basis of clinical signs/mortality, detection, and quantitation of challenge virus in oronasal and cloacal swabs (regularly between 1 and 14 days postchallenge). Measurement of seroconversion to AIV nucleoprotein was used as an indicator of infection and replication of challenge virus. Our results demonstrated that rHVT-H5 vaccination could prevent the development of clinical disease and suppress shedding very efficiently, resulting in the lack of challenge virus transmission to vaccinated contact chickens, regardless the type of birds. Single immunization with the tested rHVT-H5 vaccine proved to be effective to stop HPAIV H5N8 (2.3.4.4b) transmission within vaccinated poultry population under experimental conditions.
Collapse
Affiliation(s)
- Vilmos Palya
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Tímea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Edit Walkóné Kovács
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - István Kiss
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Zalán Homonnay
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | | | | | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office (NEBIH), Budapest 1149, Hungary
| |
Collapse
|
35
|
Liu H, de Almeida RS, Gil P, Majó N, Nofrarías M, Briand FX, Jestin V, Albina E. Can genotype mismatch really affect the level of protection conferred by Newcastle disease vaccines against heterologous virulent strains? Vaccine 2018; 36:3917-3925. [PMID: 29843999 DOI: 10.1016/j.vaccine.2018.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 10/24/2022]
Abstract
Newcastle disease (ND), caused by virulent class II avian paramyxovirus 1 (Newcastle disease virus, NDV), occurs sporadically in poultry despite their having been immunized with commercial vaccines. These vaccines were all derived from NDV strains isolated around 70 years ago. Since then, class II NDV strains have evolved into 18 genotypes. Whether the vaccination failure results from genotype mismatches between the currently used vaccine strains and field-circulating velogenic strains or from an impaired immune response in the vaccination remains unclear. To test the first hypothesis, we performed a heterologous genotype II vaccine/genotype XI challenge in one-day old specific pathogen free (SPF) chicks and reproduced viral shedding. We then produced two attenuated strains of genotype II and XI by reverse genetics and used them to immunize two-week old SPF chickens that were subsequently challenged with velogenic strains of genotypes II, VII and XI. We found that both vaccines could induce antibodies with hemagglutination inhibition titers higher than 6.5 log2. Vaccination also completely prevented disease, viral shedding in swabs, and blocked viral replication in tissues from different genotypes in contrast to unvaccinated chickens that died shortly after challenge. Taken together, our results support the hypothesis that, in immunocompetent poultry, genotype mismatch is not the main reason for vaccination failure.
Collapse
Affiliation(s)
- Haijin Liu
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; Department of Avian Disease, College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Renata Servan de Almeida
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Patricia Gil
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Natàlia Majó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Miquel Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain
| | | | | | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France.
| |
Collapse
|
36
|
El Khantour A, Darkaoui S, Tatár-Kis T, Mató T, Essalah-Bennani A, Cazaban C, Palya V. Immunity Elicited by a Turkey Herpesvirus-Vectored Newcastle Disease Vaccine in Turkey Against Challenge With a Recent Genotype IV Newcastle Disease Virus Field Strain. Avian Dis 2018; 61:378-386. [PMID: 28957008 DOI: 10.1637/11547-120216-resnoter] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease (ND) is still a major poultry disease worldwide. Vaccination remains the principal method of controlling ND in endemic countries. Various vaccination strategies, including the use of recently developed recombinant vaccines, have been used to control it. Recombinant vaccines that use the herpesvirus of turkey (HVT) as a vector to express one of the key antigens of Newcastle disease virus (NDV) have been developed to overcome some of the drawbacks related to the use of conventional vaccines. HVT as a vector appears to have unique beneficial characteristics: it is extremely safe, it is not affected by the presence of maternally derived antibodies, and therefore can be applied in the hatchery either in ovo or to day-old chicks. Due to its persistence in the bird, the HVT vector can be expected to induce life-long immune stimulation. In the present study, the efficacy of an HVT-based vector vaccine expressing the F gene of NDV (rHVT-F) was tested against a velogenic genotype IV NDV challenge in commercial turkeys with high levels of maternal antibodies (8.7 ± 0.8 log2 hemagglutination inhibition titer). The birds were vaccinated on the day of hatch by the subcutaneous route. Development of a humoral immune response to vaccination was detectable from 4 weeks of age by ELISA. The challenge strain used represents recent NDV genotype IV field strains from Morocco. Challenge with this strain induced ND-specific clinical signs and stunting without subsequent mortality in the non-vaccinated birds, whereas the vaccinated turkey poults showed protection as early as 3 weeks of age based on lack of clinical signs, better body weight gain, and reduction of challenge virus shedding. This is the first reported efficacy study of an HVT-vectored ND vaccine against a velogenic NDV challenge in commercial turkeys.
Collapse
Affiliation(s)
- Abderrazak El Khantour
- A CED Sciencies and Techniques FSK University Ibn Tofail, BP 133, Kénitra 14000, Morocco
| | - Sami Darkaoui
- B Division de la Pharmacie et des Intrants Vétérinaires, ONSSA, Aenue Hadj Ahmed Cherkaoui, Agdal, 10090-Rabat, Morocco
| | - Tímea Tatár-Kis
- C Ceva Santé Animale, Ceva-Phylaxia, Szállás utca 5., 1107-Budapest, Hungary
| | - Tamás Mató
- C Ceva Santé Animale, Ceva-Phylaxia, Szállás utca 5., 1107-Budapest, Hungary
| | - Amal Essalah-Bennani
- D Ceva Santé Animale, Z.I. Ouled Saleh BP 39, Lot 132, Bouskoura, Casablanca, Morocco
| | - Christophe Cazaban
- E Ceva Santé Animale, 10 Avenuae de la Ballastière, 33500-Libourne, France
| | - Vilmos Palya
- C Ceva Santé Animale, Ceva-Phylaxia, Szállás utca 5., 1107-Budapest, Hungary
| |
Collapse
|
37
|
Liu S, Sun W, Huang X, Zhang W, Jia C, Luo J, Shen Y, El-Ashram S, He C. A Promising Recombinant Herpesvirus of Turkeys Vaccine Expressing PmpD-N of Chlamydia psittaci Based on Elongation Factor-1 Alpha Promoter. Front Vet Sci 2017; 4:221. [PMID: 29376059 PMCID: PMC5763144 DOI: 10.3389/fvets.2017.00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
The obligate intracellular Gram-negative bacterium Chlamydia psittaci often causes avian chlamydiosis and influenza-like symptoms in humans. However, the commercial subunit C. psittaci vaccine could only provide a partial protection against avian chlamydiosis due to poor cellular immune response. In our previous study, a recombinant herpesvirus of turkeys (HVT)-delivered vaccine against C. psittaci and Marek’s disease based on human cytomegalovirus (CMV) promoter (rHVT-CMV-pmpD) was developed and provided an effective protection against C. psittaci disease with less lesions and reduced chlamydial loads. In this study, we developed another recombinant HVT vaccine expressing the N-terminal fragment of PmpD (PmpD-N) based on human elongation factor-1 alpha (EF-1α) promoter (rHVT-EF-pmpD) by modifying the HVT genome within a bacterial artificial chromosome. The related characterization of rHVT-EF-pmpD was evaluated in vitro in comparison with that of rHVT-CMV-pmpD. The expression of PmpD-N was determined by western blot. Under immunofluorescence microscopy, PmpD-N protein of both two recombinant viruses was located in the cytoplasm and on the cell surface. Growth kinetics of rHVT-EF-pmpD was comparable to that of rHVT-CMV-pmpD, and the growth rate of rHVT-EF-pmpD was apparently higher than that of rHVT-CMV-pmpD on 48, 72, and 120 h postinfection. Macrophages activated by rHVT-EF-pmpD could produce more nitric oxide and IL-6 than that activated by rHVT-CMV-pmpD. In this study, a recombinant HVT vaccine expressing PmpD-N based on EF-1α promoter was constructed successfully, and a further research in vivo was needed to analyze the vaccine efficacy.
Collapse
Affiliation(s)
- Shanshan Liu
- Tongren Polytechnic College, Tongren, China.,National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren, China.,Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Sun
- Tongren Polytechnic College, Tongren, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | | | - Wen Zhang
- Tongren Polytechnic College, Tongren, China.,National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren, China
| | - Changqing Jia
- Tongren Polytechnic College, Tongren, China.,National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren, China
| | - Jie Luo
- Tongren Polytechnic College, Tongren, China.,National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren, China
| | - Yihua Shen
- Tongren Polytechnic College, Tongren, China
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
A concise review of poultry vaccination and future implementation of plant-based vaccines. WORLD POULTRY SCI J 2017. [DOI: 10.1017/s0043933917000484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Gardin Y, Palya V, Dorsey KM, El-Attrache J, Bonfante F, Wit SD, Kapczynski D, Kilany WH, Rauw F, Steensels M, Soejoedono RD. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges. Avian Dis 2017; 60:232-7. [PMID: 27309060 DOI: 10.1637/11144-050815-resnote] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Bonfante
- D Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padova, Italy
| | - Sjaak de Wit
- E Gezondheidsdienst voor Dieren Animal Health, 7400 AA Deventer, the Netherlands
| | - Darrell Kapczynski
- F Southeast Poultry Research Laboratory, United States Department of Agriculture, Athens, GA 30605
| | - Walid Hamdy Kilany
- G National Reference Laboratory for Veterinary Quality Control on Poultry Production RLQP, Animal Health Research Institute, Agriculture Research Center, Ministry of Agriculture, P.O. 12618 - Box 264, Dokki, Giza, Egypt
| | - Fabienne Rauw
- H Avian Virology and Immunology Unit, Veterinary and Agrochemical Research Centre, 1180 Ukkel, Brussels, Belgium
| | - Mieke Steensels
- H Avian Virology and Immunology Unit, Veterinary and Agrochemical Research Centre, 1180 Ukkel, Brussels, Belgium
| | - Retno D Soejoedono
- I Faculty of Veterinary Medicine, Bogor Agricultural University, 16680 Bogor, Indonesia
| |
Collapse
|
40
|
Dimitrov KM, Afonso CL, Yu Q, Miller PJ. Newcastle disease vaccines-A solved problem or a continuous challenge? Vet Microbiol 2016; 206:126-136. [PMID: 28024856 PMCID: PMC7131810 DOI: 10.1016/j.vetmic.2016.12.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 01/11/2023]
Abstract
Newcastle disease (ND) has been defined by the World Organisation for Animal Health as infection of poultry with virulent strains of Newcastle disease virus (NDV). Lesions affecting the neurological, gastrointestinal, respiratory, and reproductive systems are most often observed. The control of ND must include strict biosecurity that prevents virulent NDV from contacting poultry, and also proper administration of efficacious vaccines. When administered correctly to healthy birds, ND vaccines formulated with NDV of low virulence or viral-vectored vaccines that express the NDV fusion protein are able to prevent clinical disease and mortality in chickens upon infection with virulent NDV. Live and inactivated vaccines have been widely used since the 1950's. Recombinant and antigenically matched vaccines have been adopted recently in some countries, and many other vaccine approaches have been only evaluated experimentally. Despite decades of research and development towards formulation of an optimal ND vaccine, improvements are still needed. Impediments to prevent outbreaks include uneven vaccine application when using mass administration techniques in larger commercial settings, the difficulties associated with vaccinating free-roaming, multi-age birds of village flocks, and difficulties maintaining the cold chain to preserve the thermo-labile antigens in the vaccines. Incomplete or improper immunization often results in the disease and death of poultry after infection with virulent NDV. Another cause of decreased vaccine efficacy is the existence of antibodies (including maternal) in birds, which can neutralize the vaccine and thereby reduce the effectiveness of ND vaccines. In this review, a historical perspective, summary of the current situation for ND and NDV strains, and a review of traditional and experimental ND vaccines are presented.
Collapse
Affiliation(s)
- Kiril M Dimitrov
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Qingzhong Yu
- Endemic Poultry Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Patti J Miller
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA.
| |
Collapse
|
41
|
Gimeno IM, Cortes AL, Faiz N, Villalobos T, Badillo H, Barbosa T. Efficacy of Various HVT Vaccines (Conventional and Recombinant) Against Marek's Disease in Broiler Chickens: Effect of Dose and Age of Vaccination. Avian Dis 2016; 60:662-8. [DOI: 10.1637/11415-040116-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Palya V, Kovács EW, Tatár-Kis T, Felföldi B, Homonnay ZG, Mató T, Sato T, Gardin Y. Recombinant Turkey Herpesvirus-AI Vaccine Virus Replication in Different Species of Waterfowl. Avian Dis 2016; 60:210-7. [DOI: 10.1637/11129-050715-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Rauw F, Van Borm S, Welby S, Ngabirano E, Gardin Y, Palya V, Lambrecht B. Quantification of rHVT-F genome load in feather follicles by specific real-time qPCR as an indicator of NDV-specific humoral immunity induced by day-old vaccination in SPF chickens. Avian Pathol 2015; 44:154-61. [PMID: 25687165 DOI: 10.1080/03079457.2015.1018869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to look for a reliable molecular method for confirmation of uptake of recombinant turkey herpesvirus vaccine against Newcastle disease (rHVT-F) and for use as a valuable prediction tool of Newcastle disease virus (NDV)-specific immune response in chickens deprived of maternally derived antibody (MDA). A quantitative real-time polymerase chain reaction (real-time qPCR) specific to rHVT-F was developed. The method was applied to various tissue samples taken from specific pathogen free (SPF) chickens experimentally inoculated at day-old with one dose of rHVT-F vaccine over a 6-week period. Among the tested tissues, the rHVT-F vaccine was detected predominantly in the bursa of Fabricius (BF) and the lung for the first week, followed by a progressive decline from 9 days onwards. Then, an increase of genome load was observed in the feather follicles (FF) with a peak at 2 weeks, rising to a level almost 10(3)-fold greater than in the other tissues. Importantly, the rHVT-F genome load in FF appeared to be strongly correlated to the humoral immunity specific to NDV as evaluated by haemagglutination inhibition (HI) test and NDV-specific IgG, IgM and IgA ELISAs. This is the first report of quantification of rHVT-F vaccine in FF and its correlation with the induction of ND-specific immune response in chickens with no MDA. Our data indicate that the application of this real-time qPCR assay on FF samples taken from chickens in the field may be used to confirm rHVT-F vaccine administration and uptake with the important added benefit of offering a non-disruptive sampling procedure.
Collapse
Affiliation(s)
- F Rauw
- a Veterinary and Agrochemical Research Centre (VAR) , Ukkel , Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Serological Evaluation of Turkey Herpesvirus Vector Vaccines Expressing the Hemagglutinin Gene of Avian Influenza Virus H5 Subtype under Three Different Promoters. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|