1
|
Ham S, Suh J, Oh T, Kim C, Seo BJ, Chae C. Efficacy of a novel bivalent vaccine containing porcine circovirus type 2d and Mycoplasma hyopneumoniae against a dual PCV2d and Mycoplasma hyopneumoniae challenge. Front Vet Sci 2023; 10:1176091. [PMID: 37565086 PMCID: PMC10410152 DOI: 10.3389/fvets.2023.1176091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background Information on efficacy of a novel bivalent vaccine containing porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae. Objective To evaluate bivalent vaccine for efficacy under experimental conditions. Animals Clinically healthy 35 weaned piglets at 18 days of age were used. Methods A 2.0 mL dose of bivalent vaccine was administered intramuscularly to pigs at 21 days of age in accordance with the manufacturer's instructions. The pigs were challenged at 42 days of age either intranasally with PCV2d, or intratracheally with M. hyopneumoniae, or with both. Results Vaccinated-challenged pigs improved the growth performance compared to pigs that were unvaccinated and then, challenged. Vaccinated-challenged pigs elicited a significant amount of protective immunity for PCV2d-specific neutralizing antibodies and interferon-γ secreting cells (IFN-γ-SC) as well as for M. hyopneumoniae-specific IFN-γ-SC compared to unvaccinated/challenged pigs. Induction of systemic cellular and humoral immune responses from bivalent vaccination reduced the viral and mycoplasmal loads in the blood and larynx. Vaccination and challenge simultaneously reduced both lung and lymphoid lesion severity when compared to unvaccinated-challenged pigs. Discussion The results of this study demonstrated that the evaluated bivalent PCV2d and M. hyopneumoniae vaccine was efficacious in protecting pigs from the most predominant PCV2d genotype in the field today, as evaluated with a dual PCV2d and M. hyopneumoniae challenge under experimental conditions.
Collapse
Affiliation(s)
- Sehyeong Ham
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeongmin Suh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Porcine circovirus type 2 infection attenuates the K63-linked ubiquitination of STING to inhibit IFN-β induction via p38-MAPK pathway. Vet Microbiol 2021; 258:109098. [PMID: 33984793 DOI: 10.1016/j.vetmic.2021.109098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022]
Abstract
Porcine circovirus 2 (PCV2) has been proved to increase the risk of other pathogens infection via immunosuppression. Although the co-infection of PCV2 and porcine parvovirus (PPV) is commonly observed in worldwide, the relative immune mechanisms promoting PPV infection in PCV2-infected piglets are currently unknown. Herein, we found that PCV2 infection suppressed IFN-β expression and promoted PPV infection in the piglets. Consistent with this finding, we confirmed that PCV2 infection significantly inhibited the induction of IFN-β to promote PPV replication in cell level. Furthermore, PCV2 infection attenuated the K63-linked ubiquitination of STING induced by PPV, blocked the formation of complex of STING, TBK1 and IRF3, and further prevented the phosphorylation of TBK1 and IRF3, resulting in a decreased IFN-β transcription response to PPV infection. Consistently, using cGAMP to direct stimulate STING also appeared a reduced STING-K63 ubiquitination and IFN-β induction in PCV2-infected cells. However, we noted that knockdown of p38-MAPK signaling could markedly attenuate the inhibitory effect of PCV2 on STING-K63 ubiquitination, and improve the induction of IFN-β in PCV2-infected whenever theses cells were challenged with PPV infection or cGAMP stimulation. Meanwhile, we found that PCV2 infection promoted the phosphorylation of USP21 to inhibit the K63 ubiquitination of STING and the transcription of IFN-β via activation of p38-MAPK signaling. Taken together, our results demonstrate that PCV2 infection activates the p38-MAPK signaling pathway-mediated USP21 phosphorylation to inhibit the K63 ubiquitination of STING, which prevents the phosphorylation and transportation to the nucleus of IRF3, leading to an increase risk for PPV infection.
Collapse
|
3
|
Effect of Goose Parvovirus and Duck Circovirus Coinfection in Ducks. J Vet Res 2020; 64:355-361. [PMID: 32984623 PMCID: PMC7497759 DOI: 10.2478/jvetres-2020-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/26/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Coinfection of goose parvovirus (GPV) and duck circovirus (DuCV) occurs commonly in field cases of short beak and dwarfism syndrome (SBDS). However, whether there is synergism between the two viruses in replication and pathogenicity remains undetermined. Material and Methods We established a coinfection model of GPV and DuCV in Cherry Valley ducks. Tissue samples were examined histopathologically. The viral loads in tissues were detected by qPCR, and the distribution of the virus in tissues was detected by immunohistochemistry (IHC). Results Coinfection of GPV and DuCV significantly inhibited growth and development of ducks, and caused atrophy and pallor of the immune organs and necrosis of the liver. GPV and DuCV synergistically amplified pathogenicity in coinfected ducks. In the early stage of infection, viral loads of both pathogens in coinfected ducks were significantly lower than those in monoinfected ducks (P < 0.05). With the development of the infection process, GPV and DuCV loads in coinfected ducks were significantly higher than those in monoinfected ducks (P < 0.05). Extended viral distribution in the liver, kidney, duodenum, spleen, and bursa of Fabricius was consistent with the viral load increases in GPV and DuCV coinfected ducks. Conclusion These results indicate that GPV and DuCV synergistically potentiate their replication and pathogenicity in coinfected ducks.
Collapse
|
4
|
Kiss I, Kovács E, Zádori Z, Mészáros I, Cságola A, Bajnóczi P, Mortensen P, Palya V. Vaccine Protection Against Experimental Challenge Infection with a PPV-27a Genotype Virus in Pregnant Gilts. VETERINARY MEDICINE-RESEARCH AND REPORTS 2020; 11:17-24. [PMID: 32158645 PMCID: PMC7048948 DOI: 10.2147/vmrr.s236912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 01/03/2023]
Abstract
Background/Introduction Porcine parvovirus (PPV), the causative agent of severe reproductive failures in pigs, is present worldwide. The witnessed spread of the virulent 27a type PPV strains since its recognition raised concerns about the efficacy of the available commercial vaccines. Methods To address this question, vaccinated pregnant gilts were challenged with a PPV-27a-like virus strain and parameters related to vaccine efficacy were compared. Results The K22 vaccine strain of Parvoruvax® (PVX) was characterized as “Kresse-like” based on the epitope mapping data. Vaccination of the gilts induced a low level of antibody responses. Based on foetal mortality, the number of sows which had challenge virus-affected foetuses, the percent of PPV positive piglets/litters plus their PPV genome and viral load PVX outscored the other vaccinated groups. Conclusion Stronger protection was provided by the “Kresse-like” K22 PPV strain-based vaccine than by the NADL-2 and NADL-like strain-based commercial vaccines against a PPV-27a cluster strain challenge. Vaccine-induced antibody levels as measured pre-challenge were not found to be an accurate indicator of protection.
Collapse
Affiliation(s)
| | | | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | | | | | | | | |
Collapse
|
5
|
Sun J, Du L, Li X, Zhong H, Ding Y, Liu Z, Ge L. Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Sci Rep 2019; 9:18675. [PMID: 31822779 PMCID: PMC6904459 DOI: 10.1038/s41598-019-55328-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Porcine diarrhea is a global problem that leads to large economic losses of the porcine industry. There are numerous factors related to piglet diarrhea, and compelling evidence suggests that gut microbiota is vital to host health. However, the key bacterial differences between non-diarrheic and diarrheic piglets are not well understood. In the present study, a total of 85 commercial piglets at three pig farms in Sichuan Province and Chongqing Municipality, China were investigated. To accomplish this, anal swab samples were collected from piglets during the lactation (0-19 days old in this study), weaning (20-21 days old), and post-weaning periods (22-40 days), and fecal microbiota were assessed by 16S rRNA gene V4 region sequencing using the Illumina Miseq platform. We found age-related biomarker microbes in the fecal microbiota of diarrheic piglets. Specifically, the family Enterobacteriaceae was a biomarker of diarrheic piglets during lactation (cluster A, 7-12 days old), whereas the Bacteroidales family S24-7 group was found to be a biomarker of diarrheic pigs during weaning (cluster B, 20-21 days old). Co-correlation network analysis revealed that the genus Escherichia-Shigella was the core component of diarrheic microbiota, while the genus Prevotellacea UCG-003 was the key bacterium in non-diarrheic microbiota of piglets in Southwest China. Furthermore, changes in bacterial metabolic function between diarrheic piglets and non-diarrheic piglets were estimated by PICRUSt analysis, which revealed that the dominant functions of fecal microbes were membrane transport, carbohydrate metabolism, amino acid metabolism, and energy metabolism. Remarkably, genes related to transporters, DNA repair and recombination proteins, purine metabolism, ribosome, secretion systems, transcription factors, and pyrimidine metabolism were decreased in diarrheic piglets, but no significant biomarkers were found between groups using LEfSe analysis.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
| | - Lei Du
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - XiaoLei Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Zhong
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
| |
Collapse
|
6
|
Afolabi KO, Iweriebor BC, Okoh AI, Obi LC. Increasing diversity of swine parvoviruses and their epidemiology in African pigs. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 73:175-183. [PMID: 31048075 PMCID: PMC7106291 DOI: 10.1016/j.meegid.2019.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Detection of infectious viral agents has been on the increase globally with the advent and usage of more sensitive and selective novel molecular techniques in the epidemiological study of viral diseases of economic importance to the swine industry. The observation is not different for the pig-infecting member of the subfamily Parvovirinae in the family Parvoviridae as the application of novel molecular methods like metagenomics has brought about the detection of many other novel members of the group. Surprisingly, the list keeps increasing day by day with some of them possessing zoonotic potentials. In the last one decade, not less than ten novel swine-infecting viruses have been added to the subfamily, and ceaseless efforts have been in top gear to determine the occurrence and prevalence of the old and new swine parvoviruses in herds of pig-producing countries worldwide. The story, however, is on the contrary on the African continent as there is presently a dearth of information on surveillance initiatives of the viruses among swine herds of pig-producing countries in the region. Timely detection and characterization of the viral pathogens is highly imperative for the implementation of effective control and prevention of its spread. This review therefore presents a concise overview on the epidemiology of novel porcine parvoviruses globally and also provides up-to-date highlights on the reported cases of the viral agents in the African sub-region.
Collapse
Affiliation(s)
- Kayode Olayinka Afolabi
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape Province, South Africa; Department of Biological Sciences, Anchor University, Ayobo, Lagos, Nigeria.
| | - Benson Chuks Iweriebor
- School of Science and Technology, Sefako Makghato Health Sciences University, Medunsa, 0204 Pretoria, Gauteng Province, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape Province, South Africa
| | - Larry Chikwelu Obi
- School of Science and Technology, Sefako Makghato Health Sciences University, Medunsa, 0204 Pretoria, Gauteng Province, South Africa
| |
Collapse
|
7
|
Ouyang T, Zhang X, Liu X, Ren L. Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses 2019; 11:v11020185. [PMID: 30795620 PMCID: PMC6410029 DOI: 10.3390/v11020185] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is the etiological agent that causes porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD), which are present in every major swine-producing country in the world. PCV2 infections may downregulate the host immune system and enhance the infection and replication of other pathogens. However, the exact mechanisms of PCVD/PCVAD are currently unknown. To date, many studies have reported that several cofactors, such as other swine viruses or bacteria, vaccination failure, and stress or crowding, in combination with PCV2, lead to PCVD/PCVAD. Among these cofactors, co-infection of PCV2 with other viruses, such as porcine reproductive and respiratory syndrome virus, porcine parvovirus, swine influenza virus and classical swine fever virus have been widely studied for decades. In this review, we focus on the current state of knowledge regarding swine co-infection with different PCV2 genotypes or strains, as well as with PCV2 and other swine viruses.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xiaohua Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
- College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Induction of Porcine Dermatitis and Nephropathy Syndrome in Piglets by Infection with Porcine Circovirus Type 3. J Virol 2019; 93:JVI.02045-18. [PMID: 30487279 DOI: 10.1128/jvi.02045-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging porcine circovirus that has been associated with porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, reproductive failure, cardiac pathologies, and multisystemic inflammation in piglets and sows. Many aspects of PCV3 infection biology and pathogenesis, however, remain unknown. Here, we used a PCV3 virus stock from the rescue of an infectious PCV3 DNA clone to intranasally inoculate 4- and 8-week-old specific-pathogen-free piglets for evaluation of PCV3 pathogenesis. For 4-week-old piglets, typical clinical signs resembling those of PDNS-like disease were observed when piglets were inoculated with PCV3 alone or PCV3 combined with immunostimulation by keyhole limpet hemocyanin, with a mortality of 40% (2/5) for both types of inoculated piglets during a 28-day observation period postinoculation. Both types of inoculated piglets showed similar progressive increases in viral loads in the sera and had seroconverted to PCV3 capsid antibody after inoculation. Pathological lesions and PCV3-specific antigen were detected in various tissues and organs, including the lung, heart, kidney, lymph nodes, spleen, liver, and small intestine, in both types of inoculated piglets. The levels of proinflammatory cytokines and chemokines, including interleukin 1 beta (IL-1β), IL-6, IL-23α, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and chemokine ligand 5 (CCL5), were significantly upregulated in both groups of inoculated piglets. Eight-week-old piglets also exhibited a similar PDNS-like disease but without death after PCV3 inoculation, as evidenced by pathological lesions and PCV3 antigen in various tissues and organs. These results show for the first time successful reproduction of PDNS-like disease by PCV3 infection and further provide significant information regarding the pathogenesis of PCV3 in piglets.IMPORTANCE Porcine circovirus type 3 (PCV3), an emerging porcine circovirus, is considered the cause of porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs and other systemic diseases in piglets and sows. To evaluate the pathogenesis of PCV3 infection in vivo, we used a PCV3 virus stock from the rescue of an infectious PCV3 DNA clone to intranasally inoculate 4- and 8-week-old specific-pathogen-free piglets and demonstrated successful reproduction of PDNS-like disease in animals that were inoculated with PCV3 alone or PCV3 combined with immunostimulation by keyhole limpet hemocyanin. Both 4- and 8-week-old PCV3-inoculated piglets showed similar increases in viral loads in the sera and had seroconverted to PCV3 capsid antibody. Pathological lesions and PCV3-specific antigen were detected in various tissues and organs, while numerous proinflammatory cytokines and chemokines in the sera were significantly upregulated after PCV3 inoculation. These results will provide significant information regarding the pathogenesis of PCV3 in piglets.
Collapse
|
9
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|