1
|
Yao J, Yang Z, Guo X, Wang J, Yu B, Liu S, Hu X, Yang K, Yao L, Zhang T. Recombinant porcine interferon δ8 inhibited porcine deltacoronavirus infection in vitro and in vivo. Int J Biol Macromol 2024; 279:135375. [PMID: 39244115 DOI: 10.1016/j.ijbiomac.2024.135375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) expressed by the HEK 293F expression system was used to evaluated its antiviral activity against PDCoV both in vitro and in vivo. Results demonstrated that rIFN-δ8 displayed non-toxic to ST cells and primary PAMs, and effectively inhibited PDCoV replication in a dose-dependent manner in vitro, with complete suppression of virus replication at a concentration of 2 μg/ml. Treatment of piglets with two doses of 25 μg/kg of rIFN-δ8 reduced clinical symptoms, decreased virus shedding, alleviated intestinal damage, and lowered the viral load in the jejunum and ileum. Furthermore, the levels of interferon-stimulated genes (ISGs) such as Viper, Mx1, ISG15, IFIT1, OSA, and IFITM1 were significantly increased both in vitro and in vivo, with elevated ISG levels sustained for at least 3 days in vivo. These findings suggest that rIFN-δ8 has the potential to serve as an effective antiviral agent for preventing PDCoV in pigs in the future.
Collapse
Affiliation(s)
- Jiale Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Zhuan Yang
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Xinchun Guo
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Jucai Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Bilin Yu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Saige Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Xiaomin Hu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Kankan Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Teng Zhang
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| |
Collapse
|
2
|
Ashton LV, Weishaar KM, Séguin B, MacNeill AL. Oclacitinib and Myxoma Virus Therapy in Dogs with High-Grade Soft Tissue Sarcoma. Biomedicines 2023; 11:2346. [PMID: 37760788 PMCID: PMC10525839 DOI: 10.3390/biomedicines11092346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Human rhabdomyosarcomas are rarely cured by surgical resection alone. This is also true for high-grade soft tissue sarcomas in dogs. Dogs with spontaneous sarcoma are good models for clinical responses to new cancer therapies. Strategic combinations of immunotherapy and oncolytic virotherapy (OV) could improve treatment responses in canine and human cancer patients. To develop an appropriate combination of immunotherapy and OV for dogs with soft tissue sarcoma (STS), canine cancer cells were inoculated with myxoma viruses (MYXVs) and gene transcripts were quantified. Next, the cytokine concentrations in the canine cancer cells were altered to evaluate their effect on MYXV replication. These studies indicated that, as in murine and human cells, type I interferons (IFN) play an important role in limiting MYXV replication in canine cancer cells. To reduce type I IFN production during OV, oclacitinib (a JAK1 inhibitor) was administered twice daily to dogs for 14 days starting ~7 days prior to surgery. STS tumors were excised, and MYXV deleted for serp2 (MYXV∆SERP2) was administered at the surgical site at two time points post-operatively to treat any remaining microscopic tumor cells. Tumor regrowth in dogs treated with OV was decreased relative to historical controls. However, regrowth was not further inhibited in patients given combination therapy.
Collapse
Affiliation(s)
- Laura V. Ashton
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kristen M. Weishaar
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Bernard Séguin
- Central Victoria Veterinary Hospital, Victoria, BC V8X 2R3, Canada;
| | - Amy L. MacNeill
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
3
|
Zhang H, Zhang D, Zhang S, Liu H, Wang H, Wang C, Zou D, Hu B, Lian S, Lu S, Bai X. Isolation and characterization of the mink interferon-epsilon gene and its antiviral activity. Front Vet Sci 2023; 9:972433. [PMID: 36776547 PMCID: PMC9915148 DOI: 10.3389/fvets.2022.972433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/09/2022] [Indexed: 01/28/2023] Open
Abstract
The interferon (IFN) response is the first line of defense against viral invasion and thus plays a central role in the regulation of the immune response. IFN-epsilon (IFN-ε) is a newly discovered type I IFN that does not require viral induction, unlike other type I IFNs. IFN-ε is constitutively expressed in epithelial cells and plays an important role in mucosal immunity. In this study, we evaluated the biological activity of the mink-IFN (MiIFN)-ε gene in prokaryotic cells. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to evaluate IFN-ε expression in different mink tissues. MiIFN-ε was highly expressed in brain, lung, tracheal, kidney, intestinal, bladder, ovarian, and testis tissues. There was no significant difference in MiIFN-ε expression between female and male minks, except in the reproductive system. Expression of the small ubiquitin-like modifier (SUMO3)-MiIFN-ε fusion gene was induced by isopropylβ-d-thiogalactoside, and MiIFN-ε was collected after SUMO-specific protease digestion. We tested the antiviral activity of MiIFN-ε against vesicular stomatitis virus (VSV) in epithelial cells of feline kidney 81 (F81). We used qRT-PCR to analyze the expression of several IFN-stimulated genes (ISGs), including ISG15, 2'-5' oligoadenylate synthetase (2'-5'OAS1), and myxovirus resistance protein 1 (Mx1). Recombinant IFN-ε induced high ISG expression in F81 cells. Compared with those in the cell control group, expressions of ISG15, Mx1, and 2'-5' OAS1 in the VSV-GFP control, IFN-ε, and MiIFN-ε-inhibited VSV-GFP groups were significantly increased. Compared with those in the VSV-GFP control group, expressions of ISG15 and 2'-5' OAS1 in the IFN-ε and MiIFN-ε-inhibited VSV-GFP groups were significantly increased, and the differences were highly significant (p < 0.0001). IFN-ε played an indirect antiviral role. These findings lay the foundation for detailed investigation of IFN-ε in the future.
Collapse
Affiliation(s)
- Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Dongliang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shasha Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Han Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Cong Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Deying Zou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shiying Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China,*Correspondence: Xue Bai
| |
Collapse
|
4
|
Kim DH, Han SH, Go HJ, Kim DY, Kim JH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Antiviral activity of canine interferon lambda 3 expressed using a recombinant adenovirus against canine coronavirus, canine parvovirus, and canine distemper virus. Vet Res Commun 2022; 46:1363-1368. [PMID: 36155869 PMCID: PMC9511451 DOI: 10.1007/s11259-022-10000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/07/2022] [Indexed: 10/27/2022]
Abstract
Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Hoon Han
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Da-Yoon Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea. .,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea. .,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.
| |
Collapse
|
5
|
Zhang H, Zhang D, Lu H, Zou D, Hu B, Lian S, Lu S. Antiviral activity of mink interferon alpha expressed in the yeast Pichia pastoris. Front Vet Sci 2022; 9:976347. [PMID: 36187832 PMCID: PMC9515496 DOI: 10.3389/fvets.2022.976347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Many viruses can cause infections in mink, including canine distemper virus, mink enteritis virus, and Aleutian disease virus. Current treatments are ineffective, and these infections are often fatal, causing severe economic losses. As antiviral drugs may effectively prevent and control these infections, recent research has increasingly focused on antiviral interferons. Herein, the gene encoding a mature mink interferon alpha (MiIFN-α) was synthesized according to the P. pastoris preference of codon usage and a recombinant plasmid, pPICZαA-MiIFN-α, was constructed. pPICZαA-MiIFN-α was linearized and transformed into the P. pastoris X33 strain, and zeocin-resistant transformants were selected. Protein expression was induced by methanol. SDS-PAGE and western blot analyses showed that a 25-kDa fusion protein was expressed in the culture supernatant. Antiviral activity of the expressed protein was determined using cytopathic effect inhibition (CPEI). The purified MiIFN-α significantly inhibited the cytopathic effect of vesicular stomatitis virus with a green fluorescent protein (VSV-GFP) in F81 feline kidney cells, with an antiviral activity of 6.4 × 107 IU/mL; it also significantly inhibited MEV replication in F81 cells. MiIFN-α antiviral activity against VSV-GFP was significantly reduced on treatment with pH 4 and pH 10 conditions for 24 h (p < 0.01). Serum MiIFN-α concentrations in rat were measured using enzyme-linked immune-sorbent assay; MiIFN-α concentrations in rat serum peaked at ~36 h after injection. A high dose of MiIFN-α was safe for use. There were no significant differences in body temperature, tissue changes, and lymphocyte, total white blood cell, and central granulocyte counts between the injected and control groups (p > 0.05). These findings lay a foundation for the large-scale production of recombinant MiIFNs.
Collapse
Affiliation(s)
- Hailing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dongliang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Han Lu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Deying Zou
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shiying Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
- *Correspondence: Shiying Lu
| |
Collapse
|
6
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
7
|
Rzepecka A, Jagielski D, Cywińska A, Sapierzyński R, Żmigrodzka M, Witkowska-Piłaszewicz O, Winnicka A. MHCII Expression on Peripheral Blood Monocytes in Canine Lymphoma: An Impact of Glucocorticoids. Animals (Basel) 2022; 12:ani12162135. [PMID: 36009726 PMCID: PMC9404857 DOI: 10.3390/ani12162135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Loss or decreased expression of human leukocyte antigen—D-related (HLA-DR) on the surface of monocytes is related to the dysfunction of the immune system and was reported in human neoplasia, including lymphoma. Canine lymphoma is frequently presented as a valuable comparative model for studies on human non-Hodgkin’s lymphoma. However, there are no studies on the expression of analogue proteins—MHCII antigens—on monocytes in canine lymphoma. In this study, we have evaluated the changes in the expression of MHCII on monocytes in the blood of dogs with lymphoma before any treatment and in dogs that had previously received glucocorticoids. Glucocorticoids are often used by clinicians as first drugs after diagnosis for immediate health improvement and are known to impact monocyte number. We have shown an increase in the percentage of MHCII− monocytes, regardless of treatment. However, only in dogs that had received glucocorticoids were changes in the proportion of MHCII+ and MHCII− monocytes reflected also by the changes in the number of MHCII− monocytes in the blood, which was significantly higher. Evaluating the changes in canine monocytes might be helpful in the diagnosis of various tumor types, monitoring of the treatment or assessing the immune status of dogs. Abstract An increase in the percentage of monocytes with reduced HLA-DR expression and immunosuppressive properties has been reported in numerous human neoplastic diseases, including lymphoma. However, there are no analogous studies on phenotypical variations in the peripheral blood monocytes in dogs with lymphoma. The aim of this study was to determine the difference in the expression of the MHCII molecule on peripheral blood monocytes in dogs with lymphoma before any treatment (NRG) and in dogs that had previously received glucocorticoids (RG) in comparison to healthy dogs. Flow cytometry immunophenotyping of peripheral blood leukocytes was performed using canine-specific or cross-reactive antibodies against CD11b, CD14 and MHCII. In the blood of dogs with lymphoma (NRG and RG), compared to that of healthy ones, the MHCII+ and MHCII− monocytes ratio was changed due to an increase in the percentage of MHCII− monocytes. The number of MHCII− monocytes was significantly higher only in RG dogs compared to healthy ones, which might result from the release of these cells from the blood marginal pool due to the action of glucocorticoids. Our results encourage further studies to assess if changes in MHCII expression affect immune status in dogs with lymphoma.
Collapse
Affiliation(s)
- Alicja Rzepecka
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Correspondence:
| | | | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Rafał Sapierzyński
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Magdalena Żmigrodzka
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | - Anna Winnicka
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
8
|
Singh M, Manikandan R, Kumar De U, Chander V, Rudra Paul B, Ramakrishnan S, Maramreddy D. Canine parvovirus-2: An Emerging Threat to Young Pets. Vet Med Sci 2022. [DOI: 10.5772/intechopen.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Canine parvovirus-2 (CPV-2) is a highly contagious and key enteropathogen affecting the canine population around the globe by causing canine parvoviral enteritis (CPVE) and vomition. CPVE is one of the the leading causes of morbidity and mortality in puppies and young dogs. Over the years, five distinct antigenic variants of CPV-2, namely CPV-2a, CPV-2b, new CPV-2a, new CPV-2b, and CPV-2c, have emerged throughout the world. CPV-2 infects a diverse range of wild animals, and the newer variants of CPV-2 have expanded their host range to include felines. Despite the availability of highly specific diagnostics and efficacious vaccines, CPV-2 outbreaks have been reported globally due to the emergence of newer antigenic variants, expansion of the viral host range, and vaccination failures. The present chapter describes the latest information pertaining to virus properties and replication, disease manifestations in animals, and an additional recent updates on diagnostic, prevention and control strategies of CPV-2.
Collapse
|
9
|
Cook SD. Letter to the editor. Mult Scler Relat Disord 2022; 57:103323. [PMID: 35158440 DOI: 10.1016/j.msard.2021.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Stuart D Cook
- Department of Neurology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
10
|
Shi J, Li X, Zhu M, Chi H, Song Y, Wang J, Huang J. The dUTPase of caprine arthritis-encephalitis virus negatively regulates interferon signaling pathway. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:209-216. [PMID: 34777521 DOI: 10.22099/ijvr.2021.38240.5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/19/2021] [Accepted: 06/27/2021] [Indexed: 09/30/2022]
Abstract
Background Deoxyuracil triphosphate nucleotide (dUTP) pyrophosphatase (dUTPase, DU) is an enzyme of caprine arthritis-encephalitis virus (CAEV) that minimizes incorporation of dUTP into the DNA. Caprine arthritis-encephalitis virus relies partly on its ability to escape from innate immunity to cause persistent infections. Interferon β (IFN-β) is an important marker for evaluating the innate immune system, and it has a broad spectrum of antiviral activity. Aims This study was conducted to investigate the details of the IFN-β response to CAEV infection. Methods The expression of IFN-β and the proliferation of Sendai virus (SeV) and vesicular stomatitis virus (VSV) were determined by real-time quantitative polymerase chain reaction (qPCR). The effect of DU on the IFN signaling pathway was evaluated using luciferase reporter assays. Results In our study, the expression of IFN-β was significantly inhibited and the proliferation of SeV and VSV was promoted in cells overexpressing CAEV-DU. DU affected interferon stimulated response element (ISRE) and IFN-β promoter activities induced by RIG-I/MDA5/MAVS/TBK1 pathway, while did not affect them induced by interferon regulatory factor 3 (IRF3-5D). Conclusion DU protein downregulated the production of IFN-β by inhibiting the activity of the signal transduction molecules upstream of IRF3, thereby, helping CAEV escape innate immunity. Findings of this work provide an evidence to understand the persistent infection and multiple system inflammation of CAEV.
Collapse
Affiliation(s)
- J Shi
- MSc Student in Biology, Department of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China.,These authors contributed equally to this work
| | - X Li
- Departmet of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China.,These authors contributed equally to this work
| | - M Zhu
- MSc Student in Biology, Department of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - H Chi
- MSc Student in Biology, Department of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Y Song
- MSc Student in Biology, Department of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - J Wang
- MSc Student in Biology, Department of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - J Huang
- Departmet of Microbiology & Immunology, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
11
|
Gould AP, Coyner KS, Trimmer AM, Tater K, Rishniw M. Canine pedal papilloma identification and management: a retrospective series of 44 cases. Vet Dermatol 2021; 32:509-e141. [PMID: 34212427 DOI: 10.1111/vde.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Papillomavirus infections in dogs have a variety of manifestations and involve multiple viral genera. Canine pedal papillomas have been infrequently studied and reported in the literature. OBJECTIVE To report the signalment, history, treatment and outcome of biopsy-confirmed cases of canine pedal papillomatosis, collected from veterinarians across the United States and Canada ANIMALS: Medical records from 44 dogs were submitted by North American veterinarians. METHODS AND MATERIALS Surveys were submitted through the Veterinary Information Network for biopsy-confirmed cases of canine pedal papillomatosis. Submissions included information on patient signalment, history, biopsy report, treatment and outcome. RESULTS Forty-four cases were reviewed. The median age of presentation was four years old. Dogs most commonly presented with lameness and/or paw licking/chewing. Only one paw was affected in 35 cases, and front paws were more often affected than back paws. Twenty-eight dogs presented with one mass. Histopathological evaluation documented 33 cases of noninverted papillomas and 11 cases of inverted papillomas. Thirty-four papillomas resolved in total; 25 resolved within three weeks after biopsy collection. Twenty-one dogs received no additional treatment and 15 of those cases resolved. Azithromycin was the most commonly reported treatment initiated after biopsy was collected. CONCLUSIONS AND CLINICAL IMPORTANCE The biological behaviour of canine pedal papillomas in this case series was similar to oral papillomas, and most lesions resolved with or without additional treatment. Further research is needed to better characterise the causative papillomavirus types and genera involved in the development of canine pedal papillomas.
Collapse
Affiliation(s)
- Alexandra P Gould
- Dermatology Clinic for Animals, 8300 Quinault Drive NE, Suite A, Lacey, WA, 98516, USA.,Animal Allergy and Dermatology Specialists, 6032 S Durango Dr, Suite 100, Las Vegas, NV, 89113, USA
| | - Kimberly S Coyner
- Dermatology Clinic for Animals, 8300 Quinault Drive NE, Suite A, Lacey, WA, 98516, USA
| | - Ann M Trimmer
- Animal Allergy and Dermatology Specialists, 6032 S Durango Dr, Suite 100, Las Vegas, NV, 89113, USA
| | - Kathy Tater
- Veterinary Information Network, 777 West Covell Boulevard, Davis, CA, 95616, USA
| | - Mark Rishniw
- Veterinary Information Network, 777 West Covell Boulevard, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Kim DH, Park BJ, Ahn HS, Go HJ, Kim DY, Kim JH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Canine interferon lambda 3 expressed using an adenoviral vector effectively induces antiviral activity against canine influenza virus. Virus Res 2021; 296:198342. [PMID: 33607185 DOI: 10.1016/j.virusres.2021.198342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Interferon-lambda (IFN-λ) is a type-III IFN and is considered a candidate of antiviral therapeutics. Although the antiviral effects of IFN-λ have been investigated in several studies, it has not been clinically approved as an antiviral agent. In this study, an adenoviral vector expression system employing a tetracycline-operator system was developed to control the expression of canine IFN-λ3. The antiviral effects of canine IFN-λ3 were determined in Madin-Darby canine kidney cells and canine tracheal epithelial cells. After transducing each cell line with recombinant adenovirus containing canine interferon lambda3 gene (Ad-caIFNλ3), the mRNA-expression of interferon-stimulated genes Mx1, ISG15, and OAS1 increased significantly (P < 0.05). The replication of canine influenza virus (CIV) was significantly suppressed in Ad-caIFNλ3-infected cells. These results indicate that the newly constructed adenoviral vector system could express canine IFN-λ3, which could subsequently inhibit CIV replication in two canine cell lines. These data imply that the recombinant Ad-caIFNλ3 can potentially be used to treat canine influenza and other viral diseases.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Da-Yoon Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
13
|
Wang X, Yang Q, Zhou X, Chen T, Dou L, Wang F, Wang W. Shenling Baizhu Powder Inhibits RV-SA11-Induced Inflammation and Rotavirus Enteritis via TLR4/MyD88/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:642685. [PMID: 33897431 PMCID: PMC8062900 DOI: 10.3389/fphar.2021.642685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Rotavirus enteritis (RVE) is a common acute intestinal infectious disease caused by rotavirus infection. It is an important cause of death in children younger than 5 years worldwide. Shenling baizhu powder (SBP), a classic traditional Chinese formulation, is one of the most popularly prescribed medicines for digestive diseases. Clinical studies have revealed the protective effects of SBP on RVE. However, the potential mechanism is still unclear. In this study, we aimed to evaluate the anti-rotavirus effect of SBP and its mechanism, focusing on the TLR4/MyD88/NF-κB signaling pathway. Our results demonstrated that, based on the inhibition of the virus-induced cytopathic effect in Caco-2 cells, the concentration for 50% of maximal effect (EC50) and selectivity index (SI) of SBP for RV-SA11 in the serum were 5.911% and 11.63, respectively. A total of 219 active compounds with oral bioavailability ≥30% and drug-likeness ≥ 0.18 were selected from the 10 ingredients present in the formulation of SBP, which acted on 471 potential targets. A total of 226 target genes of RVE were obtained from the GeneCards database. The protein-protein interaction (PPI) network showed that there was a close interaction between 44 common targets of SBP and RVE. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SBP acted on RVE through various inflammatory pathways and the intestinal immune network. Subsequently, we investigated the effect of SBP on TLR4/MyD88/NF-κB signaling pathway in vitro. After infection with RV- SA11, the expression of TLR4, MyD88, and NF-κB mRNA and protein increased significantly, which could be abolished by SBP treatment. In addition, the IL-1β, TNF-α, IL-6, and IFN-β levels increased markedly in Caco-2 cells infected with RV-SV11. Treatment with SBP partly reversed the changes of IL-1β, TNF-α, and IL-6, while further increased the level of IFN-β. In conclusion, our study revealed that SBP can significantly inhibit rotavirus replication and proliferation in vitro. The antiviral effect may be related to the regulation of the TLR4/MyD88/NF-κB signaling pathway, followed by the down regulation of inflammatory cytokines and up regulation of IFN-β induced by rotavirus.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Yang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Xiaofeng Zhou
- Linyi Traditional Chinese Medicine Hospital-Endoscopic Centre, Linyi, China
| | - Ting Chen
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Dou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- Department of Spleen and Stomach Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Interferon therapies in small animals. Vet J 2021; 271:105648. [PMID: 33840487 DOI: 10.1016/j.tvjl.2021.105648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023]
Abstract
Interferons (IFNs) are cytokines that play an important role in the immune response of animals and humans. A number of studies reviewed here have evaluated the use of human, canine and feline IFNs as treatments for infectious, inflammatory and neoplastic disease in dogs and cats. Recombinant canine IFN-γ is deemed an efficacious therapy for canine atopic dermatitis. Recombinant feline IFN-ω is effective against canine parvoviral enteritis and has also been recommended for canine atopic dermatitis. Based on limited evidence, recombinant canine IFN-α could be a topical treatment option for dogs with gingivitis and keratoconjunctivitis sicca. Conclusive evidence is lacking for other diseases and large randomised controlled trials are needed before IFNs can be recommended for other indications.
Collapse
|
15
|
Li N, Gao S, Tong J, Yu Y, Zhang Q, Xu C. Probiotics as a functional food ingredient in allergic diseases: regulation of CD4+ T helper cell differentiation. Crit Rev Microbiol 2020; 46:463-474. [PMID: 32720543 DOI: 10.1080/1040841x.2020.1796578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Allergic diseases are increasing worldwide, associating with increased health costs and decreased quality of life. Allergy is immune-related diseases caused by an allergic immune response to innocuous substance in the environment. At present, research has focussed on the study of the relevance to the microbiome and the phenotypes of allergy, including the relationships among the gastrointestinal microbiome, immune function, and allergic sensitisation. Probiotics as functional food ingredient are thought to secrete functional metabolites that have antibacterial effects on ameliorating intestinal health and CD4+ T helper cells-mediated immunity. This review will summarise the role of probiotics in the immune regulation and flora balance, highlighting recent advances in our understanding of the imbalance of Th subsets and cytokine leading to the immunopathology of allergic reactions. Finally, we discussed the unresolved problems and future research directions in order to promote the clinical application of probiotics immunotherapy.
Collapse
Affiliation(s)
- Na Li
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Tropical Medicine, Hainan Medical University, HaiKou, China
| | - Shenshen Gao
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yi Yu
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Zhang
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chundi Xu
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Sellers RS, Nelson K, Bennet B, Wolf J, Tripathi N, Chamanza R, Perron Lepage MF, Adkins K, Laurent S, Troth SP. Scientific and Regulatory Policy Committee Points to Consider*: Approaches to the Conduct and Interpretation of Vaccine Safety Studies for Clinical and Anatomic Pathologists. Toxicol Pathol 2019; 48:257-276. [PMID: 31594486 DOI: 10.1177/0192623319875085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and execution of toxicology studies supporting vaccine development have some unique considerations relative to those supporting traditional small molecules and biologics. A working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee conducted a review of the scientific, technical, and regulatory considerations for veterinary pathologists and toxicologists related to the design and evaluation of regulatory toxicology studies supporting vaccine clinical trials. Much of the information in this document focuses on the development of prophylactic vaccines for infectious agents. Many of these considerations also apply to therapeutic vaccine development (such as vaccines directed against cancer epitopes); important differences will be identified in various sections as appropriate. The topics addressed in this Points to Consider article include regulatory guidelines for nonclinical vaccine studies, study design (including species selection), technical considerations in dosing and injection site collection, study end point evaluation, and data interpretation. The intent of this publication is to share learnings related to nonclinical studies to support vaccine development to help others as they move into this therapeutic area. [Box: see text].
Collapse
Affiliation(s)
| | | | - Bindu Bennet
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | | | - Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | | | | |
Collapse
|
17
|
The Arabian camel, Camelus dromedarius interferon epsilon: Functional expression, in vitro refolding, purification and cytotoxicity on breast cancer cell lines. PLoS One 2019; 14:e0213880. [PMID: 31490936 PMCID: PMC6730848 DOI: 10.1371/journal.pone.0213880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023] Open
Abstract
The current study highlights, for the first time, cloning, overexpression and purification of the novel interferon epsilon (IFNƐ), from the Arabian camel Camelus dromedaries. The study then assesses the cytotoxicity of IFNε against two human breast cancer cell lines MDA-MB-231 and MCF-7. Full-length cDNA encoding interferon epsilon (IFNε) was isolated and cloned from the liver of the Arabian camel, C. dromedarius using reverse transcription-polymerase chain reaction. The sequence analysis of the camel IFNε cDNA showed a 582-bp open reading frame encoding a protein of 193 amino acids with an estimated molecular weight of 21.230 kDa. A BLAST search analysis revealed that the C. dromedarius IFNε shared high sequence identity with the IFN genes of other species, such as Camelus ferus, Vicugna pacos, and Homo sapiens. Expression of the camel IFNε cDNA in Escherichia coli gave a fusion protein band of 24.97 kDa after induction with either isopropyl β-D-1-thiogalactopyranoside or lactose for 5 h. Recombinant IFNε protein was overexpressed in the form of inclusion bodies that were easily solubilized and refolded using SDS and KCl. The solubilized inclusion bodies were purified to apparent homogeneity using nickel affinity chromatography. We examined the effect of IFNε on two breast cancer cell lines MDA-MB-231 and MCF-7. In both cell lines, IFNε inhibited cell survival in a dose dependent manner as observed by MTT assay, morphological changes and apoptosis assay. Caspase-3 expression level was found to be increased in MDA-MB-231 treated cells as compared to untreated cells.
Collapse
|
18
|
Cai C, Wang X, Zhao Y, Yi C, Jin Z, Zhang A, Han L. Construction of a mavs-inactivated MDCK cell line for facilitating the propagation of canine distemper virus (CDV). Mol Immunol 2019; 114:133-138. [PMID: 31352229 DOI: 10.1016/j.molimm.2019.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/10/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Canine distemper is a highly contagious disease of wild and domestic carnivores. Obtaining of a suitable cell line for canine distemper virus (CDV) propagation is very important for field CDV isolation and vaccine antigen preparation. However, the cell line currently developed cell lines for CDV propagation are a marmoset lymphoid cell line (B95a), which could cause the virus to potentially infect human cells, and canine SLAM-expressing Vero cells, which may cause the virus to lose virulence. Therefore, a canine cell line constructed for efficient CDV propagation would be attractive. In the present study, a Madin-Darby Canine Kidney Epithelial (MDCK) cell line with mavs (mitochondrial antiviral signaling) inactivation was constructed by CRISPR/Cas9 technology. The interferon-I response induced by poly(I:C), an analogue of viral RNA, was significantly blocked in the constructed cell line, designated MDCK-KOmavs. Moreover, the propagation of a filed CDV strain was approximately 100 times higher in MDCK-KOmavs cells than in wild-type MDCK cells. Therefore, in the present study, a canine cell line facilitating CDV propagation was successfully constructed, and the results suggested that the constructed canine cell line was more efficient than the wild-type cell line for the isolation of field CDVs. In addition, the rapid propagation of CDVs to high titers in the constructed MDCK-KOmavs cell line indicated that this cell line could also be an alternative cell line for the preparation of vaccine antigens.
Collapse
Affiliation(s)
- Cong Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Xiaoping Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Zehua Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei, 430070, China.
| |
Collapse
|
19
|
Expression and characterization of albumin fusion protein canine IFNγ-CSA in baculovirus-insect cell expression system. Protein Expr Purif 2019; 162:32-37. [PMID: 31100416 DOI: 10.1016/j.pep.2019.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
Abstract
In this study, canine IFNγ was fused by a flexible linker with canine serum albumin to construct the fusion protein IFNγ-CSA for the purpose to design a long-acting canine IFNγ. The fusion protein was successfully expressed in baculovirus-infected Sf9 insect cells and was purified by salting-out and ion exchange chromatography. The IFNγ-CSA fusion possessed potent anti-viral assay against vesicular stomatitis virus in cultured cells. IFNγ-CSA was also stable at 37 °C up to 72 h compared with 8 h for IFNγ alone. In vivo pharmacokinetics demonstrated a significantly longer half-life for IFNγ-CSA (15.42 h) than for canine reIFNγ (1.51 h) in KM mice. These results indicate that IFNγ-CSA expression in the baculovirus system was successful and provide a promising long-acting cytokine for veterinary clinical applications.
Collapse
|
20
|
Setthawongsin C, Tangkawattana S, Rungsipipat A, Techangamsuwan S. In vitro Effect of Recombinant Feline Interferon-Ω (rFeIFN-Ω) on the Primary CanineTransmissible Venereal Tumor Culture. Front Vet Sci 2019; 6:104. [PMID: 31024941 PMCID: PMC6467026 DOI: 10.3389/fvets.2019.00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Interferons (IFNs), signaling proteins produced by host cells, are secreted in response to pathogen activity as well as to tumor cells, and display antiviral, antiproliferative, and immunomodulatory effects. Recombinant feline interferon omega (rFeIFN-ω) has in vitro growth inhibition activities on various canine and feline tumor cell lines. Canine transmissible venereal tumor (CTVT) is used as an animal model for immunotherapy due to its specific growth phase. Previous studies have usually focused on the interaction between tumor infiltrating lymphocytes (TILs) and CTVT cells. However, the specific effects of rFeIFN-ω on CTVT cells remains poorly defined. Aims: The aims of this study, therefore, were to evaluate the in vitro effect of rFeIFN-ω on primary CTVT cells and to study the mRNA expression of apoptotic genes and drug resistance genes. Materials and Methods: Purified CTVT cells were treated with various concentrations of rFeIFN-ω and the viability of the cultured cells was ascertained at 24, 48, and 72 h post treatment (hpt) and a dose-response curve plotted. The mRNA expression of apoptotic (BAX and BCL-2) and drug resistance (ABCB1 and ABCG2) genes was performed by reverse transcription quantitative real-time PCR at 72 hpt. Results: rFeIFN-ω displayed an effect against CTVT cell viability, which decreasing viability in a dose-dependent manner within 72 hpt. The relative mRNA expression of BCL-2 was upregulated only at a rFeIFN-ω concentration of 104 IU/100 μl. However, higher concentrations of rFeIFN-ω gave a higher level of relative mRNA expression of ABCB1 transporter gene. Conclusion: This study provided the information of in vitro effect of rFeIFN-ω on CTVT cell viability in a dose dependent manner, as well as, the alteration of BCL-2 and ABCB1 gene expression after treatment. These results encourage future in vivo studies to evaluate the potential efficacy of this treatment in CTVT cases.
Collapse
Affiliation(s)
- Chanokchon Setthawongsin
- Companion Animal Cancer Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirikachorn Tangkawattana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, KhonKaen University, KhonKaen, Thailand
| | - Anudep Rungsipipat
- Companion Animal Cancer Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Companion Animal Cancer Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Interferon-Stimulated Genes-Mediators of the Innate Immune Response during Canine Distemper Virus Infection. Int J Mol Sci 2019; 20:ijms20071620. [PMID: 30939763 PMCID: PMC6480560 DOI: 10.3390/ijms20071620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression of 110 manually selected genes in acute, subacute and chronic lesions was analyzed using pre-existing microarray data. Interferon regulatory factor (IRF) 3, IRF7, signal transducer and activator of transcription (STAT) 1, STAT2, MX protein, protein kinase R (PKR), 2'-5'-oligoadenylate synthetase (OAS) 1 and interferon-stimulated gene (ISG) 15 expression were also evaluated using immunohistochemistry. Cellular origin of STAT1, STAT2, MX and PKR were determined using immunofluorescence. CDV infection caused an increased expression of the antiviral effector proteins MX, PKR, OAS1 and ISG15, which probably contributed to a restricted viral replication, particularly in neurons and oligodendrocytes. This increase might be partly mediated by IRF-dependent pathways due to the lack of changes in IFN-I levels and absence of STAT2 in astrocytes. Nevertheless, activated microglia/macrophages showed a strong expression of STAT1, STAT2 and MX proteins in later stages of the disease, indicating a strong activation of the IFN-I signaling cascade, which might be involved in the aggravation of bystander demyelination.
Collapse
|
22
|
Functional expression of porcine interferon-α using a combinational strategy in Pichia pastoris GS115. Enzyme Microb Technol 2019; 122:55-63. [DOI: 10.1016/j.enzmictec.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
|
23
|
Li B, Chen A, Zou S, Wu J, Wang H, Chen R, Luo M. Albumin fusion improves the pharmacokinetics and in vivo antitumor efficacy of canine interferon gamma. Int J Pharm 2019; 558:404-412. [DOI: 10.1016/j.ijpharm.2018.12.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023]
|
24
|
Herron LR, Pridans C, Turnbull ML, Smith N, Lillico S, Sherman A, Gilhooley HJ, Wear M, Kurian D, Papadakos G, Digard P, Hume DA, Gill AC, Sang HM. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol 2018; 18:82. [PMID: 30594166 PMCID: PMC6311007 DOI: 10.1186/s12896-018-0495-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.
Collapse
Affiliation(s)
- Lissa R. Herron
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Clare Pridans
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
| | - Matthew L. Turnbull
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Medical Research Council University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, G61 1QH UK
| | - Nikki Smith
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Simon Lillico
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Adrian Sherman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Hazel J. Gilhooley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Martin Wear
- Edinburgh Protein Production Facility, Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, EH9 3JR UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Grigorios Papadakos
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Andrew C. Gill
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, Lincolnshire LN6 7DL UK
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
25
|
Wang Y, Ma L, Stipkovits L, Szathmary S, Li X, Liu Y. The Strategy of Picornavirus Evading Host Antiviral Responses: Non-structural Proteins Suppress the Production of IFNs. Front Microbiol 2018; 9:2943. [PMID: 30619109 PMCID: PMC6297142 DOI: 10.3389/fmicb.2018.02943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Viral infections trigger the innate immune system to produce interferons (IFNs), which play important role in host antiviral responses. Co-evolution of viruses with their hosts has favored development of various strategies to evade the effects of IFNs, enabling viruses to survive inside host cells. One such strategy involves inhibition of IFN signaling pathways by non-structural proteins. In this review, we provide a brief overview of host signaling pathways inducing IFN production and their suppression by picornavirus non-structural proteins. Using this strategy, picornaviruses can evade the host immune response and replicate inside host cells.
Collapse
Affiliation(s)
- Yining Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | | | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
26
|
Schwartz S, Lockwood SL, Sledge D, Maes RK, Wise AG. Diagnosis and treatment of a novel papillomavirus in a North American porcupine (
Erethizon dorsatum
). VETERINARY RECORD CASE REPORTS 2018. [DOI: 10.1136/vetreccr-2018-000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Dodd Sledge
- Michigan State University Veterinary Diagnostic LaboratoryLansingMichiganUSA
| | - Roger K Maes
- Michigan State University Veterinary Diagnostic LaboratoryLansingMichiganUSA
| | - Annabel G Wise
- Michigan State University Veterinary Diagnostic LaboratoryLansingMichiganUSA
| |
Collapse
|