1
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Identification of novel bovine leukocyte antigen alleles and association of BoLA-DRB3.2*020:02:01 with resistance to Theileria orientalis infection in crossbred Kedah-Kelantan cattle: a pilot study. Trop Anim Health Prod 2024; 56:277. [PMID: 39316238 DOI: 10.1007/s11250-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The bovine leukocyte antigen (BoLA) gene is a significant genetic part of the immune system and has been used as a disease marker in cattle. In this study, we detected Theileria orientalis, T. sinensis, Anaplasma marginale, Anaplasma platys, Candidatus Mycoplasma haemobos and Trypanosoma evansi by PCR amplification and sequencing of the amplicons. The allelic association of the BoLA-DRB3.2 gene with blood pathogen disease resistance and susceptibility in 87 Kedah-Kelantan x Brahman (KKB) and 38 Bali cattle was determined by Fisher's exact test and Cochran Mantel Haenszel (CMH) correction test. Sequence-based typing of the BoLA-DRB3.2 gene identified 43 alleles (27 previously reported alleles and 16 novel alleles) across the two cattle breeds. Alignment analysis of the 16 novel alleles revealed 90.7-95.8% and 85-92% nucleotide and amino acid identities, with the reference allele, BoLA-DRB3*016:01 cDNA clone NR-1. BoLA-DRB3*009:02 (25.6%) and BoLA-DRB3*036:01 (36%) were the most frequent alleles in KKB and Bali cattle, respectively. In KKB cattle, BoLA-DRB3*020:02:01 was significantly associated with resistance to T. orientalis whereas *007:01 and *009:02 were significantly associated with resistance to C. Mycoplasma haemobos. Also, DRB3*017:01 was associated with susceptibility to T. orientalis in KKB cattle. In the Bali cattle, BoLA-DRB3*015:01 was found to be a genetic marker of susceptibility to C. Mycoplasma haemobos infection. Therefore, this study identified BoLA-DRB3.2 alleles associated with resistance and susceptibility to T. orientalis infection in KKB cattle and susceptibility to C. Mycoplasma haemobos infection in Bali cattle for the first time. Therefore, this study suggests that these BoLA-DRB3 resistance alleles could be used as candidate markers for selection, whereas susceptibility alleles could be used as candidate markers for culling in the beef industry.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Developmental Institute, Serdang Selangor 43400, Headquarters, Malaysia
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Sisson D, Beechler B, Jabbar A, Jolles A, Hufschmid J. Epidemiology of Anaplasma marginale and Anaplasma centrale infections in African buffalo ( Syncerus caffer) from Kruger National Park, South Africa. Int J Parasitol Parasites Wildl 2023; 21:47-54. [PMID: 37124669 PMCID: PMC10140747 DOI: 10.1016/j.ijppaw.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Image 1.
Collapse
Affiliation(s)
- Danielle Sisson
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
- Corresponding author.
| | - Brianna Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Anna Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, USA
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
3
|
Calleja-Bueno L, Sainz Á, García-Sancho M, González-Martín JV, Díaz-Regañón D, Rodríguez-Franco F, Agulla B, Tormo B, Villaescusa A. First detection of Anaplasma phagocytophilum and Babesia divergens and high infection rates of Anaplasma marginale and Babesia bigemina in cattle in extensive grazing systems of Central Spain. Transbound Emerg Dis 2021; 69:e1090-e1100. [PMID: 34792293 DOI: 10.1111/tbed.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 01/18/2023]
Abstract
Bovine vector-borne diseases have a considerable economic impact worldwide and affect health of humans and animals. However, different aspects of their epidemiology and their pathogenesis remain unclear. Despite the frequent description of clinical cases reported by practitioners attending cattle from Madrid, Central Spain, molecular prevalence of Anaplasma spp. and Babesia spp. has not been described. The aim of this study was to assess the positivity rate of A. phagocytophilum, A. marginale, A. centrale, B. bigemina and B. divergens in livestock of this area and to evaluate the existence of associations between these pathogens and haematological, biochemical and epidemiological data. Babesia divergens and A. phagocytophilum were detected for the first time in cattle from Madrid. Their positivity percentages were low (2.2% ± 1.4% and 1.8% ± 1.2%, respectively), but this description is of special interest, as these agents are potentially zoonotic. Both agents were found in areas of higher altitude and relative humidity and lower temperature. The detection of ticks in livestock during the moment of sampling was confirmed as a risk factor for these infections. Anaplasma marginale showed the highest molecular infection rate (30% ± 4.1%) in this study, followed by B. bigemina (21.9% ± 3.7%). Higher positivity rates of A. marginale and B. bigemina were found in the areas of mountain climate and warm-summer continental Mediterranean climate. The use of ectoparasiticide treatment was found as a risk factor for infection by A. marginale and B. bigemina. This finding could lead to reconsider the ectoparasiticide protocols that are used nowadays. Grazing on pastures with domestic or wild ruminants and the presence of wild carnivores were associated with higher rates of infection by these four agents and coinfections were frequently found.
Collapse
Affiliation(s)
- Lydia Calleja-Bueno
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Juan V González-Martín
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - David Díaz-Regañón
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Agulla
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Bárbara Tormo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Villaescusa
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Agina OA, Cheah KT, Sayuti NSA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Mazlan M, Hamzah H. High Granulocyte-Macrophage Colony Stimulating Factor to Interleukin 10 Ratio and Marked Antioxidant Enzyme Activities Predominate in Symptomatic Cattle Naturally Infected with Candidatus Mycoplasma haemobos, Theileria orientalis, Theileria sinensis and Trypanosoma evansi. Animals (Basel) 2021; 11:ani11082235. [PMID: 34438696 PMCID: PMC8388426 DOI: 10.3390/ani11082235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to measure the serum proinflammatory (IL-12, GM-CSF & IFN-γ) to anti-inflammatory (IL-10, IL-4) cytokine ratio, oxidant (MDA) level and antioxidant enzyme (SOD; GPx) activities after blood parasite infections. The blood and serum samples were obtained from 130 cattle and screened for identity of the infecting blood parasites by conventional PCR. The following blood parasite species were detected: Candidatus Mycoplasma haemobos (70/130); Theileria orientalis (65/130); Theileria sinensis (32/130); Anaplasma marginale (49/130); Anaplasma platys (7/130); and Trypanosoma evansi (4/130). The GM-CSF/IL-10 ratio showed significantly higher values in all the symptomatic blood parasite infected cattle groups except for symptomatic A. platys infected cattle groups. Anti-inflammatory cytokine immune responses were notable findings in symptomatic and asymptomatic cattle infected with C. M. haemobos and T. orientalis characterized by low serum IL-12:IL-10, IFN-γ:IL-10, IL-12:IL-4 and IFN-γ:IL-4 (p < 0.05). Therefore, high serum GM-CSF:IL:10 in the symptomatic blood parasite infected cattle, low serum IL-12:IL-10, IFN-γ:IL-10, IL-12:IL-4 and IFN-γ:IL-4 ratios in asymptomatic cattle, high MDA level, and increased antioxidant enzyme activities could be useful predictive tools for outcome of natural blood parasite infections in cattle.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria
- Correspondence: (O.A.A.); (H.H.); Tel.: +234-70-3901-0464 (O.A.A.); +60-19-2846-897 (H.H.)
| | - Kim Tho Cheah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
| | - Nurul Syahirah Ahmad Sayuti
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Malaysia;
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
| | - Mokrish Ajat
- Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Zamri-Saad
- Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (K.T.C.); (N.S.A.S.); (N.M.M.I.); (M.M.)
- Correspondence: (O.A.A.); (H.H.); Tel.: +234-70-3901-0464 (O.A.A.); +60-19-2846-897 (H.H.)
| |
Collapse
|
5
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Mazlan M, Muhamad AS, Kassim AA, Ha LC, Rusli FH, Masaud D, Hamzah H. Molecular detection of Theileria species, Anaplasma species, Candidatus Mycoplasma haemobos, Trypanosoma evansi and first evidence of Theileria sinensis-associated bovine anaemia in crossbred Kedah-Kelantan x Brahman cattle. BMC Vet Res 2021; 17:246. [PMID: 34275459 PMCID: PMC8286590 DOI: 10.1186/s12917-021-02902-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Serious disease outbreaks in cattle are usually associated with blood pathogens. This study aims to detect blood pathogens namely Theileria species, Anaplasma species, Candidatus Mycoplasma haemobos and Trypanosoma evansi, and determine their phylogenetic relationships and haemato-biochemical abnormalities in naturally infected cattle. METHODS Molecular analysis was achieved by PCR amplification and sequencing of PCR amplicons of 18SrRNA gene of Theileria species, 16SrRNA genes of Anaplasma and Mycoplasma species, MPSP genes of T. orientalis and T. sinensis, MSP4 gene of A. marginale, 16SrRNA gene of Candidatus Mycoplasma haemobos, and RoTat1.2 VSG gene of Trypanosoma evansi, in sixty-one (61) clinically ill Kedah-Kelantan x Brahman cattle in Pahang, Malaysia. RESULTS A total of 44 (72.13%) cattle were infected with more than one blood pathogen. Theileria species was the blood pathogen with the highest molecular detection rate (72.13, 95% CI 59.83-81.81%). Nucleotide blast analyses of all sequences demonstrated high degree of molecular similarity (98-100%) in comparison with their respective reference sequences. Analysis of 18SrRNA gene sequences of Theileria species and 16SrRNA gene sequences of Anaplasma species revealed Theileria sinensis and Anaplasma platys respectively as additional species detected in these cattle. MPSP-PCR analysis was conducted for further confirmation of T. sinensis. The blood picture of eight infected cattle groups revealed poikilocytosis, anisocytosis, rouleaux formation and degenerative left shift. High mean erythrocyte fragility values were common in infected cattle groups. Anaemia of the macrocytic normochromic type and spherocytes were observed in the T. evansi and Anaplasma platys + Theileria sinensis double species co-infected cattle group. Normocytic normochromic anaemia was observed in the T. sinensis infected cattle group. Significant (p < 0.05) increases in serum liver and kidney parameters, total protein, globulin, total and unconjugated bilirubin and decreased albumin values were observed in the T. evansi infected cattle when compared to clinically healthy cattle. CONCLUSION We present the first evidence of Theileria sinensis-associated bovine anaemia (TSABA) in Malaysian cattle. Because of the high occurrence of bovine theileriosis and detection of A. platys, there is an urgent need for appropriate preventive and control measures against these blood pathogens.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nur Mahiza Md Isa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Mazlina Mazlan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Azim Salahuddin Muhamad
- University Veterinary Hospital, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Afrah Alhana Kassim
- Jabatan Perkhidmatan Veterinar, Pejabat KTS Zon Pahang Timur, 26700, Muadzam Shah, Pahang, Malaysia
| | - Lee Chai Ha
- Jabatan Perkhidmatan Veterinar, Pejabat KTS Zon Pahang Timur, 26700, Muadzam Shah, Pahang, Malaysia
| | - Fairuz Hazwani Rusli
- Jabatan Perkhidmatan Veterinar, Pejabat KTS Zon Pahang Timur, 26700, Muadzam Shah, Pahang, Malaysia
| | - Darulmuqaamah Masaud
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Curtis AK, Reif KE, Kleinhenz MD, Martin MS, Skinner B, Kelly SM, Jones DE, Schaut RG, Reppert EJ, Montgomery SR, Narasimhan B, Anantatat T, Jaberi-Douraki M, Coetzee JF. Development of a subcutaneous ear implant to deliver an anaplasmosis vaccine to dairy steers. J Anim Sci 2020; 98:5691273. [PMID: 31889177 DOI: 10.1093/jas/skz392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/30/2019] [Indexed: 01/07/2023] Open
Abstract
Bovine anaplasmosis is the most prevalent tick-transmitted disease of cattle worldwide and a major obstacle to profitable beef production. Use of chlortetracycline-medicated feed to control active anaplasmosis infections during the vector season has raised concerns about the potential emergence of antimicrobial resistance in bacteria that may pose a risk to human health. Furthermore, the absence of effectiveness data for a commercially available, conditionally licensed anaplasmosis vaccine is a major impediment to implementing anaplasmosis control programs. The primary objective of this study was to develop a single-dose vaccine delivery platform to produce long-lasting protective immunity against anaplasmosis infections. Twelve Holstein steers, aged 11 to 12 wk, were administered a novel 3-stage, single-dose vaccine against Anaplasma marginale, a major surface protein 1a. The vaccine consisted of a soluble vaccine administered subcutaneously (s.c.) for immune priming, a vaccine depot of a biodegradable polyanhydride rod with intermediate slow release of the vaccine for boosting immune response, and an immune-isolated vaccine platform for extended antigen release (VPEAR implant) deposited s.c. in the ear. Six calves were randomly assigned to 2 vaccine constructs (n = 3) that featured rods and implants containing a combination of 2 different adjuvants, diethylaminoethyl (DEAE)-Dextran and Quil-A (Group A). The remaining 6 calves were randomly assigned to 2 vaccine constructs (n = 3) that featured rods and implants containing the same adjuvant (either DEAE-Dextran or Quil A) (Group B). Twenty-one months post-implantation, calves were challenged intravenously with A. marginale stabilate and were monitored weekly for signs of fever, decreased packed cell volume (PCV) and bacteremia. Data were analyzed using a mixed-effects model and chi-squared tests (SAS v9.04.01, SAS Institute, Cary, NC). Calves in Group A had higher PCV than calves in Group B (P = 0.006) at day 35 post-infection. Calves in Group A were less likely to require antibiotic intervention compared with calves in Group B (P = 0.014). Results indicate that calves exhibited diminished clinical signs of anaplasmosis when antigen was delivered with a combination of adjuvants as opposed to a single adjuvant. This demonstrates the feasibility of providing long-lasting protection against clinical bovine anaplasmosis infections using a subcutaneous ear implant vaccine construct.
Collapse
Affiliation(s)
- Andrew K Curtis
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS
| | - Kathryn E Reif
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS
| | | | - Miriam S Martin
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS
| | - Brandt Skinner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Douglas E Jones
- Department of Veterinary Pathology, Iowa State University, Ames, IA.,Nanovaccine Institute, Iowa State University, Ames, IA
| | | | - Emily J Reppert
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS
| | | | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Iowa State University, Ames, IA
| | - Tippawan Anantatat
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS
| | | | - Johann F Coetzee
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS.,Nanovaccine Institute, Iowa State University, Ames, IA
| |
Collapse
|
7
|
Ola-Fadunsin SD, Gimba FI, Abdullah DA, Sharma RSK, Abdullah FJF, Sani RA. Epidemiology and risk factors associated with Anaplasma marginale infection of cattle in Peninsular Malaysia. Parasitol Int 2018; 67:659-665. [DOI: 10.1016/j.parint.2018.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
|
8
|
Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis 2018; 9:1364-1371. [PMID: 29886187 PMCID: PMC6052676 DOI: 10.1016/j.ttbdis.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom; NIHR Health Protection Research Institute in Emerging and Zoonotic Infections, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, United Kingdom.
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| |
Collapse
|
9
|
Park J, Han DG, Ryu JH, Chae JB, Chae JS, Yu DH, Park BK, Kim HC, Choi KS. Molecular detection of Anaplasma bovis in Holstein cattle in the Republic of Korea. Acta Vet Scand 2018. [PMID: 29530058 PMCID: PMC5848521 DOI: 10.1186/s13028-018-0370-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Anaplasmosis is a tick-borne infectious disease that affects both human and animal health. This study was performed to characterize and investigate the prevalence of infection with Anaplasma bovis in Holstein cattle originating from two regions in the Republic of Korea (ROK). Blood samples (n = 151; 80 from Namwon and 71 from Jeju Island) were analyzed by polymerase chain reaction, and the prevalence of A. bovis infection was compared before and after grazing. In Namwon, A. bovis infection was not detected, while in the Jeju Island, A. bovis infection was detected in three of 13 animals after grazing. Phylogenetic analysis revealed that the A. bovis isolates had homology (97.1–99.7%) with a Korean spotted deer (Cervus nippon) isolate and Haemaphysalis longicornis tick isolates identified in the ROK. A. bovis infection has not previously been diagnosed in cattle in the ROK. This study shows that A. bovis infection in the Jeju Island is closely related to grazing.
Collapse
|
10
|
Zhao L, Cavallaro AS, Wibowo D, Zhang B, Zhang J, Mitter N, Yu C, Zhao CX, Middelberg APJ. A partially purified outer membrane protein VirB9-1 for low-cost nanovaccines against Anaplasma marginale. Vaccine 2016; 35:77-83. [PMID: 27890399 DOI: 10.1016/j.vaccine.2016.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023]
Abstract
Anaplasma marginale is a devastating tick-borne pathogen causing anaplasmosis in cattle and results in significant economic loss to the cattle industry worldwide. Currently, there is no widely accepted vaccine against A. marginale. New generation subunit vaccines against A. marginale, which are much safer, more efficient and cost-effective, are in great need. The A. marginale outer membrane protein VirB9-1 is a promising antigen for vaccination. We previously have shown that soluble recombinant VirB9-1 protein can be expressed and purified from Escherichia coli and induce a high level of humoral and cellular immunity in mice. In this study, we re-formulated the nanovaccines using the partially-purified VirB9-1 protein as the antigen and hollow nano-size silica vesicles (SV-100) as the adjuvant. We simplified the purification method to obtain the partially-purified antigen VirB9-1 with a six-fold higher yield. The new formulations using the partially-purified VirB9-1 protein achieved higher antibody and cell-mediated immune responses compared to the purified ones. This finding suggests that the partially-purified VirB9-1 protein performs better than the purified ones in the vaccination against A. marginale, and a certain level of contaminants in the protein antigen can be self-adjuvant and boost immunogenicity together with the nanoparticle adjuvant. This may lead to finding a "Goldilocks" level of contaminants. The new nanovaccine formulation using partially-purified antigens along with nanoparticle adjuvants offers an alternative strategy for making cheaper veterinary vaccines.
Collapse
Affiliation(s)
- Liang Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Antonino S Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bing Zhang
- Animal Science, Agri-Science Queensland, Department of Agriculture & Fisheries, Dutton Park, QLD 4102, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Bell-Sakyi L, Palomar AM, Bradford EL, Shkap V. Propagation of the Israeli vaccine strain of Anaplasma centrale in tick cell lines. Vet Microbiol 2015. [PMID: 26210950 PMCID: PMC4540598 DOI: 10.1016/j.vetmic.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
First in vitro culture system for Anaplasma centrale. A. centrale infected and grew in two out of 32 tick cell lines tested. Potential for safer and more ethical bovine anaplasmosis vaccine.
Anaplasma centrale has been used in cattle as a live blood vaccine against the more pathogenic Anaplasma marginale for over 100 years. While A. marginale can be propagated in vitro in tick cell lines, facilitating studies on antigen production, immunisation and vector-pathogen interaction, to date there has been no in vitro culture system for A. centrale. In the present study, 25 cell lines derived from 13 ixodid tick species were inoculated with the Israeli vaccine strain of A. centrale and monitored for at least 12 weeks by microscopic examination of Giemsa-stained cytocentrifuge smears. Infection of 19 tick cell lines was subsequently attempted by transfer of cell-free supernate from vaccine-inoculated tick cells. In two separate experiments, rickettsial inclusions were detected in cultures of the Rhipicephalus appendiculatus cell line RAE25 28–32 days following inoculation with the vaccine. Presence of A. centrale in the RAE25 cells was confirmed by PCR assays targeting the 16S rRNA, groEL and msp4 genes; sequenced PCR products were 100% identical to published sequences of the respective genes in the Israeli vaccine strain of A. centrale. A. centrale was taken through three subcultures in RAE25 cells over a 30 week period. In a single experiment, the Dermacentor variabilis cell line DVE1 was also detectably infected with A. centrale 11 weeks after inoculation with the vaccine. Availability of an in vitro culture system for A. centrale in tick cells opens up the possibility of generating a safer and more ethical vaccine for bovine anaplasmosis.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Ana M Palomar
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; CIBIR, C/ Piqueras, 98, Logroño 26006, Spain.
| | - Emma L Bradford
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Varda Shkap
- Kimron Veterinary Institute, Bet Dagan, 50250, Israel.
| |
Collapse
|
12
|
Gasparini MR, Vieira RFDC, Nascimento DAGD, Garcia JL, Vidotto O, Vidotto MC. Immune response of calves inoculated with proteins of Anaplasma marginale bound to an immunostimulant complex. ACTA ACUST UNITED AC 2014; 22:253-9. [PMID: 23856733 DOI: 10.1590/s1984-29612013000200044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/16/2013] [Indexed: 11/22/2022]
Abstract
Despite our current knowledge of the immunology, pathology, and genetics of Anaplasma marginale, prevention in cattle is currently based on old standbys, including live attenuated vaccines, antibiotic treatment, and maintaining enzootic stability in cattle herds. In the present study, we evaluated the use of an immunostimulant complex (ISCOMATRIX) adjuvant, associated with a pool of recombinant major surface proteins (rMSP1a, rMSP1b, rMSP4 and rMSP5) to improve the humoral immune response triggered in calves mainly by IgG2. Ten calves were divided in three groups: 4 calves were inoculated with the ISCOMATRIX/rMSPs (G1); 2 calves were inoculated with ISCOMATRIX adjuvant (G2); and 4 calves received saline (G3). Three inoculations were administered at 21-day intervals. In G1, the calves showed significant increases in total IgG, IgG1 and IgG2 levels 21 days after the second inoculation, compared to the control group (p < 0.05), and G1 calves remained above the cut-off value 28 days after the third inoculation (p < 0.05). The post-immunized sera from calves in G1 reacted specifically for each of the rMSPs used. In conclusion, the ISCOMATRIX/rMSPs induced antigen-specific seroconversion in calves. Therefore, additional testing to explore the protection induced by rMSPs, both alone and in conjunction with proteins previously identified as subdominant epitopes, is warranted.
Collapse
|
13
|
Aguilar Pierlé S, Imaz Rosshandler I, Akim Kerudin A, Sambono J, Lew-Tabor A, Rolls P, Rangel-Escareño C, Brayton KA. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains. Pathogens 2014; 3:57-72. [PMID: 25364572 PMCID: PMC4213813 DOI: 10.3390/pathogens3010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs). Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| | - Ivan Imaz Rosshandler
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Ammielle Akim Kerudin
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Jacqueline Sambono
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Ala Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Peter Rolls
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Claudia Rangel-Escareño
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Kelly A. Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| |
Collapse
|
14
|
Hammac GK, Ku PS, Galletti MF, Noh SM, Scoles GA, Palmer GH, Brayton KA. Protective immunity induced by immunization with a live, cultured Anaplasma marginale strain. Vaccine 2013; 31:3617-22. [PMID: 23664994 PMCID: PMC3903126 DOI: 10.1016/j.vaccine.2013.04.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 11/15/2022]
Abstract
Despite significant economic losses resulting from infection with Anaplasma marginale, a tick-transmitted rickettsial pathogen of cattle, available vaccines provide, at best, only partial protection against clinical disease. The green-fluorescent protein expressing mutant of the A. marginale St. Maries strain is a live, marked vaccine candidate (AmStM-GFP). To test whether AmStM-GFP is safe and provides clinical protection, a group of calves was vaccinated, and clinical parameters, including percent parasitized erythrocytes (PPE), packed cell volume (PCV) and days required to reach peak bacteremia, were measured following inoculation and following tick challenge with wild type St. Maries strain (AmStM). These clinical parameters were compared to those obtained during infection with the A. marginale subsp. centrale vaccine strain (A. centrale) or wild type AmStM. AmStM-GFP resulted in similar clinical parameters to A. centrale, but had a lower maximum PPE, smaller drop in PCV and took longer to reach peak bacteremia than wild type AmStM. AmStM-GFP provided clinical protection, yielding a stable PCV and low bacteremia following challenge, whereas A. centrale only afforded partial clinical protection.
Collapse
Affiliation(s)
- G. Kenitra Hammac
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Pei-Shin Ku
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Maria F. Galletti
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Susan M. Noh
- Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, PO Box 646630, Pullman, WA 99164-6630
| | - Glen A. Scoles
- Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, PO Box 646630, Pullman, WA 99164-6630
| | - Guy H. Palmer
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Kelly A. Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| |
Collapse
|
15
|
Lobanov VA, Gajadhar AA, Al-Adhami B, Schwantje HM. Molecular study of free-ranging mule deer and white-tailed deer from British Columbia, Canada, for evidence of Anaplasma spp. and Ehrlichia spp. Transbound Emerg Dis 2011; 59:233-43. [PMID: 21933360 DOI: 10.1111/j.1865-1682.2011.01259.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Twenty-three free-ranging white-tailed deer (WTD; Odocoileus virginianus) and six mule deer (MD; Odocoileus hemionus) from south-central British Columbia, Canada, were tested for Anaplasma marginale by msp5 gene-specific PCR and Ehrlichia spp. by 16S rRNA or citrate synthase (gltA) gene-specific PCR, as well as by PCR with universal 16S rRNA primers detecting a wide range of bacteria. No deer tested positive for A. marginale. Amplification with universal 16S rRNA primers followed by sequencing of cloned fragments detected an Anaplasma sp. in one of 23 (4.3%) WTD and six of six (100%) MD and Bartonella sp. in four of 23 (17.4%) WTD. The Anaplasma sp. was genetically distinct from A. marginale and all other recognized members of the genus. Four of six (66.7%) MD and 0 of 23 (0%) WTD were Ehrlichia positive by PCR with primers for 16S rRNA and gltA genes. The sequences of gltA PCR fragments were identical to each other and to the respective region of the gltA gene of an Ehrlichia sp. which we detected previously in naturally infected cattle from the same area, suggesting the possibility of biological transmission of this rickettsia between cattle and wild cervids. Antibodies reactive with the MSP5 protein of A. marginale were detected using a competitive enzyme-linked immunosorbent assay in two of six (33.3%) MD, but not in WTD. The two seropositive MD were PCR positive for both the Anaplasma sp. and Ehrlichia sp. detected in this study, suggesting a reaction of antibodies against one or both of these rickettsias with the MSP5 antigen.
Collapse
Affiliation(s)
- V A Lobanov
- Canadian Food Inspection Agency, Centre for Food-Borne and Animal Parasitology, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
16
|
Dark MJ, Al-Khedery B, Barbet AF. Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale. Vaccine 2011; 29:4923-32. [PMID: 21596083 PMCID: PMC3133685 DOI: 10.1016/j.vaccine.2011.04.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 01/12/2023]
Abstract
Anaplasmosis in domestic livestock is an impediment to animal health and production worldwide, especially in developing countries in Africa, Asia, and South America. Vaccines have been developed and marketed against the causative organism, Anaplasma marginale; however, these have not been widely used because of breakthrough infections caused by heterologous strains and because of the risk of disease induced by live vaccine strains themselves. Recently, molecular studies have enabled progress to be made in understanding the causes for breakthrough infections and in defining new vaccine targets. A. marginale has a system for antigenic variation of the MSP2 and MSP3 outer membrane proteins which are members of the pfam01617 gene superfamily. In this study, we used high throughput genome sequencing to define conservation of different superfamily members in ten U.S. strains of A. marginale and also in the related live vaccine strain A. marginale subspecies centrale. The comparisons included the pseudogenes that contribute to antigenic variation and other superfamily-encoded outer membrane proteins. Additionally, we examined conservation of other proteins proposed previously as vaccine candidates. These data showed significantly increased numbers of SNPs in A. marginale subspecies centrale when compared to all U.S. A. marginale strains. We defined a catalog of 19 conserved candidate vaccine antigens that may be suitable for development of a multi-component recombinant vaccine. The methods described are rapid and may be suitable for other prokaryotes where repeats comprise a substantial portion of their genomes.
Collapse
Affiliation(s)
- Michael J Dark
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
17
|
Identification of Anaplasma centrale major surface protein-2 pseudogenes. Vet Microbiol 2010; 143:277-83. [DOI: 10.1016/j.vetmic.2009.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
|
18
|
Molad T, Fleidrovich L, Mazuz M, Fish L, Leibovitz B, Krigel Y, Shkap V. Genetic diversity of major surface protein 1a of Anaplasma marginale in beef cattle. Vet Microbiol 2009; 136:54-60. [DOI: 10.1016/j.vetmic.2008.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/01/2022]
|