1
|
Gobbi P, Pavone S, Orso M, Passamonti F, Righi C, Beato MS, Feliziani F, Giammarioli M. Molecular Characterization of Small Ruminant Lentiviruses in Sheep and Goats: A Systematic Review. Animals (Basel) 2024; 14:3545. [PMID: 39682510 DOI: 10.3390/ani14233545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are responsible for chronic and progressive multisystemic clinical forms, which significantly reduce flocks' productivity and have a considerable economic impact on the small ruminant industry. Due to the increase in genetic analysis studies and the potential for misclassification of certain strains, owing to the high genetic variability of these viruses, a systematic review was deemed necessary. This review explores the types of matrices used for molecular detection and phylogenetic studies, the genomic regions selected as targets, and the software utilized for phylogenetic analysis, assessing the geographical distribution of identified genotypes and subgenotypes over time. A thorough comparison of the diagnostic approaches highlights the strengths and limitations of each method, identifying gaps that need to be addressed. Additionally, recombination events and compartmentalization are examined to provide an updated, detailed, and comprehensive overview of SRLV phylogenesis.
Collapse
Affiliation(s)
- Paola Gobbi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Silvia Pavone
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Massimiliano Orso
- Office for Research Management, Special Projects, Cooperation and Twinning, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Cecilia Righi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Monica Giammarioli
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
2
|
Petkevičius S, Klibavičė P, Šalomskas A, Kupčinskas T, Moroz-Fik A, Biernacka K, Mickiewicz M, Nowek Z, Ózsvári L, Bárdos K, Stuen S, Abril CE, Bertoni G, Kaba J, Czopowicz M. The herd-level prevalence of caprine arthritis-encephalitis and genetic characteristics of small ruminant lentivirus in the Lithuanian goat population. Prev Vet Med 2024; 233:106363. [PMID: 39486103 DOI: 10.1016/j.prevetmed.2024.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Caprine arthritis-encephalitis (CAE) is a progressive disease of goats caused by small ruminant lentivirus (SRLV) and is considered as one of the most important threats for goat farming in developed countries. The disease prevalence has never been investigated in the Lithuanian goat population. Therefore, a descriptive cross-sectional study was carried out in 2021-2022 to determine if SRLV infection was present in the Lithuanian goat population and, in the case of a positive result, to estimate the true herd-level prevalence of SRLV infection and specify genotypes and subtypes of SRLV responsible for the infection. Thirty goat herds counting >5 adult goats were randomly selected and, in each herd, a representative sample of adult goats was blood-sampled and tested serologically for SRLV infection using a commercial ELISA. The herd was considered infected if at least one goat tested positive and the true herd-level prevalence of SRLV infection was estimated using the Bayesian approach. Seropositive animals were found in 17 / 30 herds (57 %; 95 % confidence interval: 39 %, 73 %). The true herd-level prevalence was 56 % (95 % credible interval: 36 %, 76 %). In 10 / 17 seropositive herds whose owners consented for resampling of seropositive goats, 1-5 seropositive goats were tested using the nested real-time PCR (nRT-PCR). Goats from 9 seropositive herds tested positive in the nRT-PCR: in 4 herds for genotype A, in 4 herds for genotype B, and in 1 herd - 2 goats for genotype B and 1 goat for genotype A. From each of 9 nRT-PCR-positive herds, 1 PCR product of each genotype was sequenced using Sanger method and the phylogenic tree was constructed using the neighbor-joining method in the Molecular Evolutionary Genetics Analysis software. Four herds turned out to be infected with B1 subtype (91 % identity with the prototypic strain), 3 herds with A2 subtype (90 %-92 % identity), and a herd with mixed infection was infected with B1 (91 % identity) and A2 subtype (90 % identity). In one herd, the only seropositive goat was found to be infected with the strain most closely related to the A1 subtype (80 % identity). This study shows for the first time that SRLV infection is present and widespread in the Lithuanian goat population and both classical SRLV genotypes, represented by quite typical subtypes A2 and B1, appear to be responsible for the infection.
Collapse
Affiliation(s)
- Saulius Petkevičius
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas LT-47181, Lithuania.
| | - Patricija Klibavičė
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas LT-47181, Lithuania.
| | - Algirdas Šalomskas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas LT-47181, Lithuania.
| | - Tomas Kupčinskas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas LT-47181, Lithuania.
| | - Agata Moroz-Fik
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Kinga Biernacka
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Zofia Nowek
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - László Ózsvári
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, István u. 2, Budapest H-1078, Hungary.
| | - Krisztina Bárdos
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, István u. 2, Budapest H-1078, Hungary.
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Svebastadveien 112, Sandnes N-4325, Norway.
| | - Carlos Eduardo Abril
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, Bern CH-3012, Switzerland.
| | - Giuseppe Bertoni
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, Bern CH-3012, Switzerland.
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| |
Collapse
|
3
|
Ostuni A, Albarella S, Tassoni L, Pugliano M, D'Anza E, Crudele MA, Ciotola F, Beato MS, Iovane V, Cecchini Gualandi S, Frontoso R, De Vendel J, Peretti V, Bavoso A. Circulation of small ruminant lentivirus in endangered goat and sheep breeds of Southern Italy. Heliyon 2024; 10:e33906. [PMID: 39027592 PMCID: PMC11255564 DOI: 10.1016/j.heliyon.2024.e33906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
According to the Domestic Animal Diversity Information System (DAD-IS) of the FAO, Italy has one of the largest numbers of local small ruminant breeds among European countries. In Southern Italy, namely the Campania Region, Bagnolese and Laticauda sheep breeds and Cilentana goat breeds are considered endangered according to the DAD-IS. Conservation of endangered animal breeds is a goal of the European Union (EU). However, the role of infectious diseases as risk factors for endangered breeds has rarely been considered. Small ruminant lentiviruses (SRLV) infect sheep and goats, causing slow-progressive, persistent, and debilitating diseases that can lead to animal death and productivity loss. In this study, we investigated the presence of SRLV in Bagnolese, Laticauda, and Cilentana breeds using a commercial ELISA in parallel with an in-house ELISA. The results of the two tests were in good agreement (Cohen Kappa 0.84, 95 % CI = 0.76-0.93). Discrepancies between the two tests were resolved using western blotting. In total, 430 samples were tested (248 Bagnolese, 125 Laticauda, and 57 Cilentana). The apparent prevalence rates were 12.5 %, 6.4 %, and 1.7 % in Bagnolese, Laticauda, and Cilentana, respectively. In the molecular analysis of 11 proviral partial sequences, subtypes B2 and A24 were identified in two Bagnolese herds. Owing to the beneficial role of sheep and goat breeding in marginal areas, it is important to screen the entire population and implement control/eradication of SRLV infections in conjunction with each conservation program.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Luca Tassoni
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Mariagiulia Pugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Emanuele D'Anza
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Antonietta Crudele
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Valentina Iovane
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | | | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, NA, Italy
- OneHEco APS, 84047, Capaccio Paestum, SA, Italy
| | | | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
4
|
Olech M, Kuźmak J. Comparison of serological and molecular methods for differentiation between genotype A and genotype B strains of small ruminant lentiviruses. J Vet Res 2024; 68:181-188. [PMID: 38947158 PMCID: PMC11210356 DOI: 10.2478/jvetres-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Small ruminant lentiviruses (SRLV) cause multisystemic, degenerative and chronic disease in sheep and goats. There are five genotypes (A, B, C, D and E), of which A and B are the most widespread. The purpose of this study was to evaluate the serotyping efficiency of the Eradikit SRLV Genotyping ELISA and the molecular typing efficiency of a newly developed nested real-time PCR targeting the long terminal repeat-gag (LTR-gag) region using samples from animals infected with subtypes of SRLV known to circulate in Poland. Material and Methods A total of 97 sera samples taken from 34 sheep and 63 goats were immunoassayed, and 86 DNA samples from 31 sheep and 55 goats were tested with the PCR. All ruminants were infected with known SRLV strains of the A1, A5, A12, A13, A16, A17, A18, A23, A24, A27, B1 and B2 subtypes. Results A total of 69 (80.2%, 95% confidence interval 71.6%-88.8%) out of 86 tested samples gave positive results in the PCR. In 17 out of the 86 (19.8%) samples, no proviral DNA of SRLV was detected. The differentiation between MVV (genotype A) and CAEV (genotype B) by PCR matched the predating phylogenetic analysis invariably. No cross-reactivity was observed. On the other hand, the proportion of samples genotyped the same by the older phylogenetic analysis and the Eradikit SRLV Genotyping ELISA was 42.3%. The test was unable to classify 40.2% of samples, and 17.5% of sera were incorrectly classified. Conclusion Our results showed that the Eradikit SRLV genotyping kit is not a reliable method for predicting SRLV genotype, while the nested real-time PCR based on the LTR-gag region did prove to be, at least for genotypes A and B.
Collapse
Affiliation(s)
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100Pulawy, Poland
| |
Collapse
|
5
|
Davaasuren N, Molaee V, Erdene-Ochir TO, Nyamdavaa G, Ganzorig S, Mazzei M, Sakoda Y, Lühken G, Tumenjargal S. Phylogenetic analysis of small ruminant lentiviruses in Mongolian sheep supports an ancient east-west split for the genotype A. Vet Res Commun 2024; 48:1955-1962. [PMID: 38530579 DOI: 10.1007/s11259-024-10361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The ovine maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) are small ruminant lentiviruses (SRLVs) with striking genetic and structural similarities. The presence of SRLV in Mongolian sheep and goats was serologically demonstrated more than a decade ago; however, the viral genotype remains unknown. In total, 329 blood samples were collected from two sheep breeds (i.e., Khalkha and Sumber) in Tov, Govisumber, Arkhangay, Dornogovi, Zavkhan, and Sukhbaatar provinces, Mongolia. Serological and phylogenetic analyses were performed regardless of any apparent clinical signs, although most of the animals appeared healthy. All sheep in three of the six provinces were seronegative, whereas the seroprevalence in the Tov, Govisumber, and Zavkhan provinces averaged 7.9%. Genomic DNA from seropositive animals was tested using hemi-nested polymerase chain reaction, and sub-genomic SRLV sequences were determined from nine samples. Mongolian SRLV sequences clustered within the divergent subtype A22, which was previously found only in Fertile Crescent regions, including Lebanon, Jordan, and Iran, where the first sheep-domestication (Ovis aries) occurred. According to the phylogenetic analysis, genotype A has two ancestors from the ancient Fertile Crescent: (1) Turkish strains and (2) Iranian, Jordanian, and Lebanese strains. The first ancestor spread westward, whereas the second spread eastward, ultimately reaching Mongolia.
Collapse
Affiliation(s)
- Nergui Davaasuren
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Vahid Molaee
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Tseren-Ochir Erdene-Ochir
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Guugandaa Nyamdavaa
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Sumiya Ganzorig
- Department of Biology, National University of Mongolia, Ulaanbaatar, 14021, Mongolia
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159, Pisa, Italy
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Sharav Tumenjargal
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia.
| |
Collapse
|
6
|
Bouzalas I, Apostolidi ED, Scalas D, Davidopoulou E, Chassalevris T, Rosati S, Colitti B. A Combined Approach for the Characterization of Small Ruminant Lentivirus Strains Circulating in the Islands and Mainland of Greece. Animals (Basel) 2024; 14:1119. [PMID: 38612358 PMCID: PMC11010947 DOI: 10.3390/ani14071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Small ruminant lentiviruses are a group of viruses infecting goat and sheep worldwide. These viruses exhibit an extraordinary degree of genetic and antigenic variability that severely influence in vivo and in vitro features, as well as diagnostic test results. Small ruminant farming is the most important animal farming business in Greece, with a high impact on the Greek primary economy. Although SRLV infection and its impact on animal production are well established in the country, little is known about the circulating SRLV strains and their prevalence. The aim of this study was to characterize SRLVs circulating in Greece with a combined serological and molecular approach, using the bulk milk matrix collected from 60 farms in different municipalities. This study allowed us to estimate a seroprevalence of around 52% at the herd level. The B1, B2 and A3 subtypes and a novel A viral cluster were identified. Moreover, the amplicon sequencing method allowed us to identify more than one viral subtype in a sample. These results again confirm the high variability of these viruses and highlight the importance of the constant monitoring of viral evolution, in particular in antigens of diagnostic interest.
Collapse
Affiliation(s)
- Ilias Bouzalas
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Evangelia D. Apostolidi
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | | | - Taxiarchis Chassalevris
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| |
Collapse
|
7
|
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Vet Res 2023; 67:479-502. [PMID: 38130459 PMCID: PMC10730557 DOI: 10.2478/jvetres-2023-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maedi-visna virus and caprine arthritis encephalitis virus are two closely related lentiviruses which cause multisystemic, progressive and persistent infection in goats and sheep. Because these viruses frequently cross the species barrier, they are considered to be one genetic group called small-ruminant lentiviruses (SRLV). They have in vivo tropism mainly for monocytes and macrophages and organ tropism with unknown mechanisms. Typical clinical signs are pneumonia in sheep, arthritis in goats, and mastitis in both species. Infection with SRLV cannot currently be treated or prevented, and control programmes are the only approaches to avoiding its spread. These programmes rely mainly on annual serological testing and elimination of positive animals. However, the high genetic and antigenic variability of SRLV complicate their early and definitive diagnosis. The objective of this review is to summarise the current knowledge of SRLV genetic variation and its implications for tropism, the development of diagnostic tests and vaccines and the effectiveness of control and eradication programmes. Material and Methods Subject literature was selected from the PubMed and the Google Scholar databases. Results The high genetic diversity of SRLV affects the performance of diagnostic tools and therefore control programmes. For the early and definitive diagnosis of SRLV infection, a combination of serological and molecular tests is suggested. Testing by PCR can also be considered for sub-yearling animals. There are still significant gaps in our knowledge of the epidemiology, immunology and biology of SRLV and their impact on animal production and welfare. Conclusion This information may aid selection of the most effective SRLV spread reduction measures.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
8
|
Olech M, Kuźmak J. Genetic Diversity of the LTR Region of Polish SRLVs and Its Impact on the Transcriptional Activity of Viral Promoters. Viruses 2023; 15:v15020302. [PMID: 36851518 PMCID: PMC9967159 DOI: 10.3390/v15020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
A long terminal repeat (LTR) plays an indispensable role in small ruminant lentivirus (SRLV) gene expression. In this study, we present the LTR sequence of Polish SRLVs representing different subtypes, and analyzed their impact on SRLV promoter activity, as measured in transient transfection assays. Although certain nucleotide motifs (AML(vis), TATA box and the polyadenylation site (AATAAA)) were conserved across sequences, numerous mutations within the LTR sequences have been identified. Single nucleotide polymorphisms (SNPs) were detected in both regulatory (AP-1, AP-4, Stat and Gas) and non-regulatory sequences, and subtype-specific genetic diversity in the LTR region of Polish SRLVs was observed. In vitro assays demonstrated subtype-specific functional differences between the LTR regions of distinct SRLV subtypes. Our results revealed that the promoter activity of Polish strains was lower (1.64-10.8-fold) than that noted for the K1514 reference strain; however, the differences in most cases were not statistically significant. The lowest promoter activity was observed for strains representing subtype A5 (mean 69.067) while the highest promoter activity was observed for strain K1514 representing subtype A1 (mean 373.48). The mean LTR activities of strains representing subtypes A12, A17, A23, A18 and A24 were 91.22, 137.21, 178.41, 187.05 and 236.836, respectively. The results of the inter-subtype difference analysis showed that the promoter activity of strains belonging to subtype A5 was significantly lower than that for subtype A12 strains (1.32-fold; p < 0.00). The promoter activities of the A5 strain were 1.98-fold and 2.58-fold less active than that of the A17 and A23 strains, and the promoter activities of A12 strains were 1.955 and 1.5 times lower than the promoter activity of A23 and A17 strains, respectively. Furthermore, the promoter activity of A17 strains was 1.3 lower than the promoter activity of A23 strains. Our findings suggest that subtype-specific genetic diversity, mainly in the transcription factor's binding sites, has an impact on their transcriptional activity, producing a distinct activity pattern for the subtypes. This study provides new information that is important for better understanding the function of the SRLV LTR. However, further research including more strains and subtypes as well as other cell lines is needed to confirm these findings.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
- Correspondence:
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
9
|
Wu JY, Mi XY, Yang XY, Wei J, Meng XX, Bolati H, Wei YR. The First Genomic Analysis of Visna/Maedi Virus Isolates in China. Front Vet Sci 2022; 9:846634. [PMID: 35812856 PMCID: PMC9263623 DOI: 10.3389/fvets.2022.846634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Visna/Maedi virus (VMV) is a neglected pathogen that damages sheep and goats' nervous and respiratory systems. The virus was discovered 80 years ago and has been endemic in China for nearly four decades; nevertheless, there is little information regarding Chinese isolates' genotypes and genomic characteristics. In this study, the proviral DNA of strains isolated in 1985 and 1994 were extracted, and the proviral DNA was subjected to Illumina sequencing combined with Sanger sequencing of poor coverage regions. The results showed that the two isolates were clustered with genotype A2 and shared 78.3%−89.1% similarity to reference VMV genome sequences, with the highest similarity (88.7%−89.1%) to the USA strain USMARC-200212120-r (accession no. MT993908.1) and lowest similarity (78.3%−78.5%) to the Italian strain SRLV009 (accession no. MG554409.1). A maximum-likelihood tree showed that the Chinese VMV strains and the USA strain 1150 (accession no. MH916859.1) comprise a monophyletic group with a short tree branch. Our data filled the gap in genomic analysis and viral evolution in Chinese VMV strains, and would be benefit China's source-tracing and eradication program development in China.
Collapse
|
10
|
Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 2022; 14:v14040686. [PMID: 35458416 PMCID: PMC9032261 DOI: 10.3390/v14040686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) represent a very heterogeneous group of ss-RNA viruses that infect sheep and goats worldwide. They cause important, deleterious effects on animal production and limit the animal trade. SRLVs show a high genetic variability due to high mutation rate and frequent recombination events. Indeed, five genotypes (A–E) and several subtypes have been detected. The aim of this work was to genetically characterize SRLVs circulating in central Italy. On this basis, a phylogenetic study on the gag-pol genetic region of 133 sheep, collected from 19 naturally infected flocks, was conducted. In addition, to evaluate the frequency of mutation and the selective pressure on this region, a WebLogo 3 analysis was performed, and the dN/dS ratio was computed. The results showed that 26 samples out of 133 were clustered in genotype A and 106 samples belonged to genotype B, as follows: A9 (n = 8), A11 (n = 10), A24 (n = 7), B1 (n = 2), B2 (n = 59), and B3 (n = 45). No recombination events were found. Mutations were localized mainly in the VR-2 region, and the dN/dS ratio of 0.028 indicated the existence of purifying selection. Since the genetic diversity of SRLVs could make serological identification difficult, it is important to perform molecular characterization to ensure a more reliable diagnosis, to maintain flock health status, and for the application of local and national control programs.
Collapse
|
11
|
Olech M, Kuźmak J. Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A. Viruses 2021; 13:2529. [PMID: 34960798 PMCID: PMC8708130 DOI: 10.3390/v13122529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.
Collapse
Affiliation(s)
- Monika Olech
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| |
Collapse
|
12
|
Bazzucchi M, Pierini I, Gobbi P, Pirani S, Torresi C, Iscaro C, Feliziani F, Giammarioli M. Genomic Epidemiology and Heterogeneity of SRLV in Italy from 1998 to 2019. Viruses 2021; 13:v13122338. [PMID: 34960606 PMCID: PMC8706641 DOI: 10.3390/v13122338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are viruses that retro-transcribe RNA to DNA and show high rates of genetic variability. SRLV affect animals with strains specific for each host species (sheep or goats), resulting in a series of clinical manifestations depending on the virulence of the strain, the host’s genetic background and farm production system. The aim of this work was to present an up-to-date overview of the genomic epidemiology and genetic diversity of SRLV in Italy over time (1998–2019). In this study, we investigated 219 SRLV samples collected from 17 different Italian regions in 178 geographically distinct herds by CEREL. Our genetic study was based on partial sequencing of the gag-pol gene (800 bp) and phylogenetic analysis. We identified new subtypes with high heterogeneity, new clusters and recombinant forms. The genetic diversity of Italian SRLV strains may have diagnostic and immunological implications that affect the performance of diagnostic tools. Therefore, it is extremely important to increase the control of genomic variants to improve the control measures.
Collapse
Affiliation(s)
- Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 27100 Pavia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Carmen Iscaro
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Correspondence:
| |
Collapse
|
13
|
Prevalence, molecular detection, and pathological characterization of small ruminant lentiviruses in goats from Mexico. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ostuni A, Monné M, Crudele MA, Cristinziano PL, Cecchini S, Amati M, De Vendel J, Raimondi P, Chassalevris T, Dovas CI, Bavoso A. Design and structural bioinformatic analysis of polypeptide antigens useful for the SRLV serodiagnosis. J Virol Methods 2021; 297:114266. [PMID: 34454989 DOI: 10.1016/j.jviromet.2021.114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Due to their intrinsic genetic, structural and phenotypic variability the Lentiviruses, and specifically small ruminant lentiviruses (SRLV), are considered viral quasispecies with a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra or mutant cloud. Immunoenzymatic tests for SRLVs are available but the dynamic heterogeneity of the virus makes the development of a diagnostic "golden standard" extremely difficult. The ELISA reported in the literature have been obtained using proteins derived from a single strain or they are multi-strain based assay that may increase the sensitivity of the serological diagnosis. Hundreds of SRLV protein sequences derived from different viral strains are deposited in GenBank. The aim of this study is to verify if the database can be exploited with the help of bioinformatics in order to have a more systematic approach in the design of a set of representative protein antigens useful in the SRLV serodiagnosis. Clustering, molecular modelling, molecular dynamics, epitope predictions and aggregative/solubility predictions were the main bioinformatic tools used. This approach led to the design of SRLV antigenic proteins that were expressed by recombinant DNA technology using synthetic genes, analyzed by CD spectroscopy, tested by ELISA and preliminarily compared to currently commercially available detection kits.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Magnus Monné
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | - Pier Luigi Cristinziano
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Stefano Cecchini
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Mario Amati
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | | | - Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
15
|
Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals (Basel) 2020; 10:E616. [PMID: 32260101 PMCID: PMC7222820 DOI: 10.3390/ani10040616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023] Open
Abstract
Maedi-visna (MV) in sheep is caused by maedi-visna virus (MVV), a small ruminant lentivirus (SRLV) that causes chronic infection and inflammatory lesions in infected animals. Pneumonia and mastitis are its predominant clinical manifestations, and the tissues infected by MVV are mainly the lungs, the mammary gland, the nervous system and the joints. MV has a worldwide distribution with distinct MVV transmission patterns depending on circulating strains and regionally applied control/eradication schemes. Nevertheless, the prevalence rate of MV universally increases. Currently, gaps in understanding the epizootiology of MV, the continuous mutation of existing and the emergence of new small ruminant lentiviruses (SRLVs) strains, lack of an effective detection protocol and the inefficiency of currently applied preventive measures render elimination of MV an unrealistic target. Therefore, modifications on the existing MV surveillance and control schemes on an evidentiary basis are necessary. Updated control schemes require the development of diagnostic protocols for the early and definitive diagnosis of MVV infections. The objectives of this review are to summarize the current knowledge in the epizootiology and control of MV in dairy sheep, to describe the research framework and to cover existing gaps in understanding future challenges regarding MV.
Collapse
Affiliation(s)
- Aphrodite I Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | - Ioannis Bossis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | | | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| |
Collapse
|
16
|
Michiels R, Adjadj NR, De Regge N. Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens 2020; 9:E183. [PMID: 32138297 PMCID: PMC7157725 DOI: 10.3390/pathogens9030183] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are a group of highly divergent viruses responsible for global and fatal infections in sheep and goats. Since the current phylogenetic classification of these viruses was proposed in 2004, it nowadays consists out of 5 genotypes and 28 subtypes. In support of our national SRLV control program, we performed the genetic characterization of SRLV strains circulating in the Belgian sheep and goat population. Fourteen sheep and 9 goat strains were sequenced in the gag-pol and pol regions using the method described by Shah. Most SRLV strains from sheep and goats belonged to prototype A1 and B1 subtypes, respectively. We, however, also found indications for cross-species transmission of SRLV strains between sheep and goats and vice versa, and identified a new subtype designated as B5. An in-depth analysis of the current SRLV phylogeny revealed that many subtypes have been defined over the years based on limited sequence information. To keep phylogeny as a useful tool, we advocate to apply more rigorous sequencing standards to ensure the correct classification of current and new emerging strains. The genetic characterization of Belgian SRLV strains will help in the development of appropriate diagnostic tools to assist the national control program.
Collapse
Affiliation(s)
- Rodolphe Michiels
- Unit of Enzootic, Vector-Borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (N.R.A.); (N.D.R.)
| | | | | |
Collapse
|
17
|
Molaee V, Bazzucchi M, De Mia GM, Otarod V, Abdollahi D, Rosati S, Lühken G. Phylogenetic analysis of small ruminant lentiviruses in Germany and Iran suggests their expansion with domestic sheep. Sci Rep 2020; 10:2243. [PMID: 32042070 PMCID: PMC7010740 DOI: 10.1038/s41598-020-58990-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are found in sheep in Germany and Iran. SRLVs have been classified into four genotypes: A-C and E. Genotype A has been subdivided into 20 subtypes. Previous studies suggested that, first, the ancestors of genotype A are those SRLVs found in Turkey, second, the evolution of SRLVs is related to the domestication process, and, third, SRLV infection was first observed in sheep in Iceland and the source of that infection was a flock imported from Germany. This study generated, for the first time, partial SRLV sequence data from German and Iranian sheep, enhancing our knowledge of the genetic and evolutionary relationships of SRLVs, and their associations with the domestication process. Based on 54 SRLV sequences from German and Iranian sheep, our results reveal: (1) SRLV subtypes A4, A5, A11, A16 and A21 (new) are found in German sheep and A22 (new) in Iranian sheep. (2) Genotype A has potentially an additional ancestor (A22), found in Iran, Lebanon and Jordan. (3) Subtype A22 is likely an old version of SRLVs. (4) The transmission routes of some SRLVs are compatible with domestication pathways. (5) This study found no evidence of Icelandic subtype A1 in German sheep.
Collapse
Affiliation(s)
- Vahid Molaee
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen (JLU), Ludwigstraße 21, 35390, Gießen, Germany.
| | - Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche Togo Rosati (IZSUM), Via G. Salvemini 1, 06126, Perugia, Italy
| | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche Togo Rosati (IZSUM), Via G. Salvemini 1, 06126, Perugia, Italy
| | - Vahid Otarod
- Quarantine and Biosafety Directorate General, Iran Veterinary Organization (IVO), Vali Asr Avenue, Seyed Jamaledin Asad Abadi Street, 6349, Tehran, Iran
| | - Darab Abdollahi
- Bureau of Animal Health and Disease Management, Iran Veterinary Organization (IVO), Vali Asr Avenue, Seyed Jamaledin Asad Abadi Street, 6349, Tehran, Iran
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen (JLU), Ludwigstraße 21, 35390, Gießen, Germany
| |
Collapse
|
18
|
Molecular characterization of circulating strains of small ruminant lentiviruses in Brazil based on complete gag and pol genes. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Nogarol C, Bertolotti L, Klevar S, Profiti M, Gjerset B, Rosati S. Serological characterization of small ruminant lentiviruses: A complete tool for serotyping lentivirus infection in goat. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
An effective management strategy for the control of two lentiviruses in goat breedings. J Theor Biol 2019; 469:96-106. [PMID: 30817924 DOI: 10.1016/j.jtbi.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 11/23/2022]
Abstract
Caprine Arthritis Encephalitis is an endemic disease in goat breedings, caused by viral strains belonging to the Small Ruminant Lentivirus group and characterized by a progressive chronic course. Its clinical signs are not immediately recognizable and can only be detected via costly serological tests. No vaccine is available. Two main strategies for fighting it are in common use. The "test-and-slaughter" approach, that selects infected goats and directly slaughters them, is expensive, time consuming and often leads to endemic low level persistence of the infection. Alternatively, newborns are removed from their mothers to be raised by healthy goats. After weaning they would rejoin their breeds, but then they could still be subject to horizontal contagion. In this study a mathematical model that considers the cocirculation of two different SRLV viral genotypes (B and E) is devised and analyzed, based on the key assumption of perfect cross-protection between the two genotypes' infections. Two strategic measures arise from its analysis, that are strongly recommended and whose implementation is encouraged: in the presence of both genotypes, the farmer should not isolate the newborns from their mothers but rather raise them with all the other animals. In the case of genotype-B-only affected farm, serological testing and mother-offspring separation should still be considered the best strategy for CAEV control. These strategies completely reverse the current removal policy and, in due conditions, would lead to disease eradication. These represent very reasonable and cheap measures for the eventual control of the epidemics.
Collapse
|
21
|
Colitti B, Coradduzza E, Puggioni G, Capucchio MT, Reina R, Bertolotti L, Rosati S. A new approach for Small Ruminant Lentivirus full genome characterization revealed the circulation of divergent strains. PLoS One 2019; 14:e0212585. [PMID: 30789950 PMCID: PMC6383919 DOI: 10.1371/journal.pone.0212585] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Small Ruminant Lentiviruses (SRLV) include at least 4 viral highly divergent genotypes. Genotypes A and B are widely distributed and genotypes C and E have been recognized in restricted geographic areas. New phylogroups have been identified targeting conserved regions. However, this approach suffers from the potential risk to misamplify highly divergent strains. Pathogenic strains are easily adapted to fibroblastic cells, but non-pathogenic strains isolation may require a different approach. We developed a fast and effective method for SRLV full genome characterization after cell culture isolation. Spleen samples were collected during regular slaughter from sheep and goats in northwestern Italy. Spleen-derived macrophage cultures were monitored for reverse transcriptase activity and RNA was extracted from the supernatant of positive cultures. Using Illumina MiSeq platform 22 new full genome sequences were obtained. The success of this approach is based on the following features: spleen is one of the main target for SRLV persistence; red pulp is a reserve of resident macrophages, the main target for SRLV replication in vivo; RTA is a sensitive assay for any replicating retrovirus; de novo sequencing do not require genetic knowledge in advance.
Collapse
Affiliation(s)
- Barbara Colitti
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
| | | | | | | | - Ramsés Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Navarra, Spain
| | - Luigi Bertolotti
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
- * E-mail:
| | - Sergio Rosati
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
| |
Collapse
|
22
|
Olech M, Murawski M, Kuźmak J. Molecular analysis of small-ruminant lentiviruses in Polish flocks reveals the existence of a novel subtype in sheep. Arch Virol 2019; 164:1193-1198. [PMID: 30739201 PMCID: PMC6420616 DOI: 10.1007/s00705-019-04161-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 01/28/2023]
Abstract
Small-ruminant lentivirus (SRLV) infections are widespread in Poland, and circulation of subtypes A1, A12, A13, A16, A17, B1 and B2 has been documented. The aim of this study was to characterize the SRLV strains circulating in sheep and goats in mixed flocks in the Malopolska region, where the highest seroprevalence has been detected. Phylogenetic analysis revealed that most of the isolates from sheep belonged to subtype A13, suggesting that this subtype may be predominant in the Malopolska region. Furthermore, the existence of a new subtype, tentatively designated as A18, was described for the first time. This work extends the current knowledge on the distribution of SRLV subtypes in sheep and goats in Poland and provides further information on the genetic diversity of SRLV. The new data are important for both epidemiological studies and eradication programs and provide insight into the evolution of SRLV.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| | - Maciej Murawski
- Department of Animal Biotechnology, Agricultural University of Kraków, 1B Rędzina, 30-248, Cracow, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
23
|
Cirone F, Maggiolino A, Cirilli M, Sposato A, De Palo P, Ciappetta G, Pratelli A. Small ruminant lentiviruses in goats in southern Italy: Serological evidence, risk factors and implementation of control programs. Vet Microbiol 2018; 228:143-146. [PMID: 30593360 DOI: 10.1016/j.vetmic.2018.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
Abstract
Small ruminant lentiviruses (SRLVs) can drastically affect milk production in goat flocks and only an early detection can control and prevent their spread. Since SRLVs are responsible for persistent infections, antibody screening is the most valuable tool to identify infected animals. ELISA is recommended as the election test both for its sensitivity and for its ability to detect low antibody titers, thus identifying infected animals earlier than agar gel immunodiffusion (AGID). In the present study, an investigation was conducted to assess the SRLV seroprevalence in goat flocks in southern Italy and a transversal comparative study was carried out through the analysis of the possible risk factors influencing SRLV spread. A total of 4800 sera from 1060 flocks were analyzed and overall seroprevalences of 18,64% and 51,69% at animal and herd levels, respectively, were observed. Both the region and the herd production systems were able to affect seroprevalence, differently from the herd size, probably because the mean number of goats per herd is low and the semi-intensive management is similar regardless of the dimensional class of each herd. In particular, meat producing herds showed the higher seroprevalence, as a result of the poor sanitation and low animal monitoring in comparison to milk producing herds, where animals are managed twice daily and the relationship between dams and kids is checked to guarantee an adequate quantitative/qualitative milk yield. In the absence of vaccines or effective treatments, health preventive management and seroepidemiological investigations are the only successful approach to restrict SRLV spread as observed in countries were official/voluntary control programs are carried out.
Collapse
Affiliation(s)
- Francesco Cirone
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy
| | - Aristide Maggiolino
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy
| | - Margie Cirilli
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy
| | - Alessio Sposato
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy
| | - Pasquale De Palo
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy
| | - Giacinto Ciappetta
- ASP CS Distretto Jonio Nord, Via G. Leopardi 2, 87075, Trebisacce, Cs, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine- University of Bari, Sp Casamassima Km3, 70010 Valenzano, Ba, Italy.
| |
Collapse
|
24
|
Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, Teixeira MFS. Duplex nested-PCR for detection of small ruminant lentiviruses. Braz J Microbiol 2018; 49 Suppl 1:83-92. [PMID: 30249525 PMCID: PMC6328810 DOI: 10.1016/j.bjm.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) have high genetic variability which results in different viral strains around the world. This create a challenge to design sensible primers for molecular diagnosis in different regions. This work proposes a protocol of duplex nested-PCR for the precise diagnosis of SRLV. The technique was designed and tested with the control strains CAEV Co and MVV 1514. Then, field strains were submitted to the same protocol of duplex nested-PCR. Blood samples of sheep and goats were tested with AGID and nested PCR with specific primers for pol, gag and LTR. The AGID results showed low detection capacity of positive animals, while the nested PCR demonstrated a greater capacity of virus detection. Results demonstrated that LTR-PCR was more efficient in detecting positive sheep samples, whereas gag-PCR allowed a good detection of samples of positive goats and positive sheep. In addition, pol-PCR was more efficient with goat samples than for sheep. Duplex nested PCR performed with standard virus samples and field strains demonstrated that the technique is more efficient for the detection of multiple pro-viral DNA sequences. This study demonstrated a successful duplex nested PCR assay allowing a more accurate diagnosis of SRLV.
Collapse
Affiliation(s)
- Rebeca C Marinho
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil.
| | - Gabrielle R Martins
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | | | - Ana Lídia M Sousa
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Sabrina Tainah C Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Juliana A Nobre
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Maria F S Teixeira
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| |
Collapse
|
25
|
Genetic characterisation of small ruminant lentiviruses in sheep and goats from the Czech Republic. ACTA VET BRNO 2018. [DOI: 10.2754/avb201887010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the prevalence of small ruminant lentivirus (SRLV) infections on sheep and goat farms which are exempt from state monitoring and carry molecular characterisation of strains circulating amongst these farms without SRLV eradication. A total number of 3,410 blood samples of sheep and goats from 21 herds were collected for the purpose of the project. The detected serological prevalence of maedi visna in sheep was 19.9% (556/2801) and the seroprevalence of caprine arthritis and encephalitis in goats was 14.1% (86/609). All positive animals were tested by the nested polymerase chain reaction (nPCR) method for the presence of provirus in the buffy-coats from EDTA-blood samples. Phylogenetic analysis of 93 SRLV strains identified the genotype in 77 sequences, where 60 of them were genotype A and 17 belonged to genotype B. Whereas all of the genotype B sequences were classified in subtype B2, the genotype A group of isolates showed higher variability and were related to subgenotypes A2 and A3. This study represents the first report of genetic characterisation of SRLV strains circulating in the territory of the Czech Republic.
Collapse
|
26
|
Olech M, Valas S, Kuźmak J. Epidemiological survey in single-species flocks from Poland reveals expanded genetic and antigenic diversity of small ruminant lentiviruses. PLoS One 2018; 13:e0193892. [PMID: 29505612 PMCID: PMC5837103 DOI: 10.1371/journal.pone.0193892] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Small ruminant lentivirus (SRLV) infections are widespread in Poland and circulation of subtypes A1, A12, A13, B1 and B2 was detected. The present work aimed at extending previous study based on the analysis of a larger number of animals from single-species flocks. Animals were selected for genetic analysis based on serological reactivity towards a range of recombinant antigens derived from Gag and Env viral proteins. Phylogenetic analysis revealed the existence of subtypes B2 and A12 in both goats and sheep and subtypes A1 and B1 in goats only. In addition, two novel subtypes, A16 and A17, were found in goats. Co-infections with strains belonging to different subtypes within A and B groups were detected in 1 sheep and 4 goats originating from four flocks. Although the reactivity of serum samples towards the recombinant antigens confirmed immunological relatedness between Gag epitopes of different subtypes and the cross-reactive nature of Gag antibodies, eleven serum samples failed to react with antigens representing all subtypes detected up-to-date in Poland, highlighting the limitations of the serological diagnosis. These data showed the complex nature of SRLV subtypes circulating in sheep and goats in Poland and the need for improving SRLV-related diagnostic capacity.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
- * E-mail:
| | | | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
27
|
Azevedo DAAD, Santos VWSD, Sousa ALMD, Peixoto RM, Pinheiro RR, Andrioli A, Teixeira MFDS. Small ruminant lentiviruses: economic and productive losses, consequences of the disease. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000552016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Small ruminant lentiviruses, caprine arthritis encephalitis virus, and Maedi-Visna virus cause diseases that result in significant productive losses, mostly in dairy animals. These viruses belong to the Retroviridae family, Lentivirus genus, and constitute a heterogeneous group, which may generate implications for the diagnosis and control of small ruminant lentiviruses. Losses caused by them are associated with reproductive failure, short productive life, and decreased milk production by the infected animals. In addition, these viruses may reduce milk quality, affecting the production of dairy products such as cheese. Small ruminant lentiviruses lead to indirect losses, decreasing herd value and forcing the development of epidemiological trade barriers for animal germplasm. Control of small ruminant lentiviruses is important to promote optimal milk production and to reduce costs with medicine and technical assistance. This control may vary in caprine and ovine populations of each country, according to seroprevalence, variety of breeds, and peculiarities of the practiced management.
Collapse
|
28
|
Grego E, Reina R, Lanfredini S, Tursi M, Favole A, Profiti M, Lungu MM, Perona G, Gay L, Stella MC, DeMeneghi D. Viral load, tissue distribution and histopathological lesions in goats naturally and experimentally infected with the Small Ruminant Lentivirus Genotype E (subtype E1 Roccaverano strain). Res Vet Sci 2018; 118:107-114. [PMID: 29421479 DOI: 10.1016/j.rvsc.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 11/27/2022]
Abstract
Small Ruminant Lentivirus (SRLV) subtype E1, also known as Roccaverano strain, is considered a low pathogenic virus on the basis of natural genetic deletions, in vitro properties and on-farm observations. In order to gain more knowledge on this atypical lentivirus we investigated the in vivo tropism of Roccaverano strain in both, experimentally and naturally infected goats. Antibody responses were monitored as well as tissue distribution and viral load, evaluated by real time PCR on single spliced (gag/env) and multiple spliced (rev) RNA targets respectively, that were compared to histopathological lesions. Lymph nodes, spleen, alveolar macrophages and mammary gland turned out to be the main tissue reservoirs of genotype E1-provirus. Moreover, mammary gland and/or mammary lymph nodes acted as active replication sites in dairy goats, supporting the lactogenic transmission of this virus. Notably, a direct association between viral load and concomitant infection or inflammatory processes was evident within organs such as spleen, lung and testis. Our results validate the low pathogenicity designation of SRLV genotype E1 in vivo, and confirm the monocyte-macrophage cell lineage as the main virus reservoir of this genotype. Accordingly, SRLV genotype E displays a tropism towards all tissues characterized by an abundant presence of these cells, either for their own anatomical structure or for an occasional infectious/inflammatory status.
Collapse
Affiliation(s)
- E Grego
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - R Reina
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Mutilva, Navarra 31192, Spain
| | - S Lanfredini
- European Cancer Stem Cell, Research Institute Hadyn Ellis, Building Maindy Road Cathays, CF24 4HQ Cardiff, UK
| | - M Tursi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - A Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Via Bologna 148, 10154 Torino, Italy
| | - M Profiti
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - M M Lungu
- Universitatea "Stefan cel Mare" dinSuceava, Departamentul de sanatate si dezvoltare umana, Str. Universitatii, 13, Suceava 720229, Romania
| | - G Perona
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - L Gay
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - M C Stella
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - D DeMeneghi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
29
|
Tavella A, Bettini A, Ceol M, Zambotto P, Stifter E, Kusstatscher N, Lombardi R, Nardeli S, Beato MS, Capello K, Bertoni G. Achievements of an eradication programme against caprine arthritis encephalitis virus in South Tyrol, Italy. Vet Rec 2017; 182:51. [PMID: 29109181 PMCID: PMC5806589 DOI: 10.1136/vr.104503] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Small ruminant lentivirus infections in goats affect both production and animal welfare. This represents a threat to the qualitative and quantitative growth of goat farming, recently observed in mountainous regions such as the Autonomous Province of Bolzano – South Tyrol (Italy). To monitor and eradicate the caprine arthritis encephalitis virus in this goat population, a compulsory eradication campaign was launched, based on a strict census of small ruminants and yearly serological testing of all animals, followed by the consequent culling of seropositive individuals. The campaign succeeded in completely eliminating cases of clinical disease in goats, while drastically reducing the seroprevalence at the herd as well as individual animal level. The serological outcome of the introduced control measures was determined using commercially available ELISA kits, demonstrating their suitability for use in this type of campaign, aimed at reducing seroprevalence as well as clinical manifestations of these infections. However, this clear success is diminished by the failure to achieve a complete eradication of these viruses. The reasons leading to the observed tailing phenomenon and the occurrence of new infections in already sanitised flocks are discussed and implementation of further measures are proposed.
Collapse
Affiliation(s)
- Alexander Tavella
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Astrid Bettini
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Marco Ceol
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Paolo Zambotto
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Ernst Stifter
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Natashia Kusstatscher
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Rosalba Lombardi
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Stefano Nardeli
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Serena Beato
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Katia Capello
- Direzione Sanitaria, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giuseppe Bertoni
- Vetsuisse Faculty, Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Sanjosé L, Crespo H, Blatti-Cardinaux L, Glaria I, Martínez-Carrasco C, Berriatua E, Amorena B, De Andrés D, Bertoni G, Reina R. Post-entry blockade of small ruminant lentiviruses by wild ruminants. Vet Res 2016; 47:1. [PMID: 26738942 PMCID: PMC4702310 DOI: 10.1186/s13567-015-0288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/13/2015] [Indexed: 11/16/2022] Open
Abstract
Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.
Collapse
Affiliation(s)
- Leticia Sanjosé
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Helena Crespo
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | | | - Idoia Glaria
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Carlos Martínez-Carrasco
- Animal Health Department, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain.
| | - Eduardo Berriatua
- Animal Health Department, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain.
| | - Beatriz Amorena
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Damián De Andrés
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | | | - Ramses Reina
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| |
Collapse
|
31
|
Minguijón E, Reina R, Pérez M, Polledo L, Villoria M, Ramírez H, Leginagoikoa I, Badiola JJ, García-Marín JF, de Andrés D, Luján L, Amorena B, Juste RA. Small ruminant lentivirus infections and diseases. Vet Microbiol 2015; 181:75-89. [PMID: 26371852 DOI: 10.1016/j.vetmic.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small ruminant lentiviruses include viruses with diverse genotypes that frequently cross the species barrier between sheep and goats and that display a great genetic variability. These characteristics stress the need to consider the whole host range and to perform local surveillance of the viruses to opt for optimum diagnostic tests, in order to establish control programmes. In the absence of effective vaccines, a comprehensive knowledge of the epidemiology of these infections is of major importance to limit their spread. This article intends to cover these aspects and to summarise information related to characteristics of the viruses, pathogenesis of the infection and description of the various syndromes produced, as well as the diagnostic tools available, the mechanisms involved in transmission of the pathogens and, finally, the control strategies that have been designed until now, with remarks on the drawbacks and the advantages of each one. We conclude that there are many variables influencing the expected cost and benefits of control programs that must be evaluated, in order to put into practice measures that might lead to control of these infections.
Collapse
Affiliation(s)
- E Minguijón
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - R Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - M Pérez
- Department of Anatomy, Embryology and Genetics. University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - L Polledo
- Pathological Anatomy Section, Animal Health Department, Veterinary School, University of León, 24007 León, Spain
| | - M Villoria
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - H Ramírez
- Facultad de Estudios Superiores Cuautitlán. UNAM. Laboratorio de Virología, Genética y Biología Molecular, Campo 4. Veterinaria.Carretera Cuautitlán-Teoloyucan, Km 2.5. San Sebastián Xhala, Cuautitlán Izcalli, CP.54714 Mexico
| | - I Leginagoikoa
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - J J Badiola
- Department of Animal Pathology, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - J F García-Marín
- Pathological Anatomy Section, Animal Health Department, Veterinary School, University of León, 24007 León, Spain
| | - D de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - L Luján
- Department of Animal Pathology, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - B Amorena
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - R A Juste
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain.
| |
Collapse
|
32
|
De Palo P, Maggiolino A, Centoducati N, Tateo A. Effects of different milk replacers on carcass traits, meat quality, meat color and fatty acids profile of dairy goat kids. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
The effect of cold acidified milk replacer on productive performance of suckling kids reared in an extensive farming system. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Development, validation and evaluation of added diagnostic value of a q(RT)-PCR for the detection of genotype A strains of small ruminant lentiviruses. J Virol Methods 2013; 194:250-7. [DOI: 10.1016/j.jviromet.2013.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/22/2022]
|
35
|
Crespo H, Bertolotti L, Juganaru M, Glaria I, de Andrés D, Amorena B, Rosati S, Reina R. Small ruminant macrophage polarization may play a pivotal role on lentiviral infection. Vet Res 2013; 44:83. [PMID: 24070317 PMCID: PMC3850683 DOI: 10.1186/1297-9716-44-83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/26/2013] [Indexed: 01/10/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host’s innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-γ displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions. Since infection by SRLV can modulate macrophage functions we explored here whether ovine and caprine macrophages can be segregated into M1 and M2 populations and whether this differential polarization represents differential susceptibility to SRLV infection. We found that like in human and mouse systems, ovine and caprine macrophages can be differentiated with particular stimuli into M1/M2 subpopulations displaying specific markers. In addition, small ruminant macrophages are plastic since M1 differentiated macrophages can express M2 markers when the stimulus changes from IFN-γ to IL-4. SRLV replication was restricted in M1 macrophages and increased in M2 differentiated macrophages respectively according to viral production. Identification of the infection pathways in macrophage populations may provide new targets for eliciting appropriate immune responses against SRLV infection.
Collapse
Affiliation(s)
- Helena Crespo
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra, Mutilva Baja, Navarra, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuhar U, Barlič-Maganja D, Grom J. Development and validation of TaqMan probe based real time PCR assays for the specific detection of genotype A and B small ruminant lentivirus strains. BMC Vet Res 2013; 9:172. [PMID: 24004524 PMCID: PMC3766269 DOI: 10.1186/1746-6148-9-172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small ruminant lentiviruses (SRLV) are members of the Retroviridae family and infect goats and sheep worldwide. Detection of specific antibodies using AGID and ELISA is the most commonly used means of diagnosing SRLV infection. The most frequent molecular method for detecting the provirus genome is PCR, using peripheral blood leucocytes as target cells. Real time PCR has also recently been used. The aim of this study was to develop a real time PCR for detection of SRLV in order to improve molecular diagnostics of SRLV infections in sheep and goats. RESULTS Two new real time PCR assays using TaqMan probes for the specific detection of genotype A (MVV assay) and genoptype B (CAEV assay) SRLV strains and differentiation between them were developed and validated at both analytical and diagnostic levels following MIQE guidelines. The validation results showed that the new real time PCR is 100% specific, with a reliable limit of detection of 26 (CAEV assay) and 72 (MVV assay) plasmid DNA copies, while compared to ELISA the diagnostic sensitivity of both assays was 79% when tested with Slovenian SRLV field samples. Intra-assay and inter-assay coefficients of variation showed overall good repeatability and reproducibility of the new real time PCR assays, except for the highest dilutions. CONCLUSIONS Two new TaqMan probe based real time PCR assays for the specific detection of genotype A and B SRLV strains and differentiation between them were developed and validated. They can serve as an additional tool for confirming infection with SRLV and may also be useful for early detection of infected animals prior to seroconversion.
Collapse
Affiliation(s)
- Urška Kuhar
- Veterinary Faculty, Institute for Microbiology and Parasitology, Virology Unit, University of Ljubljana, Gerbičeva 60, SI-1115 Ljubljana, Slovenia.
| | | | | |
Collapse
|
37
|
Immunization against small ruminant lentiviruses. Viruses 2013; 5:1948-63. [PMID: 23917352 PMCID: PMC3761235 DOI: 10.3390/v5081948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/16/2022] Open
Abstract
Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV) in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease.
Collapse
|
38
|
Sider LH, Heaton MP, Chitko-McKown CG, Harhay GP, Smith TPL, Leymaster KA, Laegreid WW, Clawson ML. Small ruminant lentivirus genetic subgroups associate with sheep TMEM154 genotypes. Vet Res 2013; 44:64. [PMID: 23895262 PMCID: PMC3734121 DOI: 10.1186/1297-9716-44-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are prevalent in North American sheep and a major cause of production losses for the U.S. sheep industry. Sheep susceptibility to SRLV infection is influenced by genetic variation within the ovine transmembrane 154 gene (TMEM154). Animals with either of two distinct TMEM154 haplotypes that both encode glutamate at position 35 of the protein (E35) are at greater risk of SRLV infection than those homozygous with a lysine (K35) haplotype. Prior to this study, it was unknown if TMEM154 associations with infection are influenced by SRLV genetic subgroups. Accordingly, our goals were to characterize SRLVs naturally infecting sheep from a diverse U.S. Midwestern flock and test them for associations with TMEM154 E35K genotypes. Two regions of the SRLV genome were targeted for proviral amplification, cloning, sequence analysis, and association testing with TMEM154 E35K genotypes: gag and the transmembrane region of env. Independent analyses of gag and env sequences showed that they clustered in two subgroups (1 and 2), they were distinct from SRLV subtypes originating from Europe, and that subgroup 1 associated with hemizygous and homozygous TMEM154 K35 genotypes and subgroup 2 with hemi- and homozygous E35 genotypes (gag p < 0.001, env p = 0.01). These results indicate that SRLVs in the U.S. have adapted to infect sheep with specific TMEM154 E35K genotypes. Consequently, both host and SRLV genotypes affect the relative risk of SRLV infection in sheep.
Collapse
Affiliation(s)
- Lucia H Sider
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), U,S, Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 2013; 5:1867-84. [PMID: 23881276 PMCID: PMC3738966 DOI: 10.3390/v5071867] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
Zoonotic events of simian immunodeficiency virus (SIV) from non-human primates to humans have generated the acquired immunodeficiency syndrome (AIDS), one of the most devastating infectious disease of the last century with more than 30 million people dead and about 40.3 million people currently infected worldwide. Human immunodeficiency virus (HIV-1 and HIV-2), the two major viruses that cause AIDS in humans are retroviruses of the lentivirus genus. The genus includes arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), and a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting goat and sheep. Lentivirus genome integrates into the host DNA, causing persistent infection associated with a remarkable diversity during viral replication. Direct evidence of mixed infections with these two closely related SRLVs was found in both sheep and goats. The evidence of a genetic continuum with caprine and ovine field isolates demonstrates the absence of an efficient species barrier preventing cross-species transmission. In dual-infected animals, persistent infections with both CAEV and MVV have been described, and viral chimeras have been detected. This not only complicates animal trade between countries but favors the risk that highly pathogenic variants may emerge as has already been observed in the past in Iceland and, more recently, in outbreaks with virulent strains in Spain. SRLVs affecting wildlife have already been identified, demonstrating the existence of emergent viruses adapted to new hosts. Viruses adapted to wildlife ruminants may acquire novel biopathological properties which may endanger not only the new host species but also domestic ruminants and humans. SRLVs infecting sheep and goats follow a genomic evolution similar to that observed in HIV or in other lentiviruses. Lentivirus genetic diversity and host factors leading to the establishment of naturally occurring virulent versus avirulent infections, in addition to the emergence of new strains, challenge every aspect of SRLV control measures for providing efficient tools to prevent the transmission of diseases between wild ungulates and livestock.
Collapse
|
40
|
Ramírez H, Reina R, Amorena B, de Andrés D, Martínez HA. Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses 2013; 5:1175-1207. [PMID: 23611847 PMCID: PMC3705272 DOI: 10.3390/v5041175] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 02/05/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host's cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
Collapse
Affiliation(s)
- Hugo Ramírez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Beatriz Amorena
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Humberto A. Martínez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| |
Collapse
|
41
|
de Andrés X, Ramírez H, Bertolotti L, San Román B, Glaria I, Crespo H, Jáuregui P, Minguijón E, Juste R, Leginagoikoa I, Pérez M, Luján L, Badiola JJ, Polledo L, García-Marín JF, Riezu JI, Borrás-Cuesta F, de Andrés D, Rosati S, Reina R, Amorena B. An insight into a combination of ELISA strategies to diagnose small ruminant lentivirus infections. Vet Immunol Immunopathol 2013; 152:277-88. [PMID: 23375019 DOI: 10.1016/j.vetimm.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/08/2023]
Abstract
A single broadly reactive standard ELISA is commonly applied to control small ruminant lentivirus (SRLV) spread, but type specific ELISA strategies are gaining interest in areas with highly prevalent and heterogeneous SRLV infections. Short (15-residue) synthetic peptides (n=60) were designed in this study using deduced amino acid sequence profiles of SRLV circulating in sheep from North Central Spain and SRLV described previously. The corresponding ELISAs and two standard ELISAs were employed to analyze sera from sheep flocks either controlled or infected with different SRLV genotypes. Two outbreaks, showing SRLV-induced arthritis (genotype B2) and encephalitis (genotype A), were represented among the infected flocks. The ELISA results revealed that none of the assays detected all the infected animals in the global population analyzed, the assay performance varying according to the genetic type of the strain circulating in the area and the test antigen. Five of the six highly reactive (57-62%) single peptide ELISAs were further assessed, revealing that the ELISA based on peptide 98M (type A ENV-SU5, consensus from the neurological outbreak) detected positives in the majority of the type-A specific sera tested (Se: 86%; Sp: 98%) and not in the arthritic type B outbreak. ENV-TM ELISAs based on peptides 126M1 (Se: 82%; Sp: 95%) and 126M2 0,65 0.77 (Se: 68%; Sp: 88%) detected preferentially caprine arthritis encephalitis (CAEV, type B) and visna/maedi (VMV, type A) virus infections respectively, which may help to perform a preliminary CAEV vs. VMV-like typing of the flock. The use of particular peptide ELISAs and standard tests individually or combined may be useful in the different areas under study, to determine disease progression, diagnose/type infection and prevent its spread.
Collapse
Affiliation(s)
- X de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Gobierno de Navarra), Navarre, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genetic characterization of small ruminant lentiviruses circulating in naturally infected sheep and goats in Ontario, Canada. Virus Res 2013; 175:30-44. [PMID: 23583225 DOI: 10.1016/j.virusres.2013.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 11/22/2022]
Abstract
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV) are related members of a group of small ruminant lentiviruses (SRLVs) that infect sheep and goats. SRLVs are endemic in many countries, including Canada. However, very little is known about the genetic characteristics of Canadian SRLVs, particularly in the province of Ontario. Given the importance of surveillance and eradication programs for the control of SRLVs, it is imperative that the diagnostic tests used to identify infected animals are sensitive to local strains of SRLVs. The aim of this work was to characterize SRLV strains circulating in Ontario and to evaluate the variability of the immunodominant regions of the Gag protein. In this study, the nearly complete gag sequence of 164 SRLVs, from 130 naturally infected sheep and 32 naturally infected goats from Ontario, was sequenced. Animals belonged to distantly located single and mixed species (sheep and goats) farms. Ovine lentiviruses from the same farm tended to cluster more closely together than did caprine lentiviruses from the same farm. Sequence analysis revealed a higher degree of heterogeneity among the caprine lentivirus sequences with an average inter-farm pairwise DNA distance of 10% and only 5% in the ovine lentivirus group. Interestingly, amplification of SRLVs from ELISA positive sheep was successful in 81% of cases, whereas amplification of SRLV proviral DNA was only possible in 55% of the ELISA positive goat samples; suggesting that a significant portion of caprine lentiviruses circulating in Ontario possess heterogeneity at the primer binding sites used in this study. Sequences of sheep and goat SRLVs from Ontario were assembled into phylogenetic trees with other known SRLVs and were found to belong to sequence groups A2 and B1, respectively, as defined by Shah et al. (2004a). A novel caprine lentivirus with a pairwise genetic difference of 15.6-25.4% relative to other group B subtypes was identified. Thus we suggest the designation of a novel subtype, B4, within the caprine lentivirus-like cluster. Lastly, we demonstrate evidence of recombination between ovine lentiviruses. These results emphasize the broad genetic diversity of SRLV strains circulating in the province of Ontario and show that the gag region is suitable for phylogenetic studies and may be applied to monitor SRLV eradication programs.
Collapse
|
43
|
Rachid A, Croisé B, Russo P, Vignoni M, Lacerenza D, Rosati S, Kuźmak J, Valas S. Diverse host–virus interactions following caprine arthritis-encephalitis virus infection in sheep and goats. J Gen Virol 2013. [DOI: 10.1099/vir.0.044768-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interspecies transmissions substantially contribute to the epidemiology of small ruminant lentiviruses (SRLVs), including caprine arthritis encephalitis virus (CAEV) and visna-maëdi virus. However, comprehensive studies of host–virus interactions during SRLV adaptation to the new host are lacking. In this study, virological and serological features were analysed over a 6 month period in five sheep and three goats experimentally infected with a CAEV strain. Provirus load at the early stage of infection was significantly higher in sheep than in goats. A broad antibody reactivity against the matrix and capsid proteins was detected in goats, whereas the response to these antigens was mostly type-specific in sheep. The humoral response to the major immunodominant domain of the surface unit glycoprotein was type-specific, regardless of the host species. These species-specific immune responses were then confirmed in naturally infected sheep and goats using sera from mixed flocks in which interspecies transmissions were reported. Taken together, these results provide evidence that SRLV infections evolve in a host-dependent manner, with distinct host–virus interactions in sheep and goats, and highlight the need to consider both SRLV genotypes in diagnosis, particularly in sheep.
Collapse
Affiliation(s)
- Antoine Rachid
- Anses, Niort Laboratory, Ruminant Retrovirus Unit, F-79012 Niort, France
| | - Benoit Croisé
- Anses, Niort Laboratory, Ruminant Retrovirus Unit, F-79012 Niort, France
| | - Pierre Russo
- Anses, Sophia-Antipolis Laboratory, Ruminant Pathology Unit, 06902 Sophia-Antipolis, France
| | - Michel Vignoni
- Anses, Sophia-Antipolis Laboratory, Ruminant Pathology Unit, 06902 Sophia-Antipolis, France
| | - Daniela Lacerenza
- Department of Animal Production, Epidemiology and Ecology, University of Turin, Italy
| | - Sergio Rosati
- Department of Animal Production, Epidemiology and Ecology, University of Turin, Italy
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Stephen Valas
- Anses, Niort Laboratory, Ruminant Retrovirus Unit, F-79012 Niort, France
| |
Collapse
|
44
|
Kuhar U, Barlič-Maganja D, Grom J. Phylogenetic analysis of small ruminant lentiviruses detected in Slovenia. Vet Microbiol 2012; 162:201-6. [PMID: 23022680 DOI: 10.1016/j.vetmic.2012.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Small ruminant lentiviruses (SRLV), which belong to the Retroviridae family, infect goats and sheep worldwide. The aim of this study was to characterize the SRLV strains circulating in Slovenia, by phylogenetic analysis of two genomic regions, 1.8 kb gag-pol fragment and 1.2kb pol fragment. The results of our study revealed that Slovenian SRLV strains are highly heterogeneous, with ovine strains belonging to genotype A and caprine strains to genotypes A and B. The closest relatives of sheep virus sequences from two flocks that clustered together (SLO 35, 36) were found to be in subtype A5. A cluster composed of four sheep virus sequences (SLO 31) was clearly divergent from all other subtypes in group A and could not be assigned to any of them. The virus sequences from one goat flock belonged solely to subtype B1, whereas virus sequences from more than one genotype were found to circulate within the other two goat flocks, belonging to subtype B1 (SLO 1 and SLO 37) and to genotype A (SLO 2 and 78-88 g). Two goat virus sequences (SLO 2) were found to belong to genotype A and could not be assigned to existing subtypes. One goat virus sequence (37-88 g) from flock 37 was clearly different from other sequences of this flock and was more closely related to genotype A sequences. We propose two new subtypes within genotype A, subtype A14 (SLO 2) and A15 (SLO 31).
Collapse
Affiliation(s)
- Urška Kuhar
- University of Ljubljana, Veterinary Faculty, Gerbičeva 60, SI-1115 Ljubljana, Slovenia.
| | | | | |
Collapse
|
45
|
Glaria I, Reina R, Ramírez H, de Andrés X, Crespo H, Jauregui P, Salazar E, Luján L, Pérez MM, Benavides J, Pérez V, Polledo L, García-Marín JF, Riezu JI, Borrás F, Amorena B, de Andrés D. Visna/Maedi virus genetic characterization and serological diagnosis of infection in sheep from a neurological outbreak. Vet Microbiol 2012; 155:137-46. [PMID: 21940116 DOI: 10.1016/j.vetmic.2011.08.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 02/08/2023]
Abstract
An extensive outbreak characterized by the appearance of neurological symptoms in small ruminant lentivirus (SRLV) infected sheep has been identified in Spain, but the genetic characteristics of the strain involved and differential diagnostic tools for this outbreak remain unexplored. In this work, 23 Visna-affected naturally infected animals from the outbreak, 11 arthritic animals (both groups presenting anti-Visna/Maedi virus serum antibodies), and 100 seronegative animals were used. Eight of the Visna-affected animals were further studied post-mortem by immunohistochemistry. All had lesions in spinal cord, being the most affected part of the central nervous system in six of them. A representative strain of the outbreak was isolated. Together with other proviral sequences from the outbreak the virus was assigned to genotype A2/A3. In vitro culture of the isolate revealed that viral production was slow/low in fibroblast-like cells but it was high in blood monocyte-derived macrophages. The long terminal repeat (LTR) of the viral genome of this isolate lacked an U3-duplication, but its promoter activity in fibroblast-like cells was normal compared to other strains. Thus, viral production could not be inferred from the LTR promoter activity in this isolate. Analysis of the viral immunodominant epitopes among SRLV sequences of the outbreak and other known sequences allowed the design of a synthetic SU peptide ELISA that detected the Visna affected animals, representing a tool of epidemiological interest to control viral spread of this highly pathogenic strain.
Collapse
Affiliation(s)
- I Glaria
- Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), 31192 Navarra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gifford RJ. Viral evolution in deep time: lentiviruses and mammals. Trends Genet 2011; 28:89-100. [PMID: 22197521 DOI: 10.1016/j.tig.2011.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022]
Abstract
Lentiviruses are a distinctive genus of retroviruses that cause chronic, persistent infections in mammals, including humans. The emergence of pandemic HIV type-1 (HIV-1) infection during the late 20th century shaped a view of lentiviruses as 'modern' viruses. However, recent research has revealed an entirely different perspective, elucidating aspects of an evolutionary relationship with mammals that extends across many millions of years. Such deep evolutionary history is likely to be typical of many host-virus systems, fundamentally underpinning their interactions in the present day. For this reason, establishing the deep history of virus and host interaction is key to developing a fully informed approach to tackling viral diseases. Here, I use the example of lentiviruses to illustrate how paleovirological, geographic and genetic calibrations allow observations of virus and host interaction across a wide range of temporal and spatial scales to be integrated into a coherent ecological and evolutionary framework.
Collapse
Affiliation(s)
- Robert J Gifford
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
47
|
Olech M, Rachid A, Croisé B, Kuźmak J, Valas S. Genetic and antigenic characterization of small ruminant lentiviruses circulating in Poland. Virus Res 2011; 163:528-36. [PMID: 22155513 DOI: 10.1016/j.virusres.2011.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Small ruminant lentivirus (SRLV) infections are widespread in Poland, but the genetic features of sheep viruses are still lacking and limited to partial gag sequences for goat viruses. In this study, segments from the gag and env genes of Polish SRLV strains screened by heteroduplex mobility assay were subjected to genetic analyses. Subtype A1 was found in both sheep and goats, while subtypes B1 and B2 were found in goats and sheep, respectively. In addition, two novel subtypes (named A12 and A13) were found in sheep. Their close phylogenetic relatedness with SRLV strains previously isolated from Polish goats indicated that these new subtypes are predominant and circulate in both species. The antigenic relationships of subtypes A12 and A13 with other SRLV subtypes were tested in an ELISA assay based on recombinant antigens carrying the immunodominant domains of structural proteins (MA, CA and SU). Antigenic cross-reactivity in the Gag epitopes was evident among genotype A subtypes and, to a lower extent, between genotypes A and B. In contrast, a subtype-specific immunoresponse was detected in the SU epitopes. These results emphasize the broad genetic and antigenic diversity of SRLV strains circulating in Europe and confirmed the need to consider all viral genotypes to choose the antigens in serological tests in order to avoid misdiagnosis in control and eradication programs.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | | | | | | | | |
Collapse
|
48
|
Giammarioli M, Bazzucchi M, Puggioni G, Brajon G, Dei Giudici S, Taccori F, Feliziani F, De Mia GM. Phylogenetic analysis of small ruminant lentivirus (SRLV) in Italian flocks reveals the existence of novel genetic subtypes. Virus Genes 2011; 43:380-4. [PMID: 21858464 DOI: 10.1007/s11262-011-0653-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/01/2011] [Indexed: 12/01/2022]
Abstract
In order to investigate the genetic heterogeneity of small ruminant lentivirus (SRLV) isolates in Italy, 55 clinical samples collected between 1998 and 2010 were analysed. The phylogenetic study was based on analysis of gag-pol sequences. Our findings revealed that the SRLVs belonged to the subtype A9 (n = 3, sheep), B1 (n = 5, goat), B2 (n = 3, sheep) and E2 (n = 5, goat). Interestingly, 39 isolates from both sheep and goat, significantly differed from all the other SRLVs previously described and formed two separate clusters within genotypes A and B tentatively named A11 (n = 27, goat and sheep) and B3 (n = 12, goat and sheep), which have never been shown before. These results revealed a marked diversity among Italian field SRLV strains which might reflect the absence of any systematic control measures.
Collapse
Affiliation(s)
- M Giammarioli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via Salvemini 1, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bertolotti L, Mazzei M, Puggioni G, Carrozza ML, Dei Giudici S, Muz D, Juganaru M, Patta C, Tolari F, Rosati S. Characterization of new small ruminant lentivirus subtype B3 suggests animal trade within the Mediterranean Basin. J Gen Virol 2011; 92:1923-1929. [DOI: 10.1099/vir.0.032334-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) represent a group of viruses infecting sheep and goats worldwide. Despite the high heterogeneity of genotype A strains, which cluster into as many as ten subtypes, genotype B was believed to be less complex and has, so far, been subdivided into only two subtypes. Here, we describe two novel full-length proviral sequences isolated from Sarda sheep in two Italian regions. Genome sequence as well as the main linear epitopes clearly placed this cluster into genotype B. However, owing to long-standing segregation of this sheep breed, the genetic distances that are clearly >15 % with respect to B1 and B2 subtypes suggest the designation of a novel subtype, B3. Moreover the close relationship with a gag sequence obtained from a Turkish sheep adds new evidence to historical data that suggest an anthropochorous dissemination of hosts (small ruminants) and their pathogens (SRLV) during the colonization of the Mediterranean from the Middle East.
Collapse
Affiliation(s)
- L. Bertolotti
- Molecular Biotechnology Center, Università degli Studi di Torino, via Nizza 52, 10126 Torino, Italy
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - M. Mazzei
- Dipartimento di Patologia Animale, Profilassi ed Igiene degli Alimenti, Facoltà di Medicina Veterinaria, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - G. Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - M. L. Carrozza
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - S. Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - D. Muz
- Faculty of Veterinary Medicine, Department of Virology, Mustafa Kemal University, Hatay, Turkey
| | - M. Juganaru
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - C. Patta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - F. Tolari
- Dipartimento di Patologia Animale, Profilassi ed Igiene degli Alimenti, Facoltà di Medicina Veterinaria, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - S. Rosati
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| |
Collapse
|
50
|
Juganaru M, Reina R, Bertolotti L, Stella M, Profiti M, Armentano M, Bollo E, Amorena B, Rosati S. In vitro properties of small ruminant lentivirus genotype E. Virology 2011; 410:88-95. [DOI: 10.1016/j.virol.2010.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/15/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
|