1
|
El Brini Z, Cullinane A, Garvey M, Fassi Fihri O, Fellahi S, Amraoui F, Loutfi C, Sebbar G, Paillot R, Piro M. First Molecular and Phylogenetic Characterization of Equine Herpesvirus-1 (EHV-1) and Equine Herpesvirus-4 (EHV-4) in Morocco. Animals (Basel) 2025; 15:102. [PMID: 39795045 PMCID: PMC11718982 DOI: 10.3390/ani15010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
This study aimed to investigate the molecular prevalence and genetic characterization of EHV-1 and EHV-4 in equid populations in Morocco. A total of 154 equids (114 horses, 9 donkeys, and 31 mules) were sampled, with nasal swabs and tissue samples subjected to multiplex real-time PCR for the detection of EHV-1 and EHV-4. Additionally, an isolate from the tissue of an aborted horse fetus was included in the analysis. A subset of EHV-positive samples underwent virus isolation followed by whole-genome sequencing. PCR assays revealed that 42 samples (27%) tested positive for EHV-4, while only 3 samples (1.94%) were positive for EHV-1. Attempts to isolate the virus from EHV-4-positive samples were unsuccessful. However, virus isolation was successful in an EHV-1-positive nasopharyngeal sample from a donkey. Phylogenetic and molecular characterization reclassified the EHV-1 isolated from the donkey as an EHV-8. Meanwhile, the EHV-1 isolated from the aborted fetal tissue was classified as a clade 1 EHV-1 virus. This study is the first to report the molecular prevalence and genetic characterization of EHV-1 and EHV-4 in equid populations in Morocco, providing valuable insights into the distribution and genetic diversity of these viruses in the region.
Collapse
Affiliation(s)
- Zineb El Brini
- Department of Medicine, Surgery, and Reproduction, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co., W91 RH93 Kildare, Ireland; (A.C.); (M.G.)
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co., W91 RH93 Kildare, Ireland; (A.C.); (M.G.)
| | - Ouafaa Fassi Fihri
- Department of Microbiology, Immunology and Contagious Diseases, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Farid Amraoui
- Society of Veterinary Pharmaceutical and Biological Productions (Biopharma), Rabat 10000, Morocco; (F.A.); (C.L.); (G.S.)
| | - Chafiqa Loutfi
- Society of Veterinary Pharmaceutical and Biological Productions (Biopharma), Rabat 10000, Morocco; (F.A.); (C.L.); (G.S.)
| | - Ghizlane Sebbar
- Society of Veterinary Pharmaceutical and Biological Productions (Biopharma), Rabat 10000, Morocco; (F.A.); (C.L.); (G.S.)
| | - Romain Paillot
- Writtle School of Agriculture, Animal and Environmental Science, Faculty of Science and Engineering, Anglia Ruskin University, Lordship Road, Writtle, Chelmsford CM1 3RR, UK;
| | - Mohammed Piro
- Department of Medicine, Surgery, and Reproduction, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| |
Collapse
|
2
|
Holmes CM, Babasyan S, Eady N, Schnabel CL, Wagner B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol Spectr 2024; 12:e0109224. [PMID: 39162558 PMCID: PMC11448092 DOI: 10.1128/spectrum.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is one of the most prevalent respiratory pathogens in horses with a high impact on animal health worldwide. Entry of the virus into epithelial cells of the upper respiratory tract and rapid local viral replication is followed by infection of local lymphoid tissues leading to cell-associated viremia and disease progression. Pre-existing mucosal immunity has previously been shown to reduce viral shedding and prevent viremia, consequently limiting severe disease manifestations. Here, nasopharyngeal transcriptomic profiling was used to identify differentially expressed genes following EHV-1 challenge in horses with different EHV-1 immune statuses. Immune horses (n = 4) did neither develop clinical disease nor viremia and did not shed virus after experimental infection, while non-immune horses (n = 4) did all the above. RNA sequencing was performed on nasopharyngeal samples pre- and 24 hours post-infection (24hpi). At 24hpi, 109 and 44 genes were upregulated in immune horses and non-immune horses, respectively, and three genes were explored in further detail. Antileukoproteinase (SLPI) gene expression increased 2.1-fold within 24 hours in immune horses in concert with protein secretion. Interferon (IFN)-induced proteins with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) were upregulated in non-immune horses, corresponding with nasal IFN-α secretion and viral replication. By contrast, neither IFIT expression nor IFN-α secretion was induced by EHV-1 infection of immune horses. Transcriptomic profiling offered a tool to identify, for the first time, the role of SLPI in innate immunity against EHV-1, and further emphasized the central role of the type I IFN response in the anti-viral defense of non-immune horses. IMPORTANCE Equine herpesvirus type 1 (EHV-1) remains a considerable concern in the equine industry, with yearly outbreaks resulting in morbidity, mortality, and economic losses. In addition to its importance in equine health, EHV-1 is a respiratory pathogen and an alphaherpesvirus, and it may serve as a model for other viruses with similar pathogenicity or phylogeny. Large animal models allow the collection of high-volume samples longitudinally, permitting in-depth investigation of immunological processes. This study was performed on bio-banked nasopharyngeal samples from an EHV-1 infection experiment, where clinical outcomes had previously been determined. Matched nucleic acid and protein samples throughout infection permitted longitudinal quantification of the protein or related proteins of selected differentially expressed genes detected during the transcriptomic screen. The results of this manuscript identified novel innate immune pathways of the upper respiratory tract during the first 24 hours of EHV-1 infection, offering a first look at the components of early mucosal immunity that are indicative of protection.
Collapse
Affiliation(s)
- Camille M. Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Naya Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Holmes CM, Wagner B. Characterization of Nasal Mucosal T Cells in Horses and Their Response to Equine Herpesvirus Type 1. Viruses 2024; 16:1514. [PMID: 39459849 PMCID: PMC11512333 DOI: 10.3390/v16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) enters through the upper respiratory tract (URT). Mucosal immunity at the URT is crucial in limiting viral infection and morbidity. Here, intranasal immune cells were collected from horses (n = 15) during an experimental EHV-1 infection. CD4+ and CD8+ T cells were the major intranasal cell populations before infection and increased significantly by day six and fourteen post-infection, respectively. Nasal mucosal T cells were further characterized in healthy horses. Compared to peripheral blood mononuclear cells (PBMC), mucosal CD8+ T-cell percentages were elevated, while CD4+ T-cell percentages were similar. A small population of CD4+CD8+ T cells was also recovered from mucosal samples. Within the URT tissue, CD4+ cells predominantly accumulated in the epithelial layer, while most CD8+ cells resided deeper in the mucosa or the submucosa below the basement membrane. In vitro stimulation of mucosal cells from healthy horses with (n = 5) or without (n = 5) peripheral T-cell immunity against EHV-1 induced IFN-γ production in nasal T cells upon polyclonal stimulation. However, after EHV-1 re-stimulation, mucosal T cells failed to respond with IFN-γ. This work provided the first characterization of mucosal T-cell phenotypes and functions in the URT of healthy horses and during EHV-1 infection.
Collapse
Affiliation(s)
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
4
|
Afify AF, Hassanien RT, El Naggar RF, Rohaim MA, Munir M. Unmasking the ongoing challenge of equid herpesvirus- 1 (EHV-1): A comprehensive review. Microb Pathog 2024; 193:106755. [PMID: 38897362 DOI: 10.1016/j.micpath.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations.
Collapse
Affiliation(s)
- Ahmed F Afify
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rabab T Hassanien
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
5
|
Schramm A, Ackermann M, Eichwald C, Aguilar C, Fraefel C, Lechmann J. Antibody reactions of horses against various domains of the EHV-1 receptor-binding protein gD1. PLoS One 2024; 19:e0301987. [PMID: 38995916 PMCID: PMC11244823 DOI: 10.1371/journal.pone.0301987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 07/14/2024] Open
Abstract
Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.
Collapse
Affiliation(s)
- Andreina Schramm
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Catherine Eichwald
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Lebrasseur O, More KD, Orlando L. Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago. Virus Evol 2024; 10:vead087. [PMID: 38465241 PMCID: PMC10924538 DOI: 10.1093/ve/vead087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Equine viral outbreaks have disrupted the socio-economic life of past human societies up until the late 19th century and continue to be of major concern to the horse industry today. With a seroprevalence of 60-80 per cent, equine herpesvirus 4 (EHV-4) is the most common horse pathogen on the planet. Yet, its evolutionary history remains understudied. Here, we screen the sequenced data of 264 archaeological horse remains to detect the presence of EHV-4. We recover the first ancient EHV-4 genome with 4.2× average depth-of-coverage from a specimen excavated in the Southeastern Urals and dated to the Early Bronze Age period, approximately 3,900 years ago. The recovery of an EHV-4 virus outside the upper respiratory tract not only points to an animal particularly infected but also highlights the importance of post-cranial bones in pathogen characterisation. Bayesian phylogenetic reconstruction provides a minimal time estimate for EHV-4 diversification to around 4,000 years ago, a time when modern domestic horses spread across the Central Asian steppes together with spoke-wheeled Sintashta chariots, or earlier. The analyses also considerably revise the diversification time of the two EHV-4 subclades from the 16th century based solely on modern data to nearly a thousand years ago. Our study paves the way for a robust reconstruction of the history of non-human pathogens and their impact on animal health.
Collapse
Affiliation(s)
- Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, 3 de Febrero 1370 (1426), Ciudad Autónoma de Buenos Aires, Argentina
| | - Kuldeep Dilip More
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| |
Collapse
|
7
|
Kremling V, Loll B, Pach S, Dahmani I, Weise C, Wolber G, Chiantia S, Wahl MC, Osterrieder N, Azab W. Crystal structures of glycoprotein D of equine alphaherpesviruses reveal potential binding sites to the entry receptor MHC-I. Front Microbiol 2023; 14:1197120. [PMID: 37250020 PMCID: PMC10213783 DOI: 10.3389/fmicb.2023.1197120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.
Collapse
Affiliation(s)
- Viviane Kremling
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Szymon Pach
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Ismail Dahmani
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Christoph Weise
- BioSupraMol Core Facility, Bio-Mass Spectrometry, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Salvatore Chiantia
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Wang T, Xi C, Yu Y, Liu W, Akhtar MF, Li Y, Wang C, Li L. Characteristics and epidemiological investigation of equid herpesvirus 8 in donkeys in Shandong, China. Arch Virol 2023; 168:99. [PMID: 36871102 DOI: 10.1007/s00705-023-05704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/08/2022] [Indexed: 03/06/2023]
Abstract
Equid herpesvirus 8 (EHV-8), also known as asinine herpesvirus type 3 (AHV-3), can cause severe respiratory disease, abortion in mares, and neurological disorders. There is limited information on the prevalence of EHV-8 in donkeys in China. In this study, we investigated EHV-8 infection in donkeys using PCR, resulting in the identification of a field strain, termed EHV-8 SD2020113, which was isolated using RK-13 cells and characterized by high-throughput sequencing and transmission electron microscopy. Our data indicated that 38.7% (457/1180) of donkeys showed the presence of EHV-8 in blood samples. Analysis of the ORF70 gene showed the highest similarity (99.8-99.9% identity) to EHV-8 IR/2015/40 (MF431614.1) and SDLC66 (MW816102), and, in phylogenetic analysis, it clustered with EHV-8 SDLC66 from China. The findings of this study indicate that EHV-8 is likely to represent a threat to the donkey industry, and breeders and veterinarians who care for donkey farms should be aware of this.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Cankun Xi
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yue Yu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
9
|
Zarski LM, Giessler KS, Jacob SI, Weber PSD, McCauley AG, Lee Y, Soboll Hussey G. Identification of Host Factors Associated with the Development of Equine Herpesvirus Myeloencephalopathy by Transcriptomic Analysis of Peripheral Blood Mononuclear Cells from Horses. Viruses 2021; 13:v13030356. [PMID: 33668216 PMCID: PMC7995974 DOI: 10.3390/v13030356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Equine herpesvirus-1 is the cause of respiratory disease, abortion, and equine herpesvirus myeloencephalopathy (EHM) in horses worldwide. EHM affects as many as 14% of infected horses and a cell-associated viremia is thought to be central for EHM pathogenesis. While EHM is infrequent in younger horses, up to 70% of aged horses develop EHM. The aging immune system likely contributes to EHM pathogenesis; however, little is known about the host factors associated with clinical EHM. Here, we used the “old mare model” to induce EHM following EHV-1 infection. Peripheral blood mononuclear cells (PBMCs) of horses prior to infection and during viremia were collected and RNA sequencing with differential gene expression was used to compare the transcriptome of horses that did (EHM group) and did not (non-EHM group) develop clinical EHM. Interestingly, horses exhibiting EHM did not show respiratory disease, while non-EHM horses showed significant respiratory disease starting on day 2 post infection. Multiple immune pathways differed in EHM horses in response to EHV-1. These included an upregulation of IL-6 gene expression, a dysregulation of T-cell activation through AP-1 and responses skewed towards a T-helper 2 phenotype. Further, a dysregulation of coagulation and an upregulation of elements in the progesterone response were observed in EHM horses.
Collapse
Affiliation(s)
- Lila M. Zarski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Kim S. Giessler
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Sarah I. Jacob
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Patty Sue D. Weber
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Allison G. McCauley
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Yao Lee
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
- Correspondence:
| |
Collapse
|
10
|
Allkofer A, Garvey M, Ryan E, Lyons R, Ryan M, Lukaseviciute G, Walsh C, Venner M, Cullinane A. Primary vaccination in foals: a comparison of the serological response to equine influenza and equine herpesvirus vaccines administered concurrently or 2 weeks apart. Arch Virol 2021; 166:571-579. [PMID: 33410993 DOI: 10.1007/s00705-020-04846-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 10/22/2022]
Abstract
This study compared concurrent and separate primary vaccination against equid alphaherpesviruses 1 and 4, genus Varicellovirus, subfamily Alphaherpesvirinae, family Herpesviridae, and equine influenza A virus, genus Alphainfluenzavirus, family Orthomyxoviridae. Their vernacular names are equine herpesvirus 1 and 4 (EHV1/4) and equine influenza virus (EIV). Infection with these respiratory pathogens is associated with loss of performance, interruption of training schedules, and on occasion, cancellation of equestrian events. Vaccination is highly recommended, and for some activities it is a mandatory requirement of the relevant authority. As there is a dearth of information relating to the impact of concurrent vaccination on the antibody response to EHV and EIV vaccines, they are usually administered separately, often 2 weeks apart. In a previous study of booster vaccination in Thoroughbred racehorses, concurrent vaccination with whole-virus inactivated carbopol-adjuvanted EHV and EIV vaccines did not impact negatively on the antibody response. In this study, investigations were extended to concurrent versus separate primary vaccination of warmblood foals. A field study was conducted to compare the immune response to a carbopol-adjuvanted EHV vaccine and an immune stimulating complex (ISCOM)-adjuvanted EI vaccine administered concurrently and 2 weeks apart. No adverse clinical reactions were observed, the pattern of EI and EHV antibody response was similar for both groups, and there was no evidence that concurrent primary vaccination compromised the humoral response. The results are of relevance to horse owners who wish to decrease veterinary costs, limit handling of young animals, and simplify record keeping by vaccinating concurrently.
Collapse
Affiliation(s)
- Alexandra Allkofer
- Clinic for Horses, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Evelyn Ryan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Rachel Lyons
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Megan Ryan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Gabija Lukaseviciute
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Monica Venner
- Equine Clinic Destedt, Trift 4, 38162, Destedt, Germany.
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland.
| |
Collapse
|
11
|
Kamel M, Pavulraj S, Fauler B, Mielke T, Azab W. Equid Herpesvirus-1 Exploits the Extracellular Matrix of Mononuclear Cells to Ensure Transport to Target Cells. iScience 2020; 23:101615. [PMID: 33015592 PMCID: PMC7521387 DOI: 10.1016/j.isci.2020.101615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mononuclear cells are the first line of defense against microbial infection. Yet, several viruses have evolved different mechanisms to overcome host defenses to ensure their spread. Here, we show unique mechanisms of how equid herpesvirus-1 manipulates peripheral blood mononuclear cells (PBMC) to travel further in the body. (1) "PBMC-hitching": at the initial contact, herpesviruses lurk in the extracellular matrix (ECM) of PBMC without entering the cells. The virus exploits the components of the ECM to bind, transport, and then egress to infect other cells. (2) "Intracellular delivery": transendothelial migration is a physiological mechanism where mononuclear cells can transmigrate through the endothelial cells. The virus was intangible and probably did not interfere with such a mechanism where the infected PBMC can probably deliver the virus inside the endothelium. (3) "Classical-fusion": this process is well mastered by herpesviruses due to a set of envelope glycoproteins that facilitate cell-cell fusion and virus spread.
Collapse
Affiliation(s)
- Mohamed Kamel
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Beatrix Fauler
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
12
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Equid Herpesvirus 1 Targets the Sensitization and Induction Steps To Inhibit the Type I Interferon Response in Equine Endothelial Cells. J Virol 2019; 93:e01342-19. [PMID: 31511388 PMCID: PMC6854505 DOI: 10.1128/jvi.01342-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-β) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Oladunni FS, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. The effect of equine herpesvirus type 4 on type-I interferon signaling molecules. Vet Immunol Immunopathol 2019; 219:109971. [PMID: 31739157 DOI: 10.1016/j.vetimm.2019.109971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/02/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/β induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria.
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Udeni B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
15
|
An Equine Herpesvirus Type 1 (EHV-1) Ab4 Open Reading Frame 2 Deletion Mutant Provides Immunity and Protection from EHV-1 Infection and Disease. J Virol 2019; 93:JVI.01011-19. [PMID: 31462575 DOI: 10.1128/jvi.01011-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.
Collapse
|
16
|
Hussey GS. Key Determinants in the Pathogenesis of Equine Herpesvirus 1 and 4 Infections. Vet Pathol 2019; 56:656-659. [PMID: 31394999 DOI: 10.1177/0300985819849498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Gisela Soboll Hussey
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, Michigan State University, MI, USA
| |
Collapse
|
17
|
Holz CL, Sledge DG, Kiupel M, Nelli RK, Goehring LS, Soboll Hussey G. Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses. Front Vet Sci 2019; 6:59. [PMID: 30886853 PMCID: PMC6409500 DOI: 10.3389/fvets.2019.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Dodd G Sledge
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lutz S Goehring
- Equine Hospital - Division of Medicine and Reproduction, Ludwig-Maximilians University, Munich, Germany
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Absence of relationship between type-I interferon suppression and neuropathogenicity of EHV-1. Vet Immunol Immunopathol 2019; 197:24-30. [PMID: 29475503 DOI: 10.1016/j.vetimm.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/16/2017] [Accepted: 01/13/2018] [Indexed: 11/17/2022]
Abstract
Equine herpesvirus-1 (EHV-1) infection is an important and highly prevalent disease in equine populations worldwide. Previously we have demonstrated that a neuropathogenic strain of EHV-1, T953, suppresses the host cell's antiviral type-I interferon (IFN) response in vitro. Whether or not this is unique to EHV-1 strains possessing the neuropathogenic genotype has been undetermined. Here, we examined whether there is any direct relationship between neuropathogenic genotype and the induced IFN-β response in equine endothelial cells (EECs) infected with 10 different strains of EHV-1. The extent of virus cell-to-cell spread following infection in EECs was also compared between the neuropathogenic and the non-neuropathogenic genotype of EHV-1. We then compared IFN-β and the total type-I IFN protein suppression between T953, an EHV-1 strain that is neuropathogenic and T445, an EHV-4 strain mainly associated only with respiratory disease. Data from our study revealed no relationship between the neuropathogenic genotype of EHV-1 and the induced IFN-β mRNA by the host cell. Results also indicate no statistically significant difference in plaque sizes of both genotypes of EHV-1 produced in EECs. However, while the T953 strain of EHV-1 was able to suppress IFN-β mRNA and type-I IFN biological activity at 12 h post-infection (hpi), EHV-4 weakly induces both IFN-β mRNA and type-I IFN biological activity. This finding correlated with a statistically significant difference in the mean plaque sizes produced by the two EHV subtypes in EECs. Our data help illuminate how EHV-1, irrespective of its genotype, evades the host cell's innate immune response thereby enabling viral spread to susceptible cells.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA; Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria.
| | - Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
19
|
Wimer CL, Schnabel CL, Perkins G, Babasyan S, Freer H, Stout AE, Rollins A, Osterrieder N, Goodman LB, Glaser A, Wagner B. The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS One 2018; 13:e0206679. [PMID: 30440016 PMCID: PMC6237298 DOI: 10.1371/journal.pone.0206679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain.
Collapse
Affiliation(s)
- Christine L. Wimer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane L. Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alison E. Stout
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Laura B. Goodman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Schnabel CL, Wimer CL, Perkins G, Babasyan S, Freer H, Watts C, Rollins A, Osterrieder N, Wagner B. Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity. BMC Vet Res 2018; 14:245. [PMID: 30134896 PMCID: PMC6106926 DOI: 10.1186/s12917-018-1563-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses' clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. RESULTS Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10-12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5-10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. CONCLUSIONS ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical. Graphical abstract - Deletion of ORF2 reduces virulence of EHV-1 Ab4. Graphical summary of the main findings of this study: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa.
Collapse
Affiliation(s)
- Christiane L Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Christine L Wimer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Christina Watts
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Maanen K, Zaag E, Buter R, Wollenberg L, Oldruitenborgh‐Oosterbaan MS. Asinine herpesvirus‐3 (equine herpesvirus‐8)‐associated neurological disease in a donkey. VETERINARY RECORD CASE REPORTS 2017. [DOI: 10.1136/vetreccr-2017-000498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kees Maanen
- Department of Small Ruminants, Horses and Companion AnimalsGezondheidsdienst voor Dieren BVDeventerThe Netherlands
| | - Ellen Zaag
- Dierenkliniek de DeltaMaaslandThe Netherlands
| | - Rianne Buter
- R&D DepartmentGezondheidsdienst voor Dieren BVDeventerThe Netherlands
| | - Linda Wollenberg
- Department of Small Ruminants, Horses and Companion AnimalsGezondheidsdienst voor Dieren BVDeventerThe Netherlands
| | | |
Collapse
|
22
|
Holz CL, Nelli RK, Wilson ME, Zarski LM, Azab W, Baumgardner R, Osterrieder N, Pease A, Zhang L, Hession S, Goehring LS, Hussey SB, Soboll Hussey G. Viral genes and cellular markers associated with neurological complications during herpesvirus infections. J Gen Virol 2017. [PMID: 28631601 DOI: 10.1099/jgv.0.000773] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of neurological disorders associated with herpesviruses, the mechanism by which these viruses influence the central nervous system (CNS) has not been definitively established. Owing to the limitations of studying neuropathogenicity of human herpesviruses in their natural host, many aspects of their pathogenicity and immune response are studied in animal models. Here, we present an important model system that enables studying neuropathogenicity of herpesviruses in the natural host. Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus that causes a devastating neurological disease (EHV-1 myeloencephalopathy; EHM) in horses. Like other alphaherpesviruses, our understanding of virus neuropathogenicity in the natural host beyond the essential role of viraemia is limited. In particular, information on the role of different viral proteins for virus transfer to the spinal cord endothelium in vivo is lacking. In this study, the contribution of two viral proteins, DNA polymerase (ORF30) and glycoprotein D (gD), to the pathogenicity of EHM was addressed. Furthermore, different cellular immune markers, including alpha-interferon (IFN-α), gamma-interferon (IFN-γ), interleukin-10 (IL-10) and interleukin-1 beta (IL-1β), were identified to play a role during the course of the disease.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - M Eilidh Wilson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lila M Zarski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Rachel Baumgardner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Anthony Pease
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Liangliang Zhang
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Sarah Hession
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Lutz S Goehring
- Equine Hospital - Division of Medicine and Reproduction, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Stephen B Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Reperant LA, Brown IH, Haenen OL, de Jong MD, Osterhaus ADME, Papa A, Rimstad E, Valarcher JF, Kuiken T. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals. J Comp Pathol 2016; 155:S41-53. [PMID: 27522300 DOI: 10.1016/j.jcpa.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023]
Abstract
Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective basis for more in-depth analysis of the risk of companion animals as sources of viruses for human and food production animal health.
Collapse
Affiliation(s)
- L A Reperant
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - I H Brown
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, UK
| | - O L Haenen
- National Reference Laboratory for Fish, Shellfish and Crustacean Diseases, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - M D de Jong
- Department of Medical Microbiology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - A Papa
- Department of Microbiology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Rimstad
- Department of Food Safety and Infection Biology, University of Life Sciences, Oslo, Norway
| | - J-F Valarcher
- Department of Virology, Immunology, and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - T Kuiken
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Vet Immunol Immunopathol 2015; 167:122-9. [PMID: 26275803 DOI: 10.1016/j.vetimm.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and important respiratory viral pathogens of horses. EHV-1 in horses replicates initially in the respiratory epithelium and then spreads systematically to endothelial cells lining the small blood vessels in the uterus and spinal cord, and highly pathogenic virus strains can produce aborted fetuses or myeloencephalopathy. Like other herpes viruses, EHV-1 employs a variety of mechanisms for immune evasion. Some herpes viruses down-regulate the type-I interferon (IFN) response to infection, but such activity has not been described for EHV-1. Here, in an in vitro system utilizing an established equine endothelial cell line, we studied the temporal effect on IFN-β responses following infection with the neuropathogenic T953 strain of EHV-1. Results show that after an early induction of IFN-β, the virus actively shut down further production of IFN-β and this was correlated with expression of the viral late genes. Expression of the IFN response factor viperin, a marker of host cell type-I IFN responses, was also suppressed by T953 virus infection. EHV-1-mediated suppression of host type-I IFN responses may play an important role in EHV-1 pathogenesis and the mechanism of this, presumably involving a viral late gene product, warrants investigation.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
25
|
Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 2015; 7:522-42. [PMID: 25654240 PMCID: PMC4353902 DOI: 10.3390/v7020522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/04/2015] [Accepted: 01/27/2015] [Indexed: 12/05/2022] Open
Abstract
Glycoprotein B (gB) plays an important role in alphaherpesvirus cellular entry and acts in concert with gD and the gH/gL complex. To evaluate whether functional differences exist between gB1 and gB4, the corresponding genes were exchanged between the two viruses. The gB4-containing-EHV-1 (EHV-1_gB4) recombinant virus was analyzed for growth in culture, cell tropism, and cell entry rivaling no significant differences when compared to parental virus. We also disrupted a potential integrin-binding motif, which did not affect the function of gB in culture. In contrast, a significant reduction of plaque sizes and growth kinetics of gB1-containing-EHV-4 (EHV-4_gB1) was evident when compared to parental EHV-4 and revertant viruses. The reduction in virus growth may be attributable to the loss of functional interaction between gB and the other envelope proteins involved in virus entry, including gD and gH/gL. Alternatively, gB4 might have an additional function, required for EHV-4 replication, which is not fulfilled by gB1. In conclusion, our results show that the exchange of gB between EHV-1 and EHV-4 is possible, but results in a significant attenuation of virus growth in the case of EHV-4_gB1. The generation of stable recombinant viruses is a valuable tool to address viral entry in a comparative fashion and investigate this aspect of virus replication further.
Collapse
|
26
|
Dunowska M. A review of equid herpesvirus 1 for the veterinary practitioner. Part B: pathogenesis and epidemiology. N Z Vet J 2014; 62:179-88. [DOI: 10.1080/00480169.2014.899946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Azab W, Harman R, Miller D, Tallmadge R, Frampton AR, Antczak DF, Osterrieder N. Equid herpesvirus type 4 uses a restricted set of equine major histocompatibility complex class I proteins as entry receptors. J Gen Virol 2014; 95:1554-1563. [PMID: 24722677 DOI: 10.1099/vir.0.066407-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Equid herpesvirus type 1 (EHV-1) was shown to use an unusual receptor for cellular entry - MHC-I molecules. Here, we demonstrated that the closely related EHV, EHV-4, also uses this strategy for cellular invasion, both in equine cells in culture and in the heterologous, non-permissive murine mastocytoma cell line (P815) after stable transfection with horse MHC-I genes. Using a panel of P815 cell lines transfected with individual horse MHC-I genes, we provided support for the hypothesis that EHV-1 and EHV-4 target classical polymorphic MHC-I molecules as viral entry receptors. All known equine MHC-I molecules from the two principal classical polymorphic loci specify alanine at position 173 (A173), whilst other MHC-I loci encoded different amino acids at this position and did not permit viral entry. Site-directed mutagenesis of position 173 diminished or enhanced viral entry, depending upon the initial amino acid. However, there were other, as yet undefined, constraints to this process: MHC-I genes from two non-classical loci carried A173 but did not enable viral entry in P815 transfectants. Our study suggested that the capacity to bind MHC-I molecules arose in the common ancestor of EHV-1 and EHV-4. The widespread occurrence of A173 in classical polymorphic horse MHC-I molecules indicated that horses of most MHC haplotypes should be susceptible to infection via this entry portal.
Collapse
Affiliation(s)
- Walid Azab
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany
| | - Rebecca Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Donald Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Tallmadge
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Arthur R Frampton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
28
|
Ma G, Azab W, Osterrieder N. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)—Masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol 2013; 167:123-34. [DOI: 10.1016/j.vetmic.2013.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 12/28/2022]
|
29
|
Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J Virol 2013; 87:5937-48. [PMID: 23514881 DOI: 10.1128/jvi.03522-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses enter cells either by direct fusion at the plasma membrane or from within endosomes, depending on the cell type and receptor(s). We investigated two closely related herpesviruses of horses, equine herpesvirus type 1 (EHV-1) and EHV-4, for which the cellular and viral determinants routing virus entry are unknown. We show that EHV-1 enters equine epithelial cells via direct fusion at the plasma membrane, while EHV-4 does so via an endocytic pathway, which is dependent on dynamin II, cholesterol, caveolin 1, and tyrosine kinase activity. Exchange of glycoprotein H (gH) between EHV-1 and EHV-4 resulted in rerouting of EHV-1 to the endocytic pathway, as did blocking of α4β1 integrins on the cell surface. Furthermore, a point mutation in the SDI integrin-binding motif of EHV-1 gH also directed EHV-1 to the endocytic pathway. Cumulatively, we show that viral gH and cellular α4β1 integrins are important determinants in the choice of alphaherpesvirus cellular entry pathways.
Collapse
|
30
|
Azab W, Zajic L, Osterrieder N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet Res 2012; 43:61. [PMID: 22909178 PMCID: PMC3522555 DOI: 10.1186/1297-9716-43-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022] Open
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) glycoprotein H (gH) has been hypothesized to play a role in direct fusion of the virus envelope with cellular membranes. To investigate gH’s role in infection, an EHV-1 mutant lacking gH was created and the gH genes were exchanged between EHV-1 and EHV-4 to determine if gH affects cellular entry and/or host range. In addition, a serine-aspartic acid-isoleucine (SDI) integrin-binding motif present in EHV-1 gH was mutated as it was presumed important in cell entry mediated by binding to α4β1 or α4β7 integrins. We here document that gH is essential for EHV-1 replication, plays a role in cell-to-cell spread and significantly affects plaque size and growth kinetics. Moreover, we could show that α4β1 and α4β7 integrins are not essential for viral entry of EHV-1 and EHV-4, and that viral entry is not affected in equine cells when the integrins are inaccessible.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, Haus 18, 10115, Berlin, Germany.
| | | | | |
Collapse
|
31
|
Kydd JH, Slater J, Osterrieder N, Lunn DP, Antczak DF, Azab W, Balasuriya U, Barnett C, Brosnahan M, Cook C, Damiani A, Elton D, Frampton A, Gilkerson J, Goehring L, Horohov D, Maxwell L, Minke J, Morley P, Nauwynck H, Newton R, Perkins G, Pusterla N, Soboll-Hussey G, Traub-Dargatz J, Townsend H, Van de walle GR, Wagner B. Third International Havemeyer Workshop on Equine Herpesvirus type 1. Equine Vet J 2012; 44:513-7. [DOI: 10.1111/j.2042-3306.2012.00604.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Van de Walle GR, Osterrieder N. Profiling chemokine–glycoprotein G interactions: implications for alphaherpesviral immune evasion. Future Virol 2012. [DOI: 10.2217/fvl.12.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Viejo-Borbolla A, Martinez-Martín N, Nel HJ et al. Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog. 8(2), e1002497 (2012). The study of immunomodulation by alphaherpesviral proteins targeting the chemokine network remains an area of active research. The article by Viejo-Borbolla et al. evaluates the modulation of chemokines by human HSV-1 and HSV-2. The authors report that secreted recombinant glycoprotein G (gG) of both viruses was able to bind with high affinity to a wide range of CC and CXC chemokines. Interestingly, and in contrast to other viral chemokine binding proteins produced by animal herpesviruses, the investigators found that human herpesvirus-encoded secreted gG1 and secreted gG2 do enhance and not inhibit chemotaxis. This article provides additional insights into the role in immune evasion of alphaherpesviral gGs, but at the same time raises intriguing questions. Among those questions are why and when animal and human alphaherpesviruses diverged in their strategies to manipulate the actions of chemokines and how these apparent differences influence pathogenesis and the final outcome of infection.
Collapse
Affiliation(s)
- Gerlinde R Van de Walle
- Department of Comparative Physiology & Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Nikolaus Osterrieder
- Institute für Virologie, Freie Universität Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
33
|
Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Virol 2011; 86:2031-44. [PMID: 22171258 DOI: 10.1128/jvi.06555-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.
Collapse
|
34
|
Vandekerckhove AP, Glorieux S, Gryspeerdt AC, Steukers L, Van Doorsselaere J, Osterrieder N, Van de Walle GR, Nauwynck HJ. Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants. Vet Microbiol 2011; 152:21-8. [PMID: 21536394 DOI: 10.1016/j.vetmic.2011.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) replicates extensively in the epithelium of the upper respiratory tract, after which it can spread throughout the body via a cell-associated viremia in mononuclear leukocytes reaching the pregnant uterus and central nervous system. In a previous study, we were able to mimic the in vivo situation in an in vitro respiratory mucosal explant system. A plaquewise spread of EHV-1 was observed in the epithelial cells, whereas in the connective tissue below the basement membrane (BM), EHV-1-infected mononuclear leukocytes were noticed. Equine herpesvirus type 4 (EHV-4), a close relative of EHV-1, can also cause mild respiratory disease, but a cell-associated viremia in leukocytes is scarce and secondary symptoms are rarely observed. Based on this striking difference in pathogenicity, we aimed to evaluate how EHV-4 behaves in equine mucosal explants. Upon inoculation of equine mucosal explants with the EHV-4 strains VLS 829, EQ(1) 012 and V01-3-13, replication of EHV-4 in epithelial cells was evidenced by the presence of viral plaques in the epithelium. Interestingly, EHV-4-infected mononuclear leukocytes in the connective tissue below the BM were extremely rare and were only present for one of the three strains. The inefficient capacity of EHV-4 to infect mononuclear cells explains in part the rarity of EHV-4-induced viremia, and subsequently, the rarity of EHV-4-induced abortion or EHM.
Collapse
Affiliation(s)
- Annelies P Vandekerckhove
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol 2011; 140:266-74. [DOI: 10.1016/j.vetimm.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
36
|
Sasaki M, Hasebe R, Makino Y, Suzuki T, Fukushi H, Okamoto M, Matsuda K, Taniyama H, Sawa H, Kimura T. Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes Cells 2011; 16:343-57. [PMID: 21306483 PMCID: PMC3118799 DOI: 10.1111/j.1365-2443.2011.01491.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The endotheliotropism of equine herpesvirus-1 (EHV-1) leads to encephalomyelitis secondary to vasculitis and thrombosis in the infected horse central nervous system (CNS). To identify the host factors involved in EHV-1 infection of CNS endothelial cells, we performed functional cloning using an equine brain microvascular endothelial cell cDNA library. Exogenous expression of equine major histocompatibility complex (MHC) class I heavy chain genes conferred susceptibility to EHV-1 infection in mouse NIH3T3 cells, which are not naturally susceptible to EHV-1 infection. Equine MHC class I molecules bound to EHV-1 glycoprotein D (gD), and both anti-gD antibodies and a soluble form of gD blocked viral entry into NIH3T3 cells stably expressing the equine MHC class I heavy chain gene (3T3-A68 cells). Treatment with an anti-equine MHC class I monoclonal antibody blocked EHV-1 entry into 3T3-A68 cells, equine dermis (E. Derm) cells and equine brain microvascular endothelial cells. In addition, inhibition of cell surface expression of MHC class I molecules in E. Derm cells drastically reduced their susceptibility to EHV-1 infection. These results suggest that equine MHC class I is a functional gD receptor that plays a pivotal role in EHV-1 entry into equine cells.
Collapse
Affiliation(s)
- Michihito Sasaki
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|