1
|
Moore RJ. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:288-298. [PMID: 38371475 PMCID: PMC10869589 DOI: 10.1016/j.aninu.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 02/20/2024]
Abstract
The global trend towards raising broiler chickens without the use of in-feed antibiotics (IFAs) means that there is an ongoing need to develop alternative treatments capable of delivering the benefits that IFAs previously provided. IFAs supported the productivity performance of chickens and played a key role in maintaining their health. Necrotic enteritis (NE) is an important disease of broilers that affects health, productivity, and welfare, and was previously well controlled by IFAs. However, with the reduction in IFA use, NE is resurgent in some countries. Vaccines and various feed additives, including pre-, pro-, and postbiotics, phytobiotics, fatty acids, and phage therapies have been introduced as alternative methods of NE control. While some of these feed additives have specific activity against the NE pathogen, Clostridium perfringens, most have the more general goal of reinforcing gut health. Extensive reviews of the effects of many of these feed additives on gut health have been published recently. Hence, rather than cover previously well reviewed areas of research this review focuses on the challenges and pitfalls in undertaking experimental assessment of alternative NE treatments and translating laboratory research to real world commercial production settings. The review is based on the author's particular experience, reading, thoughts, and analysis of the available information and inevitably presents a particular understanding that is likely to be at odds with others thinking on these issues. It is put forward to stimulate thinking and discussion on the issues covered.
Collapse
Affiliation(s)
- Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
2
|
Kalender H, Öngör H, Timurkaan N, Karagülle B, Karabulut B, İncili CA, Başar HE, Ekinci E, Çevik A, Atıl E, Çetinkaya B. Detection and molecular characterization of Clostridium perfringens, Paeniclostridium sordellii and Clostridium septicum from lambs and goat kids with hemorrhagic abomasitis in Turkey. BMC Vet Res 2023; 19:8. [PMID: 36639759 PMCID: PMC9837962 DOI: 10.1186/s12917-023-03569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The pathogenic Clostridia cause neurotoxic, histotoxic and enterotoxic infections in humans and animals. Several Clostridium species have been associated with abomasitis in ruminants. The present study aimed to investigate the frequency, and the presence of virulence genes, of Clostridium perfringens, Paeniclostridium sordellii and Clostridium septicum in lambs and goat kids with hemorrhagic abomasitis. RESULTS A total of 38 abomasum samples, collected from lambs and goat kids of 1 week to 1 month of age in different farms located in eastern Turkey between 2021 and 2022, were evaluated by histopathology, culture and PCR. At necropsy, the abomasum of the animals was excessively filled with caseinized content and gas, and the abomasum mucosa was hemorrhagic in varying degrees. In histopathological evaluation, acute necrotizing hemorrhagic inflammation was noted in abomasum samples. The examination of swab samples by culture and PCR revealed that C. perfringens type A was the most frequently detected species (86.84%) either alone or in combination with other Clostridium species. P. sordellii, C. perfringens type F and C. septicum were also harboured in the samples, albeit at low rates. Beta2 toxin gene (cpb2) was found in three of C. perfringens type A positive samples. CONCLUSION It was suggested that vaccination of pregnant animals with toxoid vaccines would be beneficial in terms of protecting newborn animals against Clostridial infections. This study investigated the presence of clostridial toxin genes in abomasal samples for the first time in Turkey.
Collapse
Affiliation(s)
- Hakan Kalender
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Hasan Öngör
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Necati Timurkaan
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Burcu Karagülle
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Burak Karabulut
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Canan Akdeniz İncili
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Hatip Enfal Başar
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| | - Elif Ekinci
- grid.411690.b0000 0001 1456 5625Faculty of Veterinary Medicine, Department of Pathology, Dicle University, Diyarbakir, Turkey
| | - Aydın Çevik
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Pathology, Firat University, Elazig, Turkey
| | - Eray Atıl
- Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Burhan Çetinkaya
- grid.411320.50000 0004 0574 1529Faculty of Veterinary Medicine, Department of Microbiology, Firat University, Elazig, Turkey
| |
Collapse
|
3
|
Alimolaei M, Ezatkhah M, Soltani S. Toxin genotypes of Clostridium perfringens isolates from common quail (Coturnix coturnix) with or without acute necrotic enteritis. Toxicon 2022; 221:106984. [DOI: 10.1016/j.toxicon.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
4
|
Lee KW, Lillehoj HS. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis. Vaccines (Basel) 2021; 10:vaccines10010061. [PMID: 35062722 PMCID: PMC8780507 DOI: 10.3390/vaccines10010061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type A/G that impacts the global poultry industry by compromising the performance, health, and welfare of chickens. Coccidiosis is a major contributing factor to NE. Although NE pathogenesis was believed to be facilitated by α-toxin, a chromosome-encoded phospholipase C enzyme, recent studies have indicated that NE B-like (NetB) toxin, a plasmid-encoded pore-forming heptameric protein, is the primary virulence factor. Since the discovery of NetB toxin, the occurrence of NetB+ C. perfringens strains has been increasingly reported in NE-afflicted poultry flocks globally. It is generally accepted that NetB toxin is the primary virulent factor in NE pathogenesis although scientific evidence is emerging that suggests other toxins contribute to NE. Because of the complex nature of the host-pathogen interaction in NE pathogenesis, the interaction of NetB with other potential virulent factors of C. perfringens needs better characterization. This short review will summarize the primary virulence factors involved in NE pathogenesis with an emphasis on NetB toxin, and a new detection method for large-scale field screening of NetB toxin in biological samples from NE-afflicted commercial broiler flocks.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0495
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
| |
Collapse
|
5
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Mohiuddin M, Yuan W, Song Z, Liao S, Qi N, Li J, Lv M, Wu C, Lin X, Hu J, Cai H, Sun M. Experimental induction of necrotic enteritis with or without predisposing factors using netB positive Clostridium perfringens strains. Gut Pathog 2021; 13:68. [PMID: 34789342 PMCID: PMC8596908 DOI: 10.1186/s13099-021-00463-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Poultry necrotic enteritis (NE) is an economically important disease caused by C. perfringens. The disease causing ability of this bacterium is linked with the production of a wide variety of toxins. Among them, necrotic enteritis B-like (NetB) toxin is reported to be involved in the pathogenesis of NE; in addition there is some circumstantial evidence that tpeL toxin may enhance virulence, but this is yet to be definitely shown. The situation becomes more complicated in the presence of a number of predisposing factors like co-infection with coccidia, type of diet and use of high protein diet. These co-factors alter the intestinal environment, thereby favoring the production of more toxins, leading to a more severe disease. The objective of this study was to develop a successful animal model that would induce clinical signs and lesions of NE using C. perfringens type G strains obtained from field outbreaks. A separate trial was simultaneously considered to establish the role of dietary factor with coccidial co-infection in NE. Results The results have shown that use of net-B positive C. perfringens without predisposing factors induce moderate to severe NE (Av. Lesion score 1.79 ± 1.50). In a separate trial, addition of fish meal to a feed of C. perfringens challenged birds produced higher number of NE cases (Av. Lesion score 2.17 ± 1.28). However, use of less virulent E. necatrix strain along with fish meal in conjunction with net-B positive strain did not alter the severity of NE lesions in specific pathogen free chicken (Av. Lesion score 2.21 ± 1.13). Conclusions This study suggests that virulent C. perfringens type G strains can induce NE lesions in the absence of other predisposing factors. Birds in the clostridia challenged group showed moderate to severe NE lesions. Use of less virulent coccidia strain contributed to a lesser extent in increasing the severity of disease. Maize based diet along with fishmeal (1:1) increased the severity of lesions but statistically it was non-significant. The NE lesions in all experimental groups were found to be present more frequently in the duodenum. In this way, this study provided an effective model for in vivo production of NE in poultry birds.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Weikang Yuan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongfeng Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Caiyan Wu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Sun N, Xue Y, Wei S, Wu B, Wang H, Zeng D, Zhao Y, Khalique A, Pan K, Zeng Y, Shu G, Jing B, Ni X. Compound Probiotics Improve Body Growth Performance by Enhancing Intestinal Development of Broilers with Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 15:558-572. [PMID: 34735679 DOI: 10.1007/s12602-021-09867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study is to explore whether or not the combined application of BS15 and H2 is capable to have a more effective control effect on SNE in broilers. A total of 240 1-day-old female chickens were randomly divided into 5 groups: (a) basal diet in negative control group (NC group); (b) basal diet + SNE infection (coccidiosis vaccine + CP) (PC group); (c) basal diet + SNE infection + H2 pre-treatment (BT group); (d) basal diet + SNE infection + BS15 pre-treatment (LT group); and (e) basal diet + SNE infection + H2 pre-treatment + BS15 pre-treatment (MT group). The results showed the MT group had the most positive effect on inhibiting the negative effect of growth performance at 42 days of age. In the detection of the NC, PC, and MT group indicators at 28 days of age, we found that MT group significantly promoted ileum tissue development of broilers, and the ileum of broilers in the MT group formed a flora structure different from NC and PC, although it was found that the MT group had no effect on the butyrate level in the cecum, but it could affect the serum immune level, such as significantly reducing the level of pro-inflammatory cytokine IL-8 and increasing the content of immunoglobulin IgM and IgG. In conclusion, the composite preparation of Lactobacillus johnsonii BS15 and Bacillus licheniformis H2 could effectively improve the growth performance against SNE broilers, which is possibly caused by the improvement of the immune levels, the reduction of inflammation levels, and the promotion of the intestinal development.
Collapse
Affiliation(s)
- Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Xue
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyi Wei
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Liu L, Yan X, Lillehoj H, Sun Z, Zhao H, Xianyu Z, Lee Y, Melville S, Gu C, Wang Y, Lu M, Li C. Comparison of the Pathogenicity of Five Clostridium perfringens Isolates Using an Eimeria maxima Coinfection Necrotic Enteritis Disease Model in Commercial Broiler Chickens. Avian Dis 2021; 64:386-392. [PMID: 33205165 DOI: 10.1637/aviandiseases-d-19-00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens (CP) is the etiologic agent of necrotic enteritis (NE) in broiler chickens that is responsible for massive economic losses in the poultry industry in response to voluntary reduction and withdrawal of antibiotic growth promoters. Large variations exist in the CP isolates in inducing intestinal NE lesions. However, limited information is available on CP isolate genetics in inducing NE with other predisposing factors. This study investigated the ability of five CP isolates from different sources to influence NE pathogenesis by using an Eimeria maxima (EM) coinfection NE model: Str.13 (from soil), LLY_N11 (healthy chicken intestine), SM101 (food poisoning), Del1 (netB+tpeL-) and LLY_Tpel17 (netB+tpeL+) for NE-afflicted chickens. The 2-wk-old broiler chickens were preinfected with EM (5 × 103 oocysts) followed by CP infection (around 1 × 109 colony-forming units per chicken). The group of the LLY_Tpel17 isolate with EM coinfection had 25% mortality. No mortality was observed in the groups infected with EM alone, all CP alone, or dual infections of EM/other CP isolates. In this model of EM/CP coinfections, the relative percentages of body weight gain showed statistically significant decreases in all EM/CP groups except the EM/SM101 group when compared with the sham control group. Evident gut lesions were only observed in the three groups of EM/LLY_N11, EM/Del1, and EM/LLY_Tpel17, all of which possessed an essential NE pathogenesis locus in their genomes. Our studies indicate that LLY_Tpel17 is highly pathogenic to induce severe gut lesions and would be a good CP challenge strain for studies investigating pathogenesis and evaluating the protection efficacy for antibiotic alternative approaches.
Collapse
Affiliation(s)
- Liheng Liu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, ARS/USDA, Beltsville, MD 20705
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Hongyan Zhao
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhezi Xianyu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Stephen Melville
- Department of Biological Sciences, Virginia Polytech and State University, Blacksburg, VA 24061
| | - Changqin Gu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfei Wang
- Biostatistics Center, Duke Human Vaccine Institute, Durham, NC 27710
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| |
Collapse
|
9
|
Lepp D, Zhou Y, Ojha S, Mehdizadeh Gohari I, Carere J, Yang C, Prescott JF, Gong J. Clostridium perfringens Produces an Adhesive Pilus Required for the Pathogenesis of Necrotic Enteritis in Poultry. J Bacteriol 2021; 203:e00578-20. [PMID: 33468589 PMCID: PMC8088525 DOI: 10.1128/jb.00578-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridium perfringens type G strains cause necrotic enteritis (NE) in poultry, an economically important disease that is a major target of in-feed antibiotics. NE is a multifactorial disease, involving not only the critically important NetB toxin but also additional virulence and virulence-associated factors. We previously identified a C. perfringens chromosomal locus (VR-10B) associated with disease-causing strains that is predicted to encode a sortase-dependent pilus. In the current study, we sought to provide direct evidence for the production of a pilus by C. perfringens and establish its role in NE pathogenesis. Pilus structures in virulent C. perfringens strain CP1 were visualized by transmission electron microscopy (TEM) of immunogold-labeled cells. Filamentous structures were observed extending from the cell surface in wild-type CP1 but not from isogenic pilin-null mutant strains. In addition, immunoblotting of cell surface proteins demonstrated that CP1, but not the null mutant strains, produced a high molecular weight ladder-like pattern characteristic of a pilus polymer. Binding to collagen types I, II, and IV was significantly reduced (Tukey's test, P < 0.01) in all three pilin mutants compared to CP1 and could be specifically blocked by CnaA and FimA antisera, indicating that these pilins participate in adherence. Furthermore, fimA and fimB null mutants were both severely attenuated in their ability to cause disease in an in vivo chicken NE challenge model. Together, these results provide the first direct evidence for the production of a sortase-dependent pilus by C. perfringens and confirm its critical role in NE pathogenesis and collagen binding.IMPORTANCE In necrotic enteritis (NE), an intestinal disease of chickens, Clostridium perfringens cells adhere tightly to damaged intestinal tissue, but the factors involved are not known. We previously discovered a cluster of C. perfringens genes predicted to encode a pilus, a hair-like bacterial surface structure commonly involved in adherence. In the current study, we have directly imaged this pilus using transmission electron microscopy (TEM). We also show that inactivation of the pilus genes stops pilus production, significantly reducing the bacterium's ability to bind collagen and cause disease. Importantly, this is the first direct evidence for the production of a sortase-dependent pilus by C. perfringens, revealing a promising new target for developing therapeutics to combat this economically important disease.
Collapse
Affiliation(s)
- D Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Y Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Ojha
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - J Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - C Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J F Prescott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - J Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Shini S, Zhang D, Aland RC, Li X, Dart PJ, Callaghan MJ, Speight RE, Bryden WL. Probiotic Bacillus amyloliquefaciens H57 ameliorates subclinical necrotic enteritis in broiler chicks by maintaining intestinal mucosal integrity and improving feed efficiency. Poult Sci 2020; 99:4278-4293. [PMID: 32867972 PMCID: PMC7597999 DOI: 10.1016/j.psj.2020.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/10/2020] [Accepted: 05/22/2020] [Indexed: 01/24/2023] Open
Abstract
Subclinical necrotic enteritis (NE) was induced in broiler chicks using a high dose of Eimeria spp. vaccine in the drinking water on day 9, and Clostridium perfringens (Cp) culture mixed in the feed on days 14 and 15. The aim was to evaluate the effects of probiotic Bacillus amyloliquefaciens strain H57 (H57) in preventing NE in chicks. Day-old Ross 308, male broilers were weighed and randomly assigned to 6 treatment groups (6 replicate cages/treatment and 8 birds/cage). Birds in group 1 (control) were fed the basal wheat-soybean diet without H57 or NE infection; in group 2 (Eimeria) were treated with Eimeria alone; in group 3 (Cp) were treated with Cp alone; in group 4 (NE) received both Eimeria and Cp; in group 5 (NE-H57) received NE infection and H57; and group 6 (H57) received H57. The basal diet of chicks in groups 5 and 6 was supplemented with H57 at a density of 2 × 108 spores/g feed from 1 D of age. On day 21, there were no significant treatment effects on BW and feed intake between control and H57 birds. However, on day 21, the feed conversion ratio of NE-H57 birds was significantly improved when compared with NE birds (1.28 vs. 1.36; P < 0.001). Birds challenged with NE had a higher occurrence of pasty vent than birds infected with either Eimeria, Cp, or NE-H57 (41 vs. 27 vs. 29 vs. 19%, respectively; P < 0.001). Intestinal lesion scores of NE birds were also higher than those of Eimeria, Cp, and NE-H57 birds (5.67 vs. 2.56 vs. 2.78 vs. 2.10, respectively; P < 0.001) and correlated with pasty vent (Pearson's r = 0.56; P < 0.001). Microscopic evaluation showed mucosal damage and necrosis in NE birds. In contrast, villi from NE-H57 birds were normal, with no damage or infiltration with Eimeria or Cp. H57 appears to be effective in challenged birds, as it maintained epithelial barrier integrity and improved feed efficiency.
Collapse
Affiliation(s)
- S Shini
- School of Agriculture & Food Sciences, University of Queensland, Gatton Queensland 4343, Australia.
| | - D Zhang
- School of Agriculture & Food Sciences, University of Queensland, Gatton Queensland 4343, Australia
| | - R C Aland
- School of Biomedical Sciences, University of Queensland, St Lucia Queensland 4071, Australia
| | - X Li
- School of Agriculture & Food Sciences, University of Queensland, Gatton Queensland 4343, Australia
| | - P J Dart
- School of Agriculture & Food Sciences, University of Queensland, Gatton Queensland 4343, Australia
| | - M J Callaghan
- Ridley AgriProducts Pty Ltd, Toowong, Queensland 4066, Australia
| | - R E Speight
- Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - W L Bryden
- School of Agriculture & Food Sciences, University of Queensland, Gatton Queensland 4343, Australia
| |
Collapse
|
11
|
Nguyen TT, Vu-Khac H, Nguyen TD. Isolation and characterization of Clostridium perfringens strains isolated from ostriches ( Struthio camelus) in Vietnam. Vet World 2020; 13:1679-1684. [PMID: 33061245 PMCID: PMC7522951 DOI: 10.14202/vetworld.2020.1679-1684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Clostridium perfringens can cause enteritis in ostriches. The toxin release is believed to play a major role in determining pathogenesis properties of these pathogenic bacteria. This study was conducted to isolate and characterize C. perfringens strains from ostriches in Vietnam for identifying if particular virulence factors of these pathogenic bacteria are associated with enteritis progress in ostriches. Materials and Methods: The prevalence of cpa, cpb, iA, etx, cpe, and cpb2 genes among C. perfringens isolates was determined by a multiplex polymerase chain reaction (PCR) method. The NetB toxin-encoding gene was detected by PCR and then sequenced to observe their variation. The expression of NetB toxin was checked by SDS-PAGE. Results: A total of 116 C. perfringens isolates were obtained from 318 fecal samples and 105 intestinal organs. Of 80 isolates from fecal samples, 33 isolates were from healthy and 47 isolates were from diseased ostriches. The results of multiplex PCR showed that all 116 C. perfringens strains from healthy and enteric disordered ostriches were positive for the alpha toxin-encoding gene (cpa). The cpe and cpb2 genes were found in only one and five diseased ostriches, respectively. The netB gene was detected in 1/33 (3.03%) C. perfringens isolates from healthy ostriches, in 8/47 (17.05%) isolates from feces, and in 7/36 (19.44%) intestinal contents of diseased ostriches. The full-length sequences of 5 out of 15 netB-positive isolates from diseased ostriches showed 100% identity to each other as well as to the netB sequences available in GenBank. All of these five isolates produced NetB toxin in vitro. Conclusion: Type A is the most prevalent among C. perfringens isolates from ostriches in Vietnam. Especially, the study provides data emphasizing the role of NetB toxin in causing necrotic enteritis by C. perfringens in ostriches.
Collapse
Affiliation(s)
- Tham Thi Nguyen
- Department of Technology and Development Product, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| | - Hung Vu-Khac
- Department of Biotechnology, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| | - Tan Duc Nguyen
- Department of Technology and Development Product, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| |
Collapse
|
12
|
Lee KW, Kim WH, Li C, Lillehoj HS. Detection of Necrotic Enteritis B–like Toxin Secreted by Clostridium perfringens Using Capture Enzyme-Linked Immunosorbent Assay. Avian Dis 2020; 64:490-495. [DOI: 10.1637/0005-2086-64.4.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Woo H. Kim
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
13
|
Gu C, Lillehoj HS, Sun Z, Lee Y, Zhao H, Xianyu Z, Yan X, Wang Y, Lin S, Liu L, Li C. Characterization of Virulent netB+/tpeL+ Clostridium perfringens Strains from Necrotic Enteritis-Affected Broiler Chicken Farms. Avian Dis 2020; 63:461-467. [PMID: 31967429 DOI: 10.1637/11973-092018-reg.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/06/2019] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens (CP) type A and newly created type G strains are the key etiological factors in the induction of necrotic enteritis (NE), an important enteric disease that is responsible for the annual loss of $6 billion in the worldwide poultry industry. Several CP toxin genes were found to be critical in NE pathogenesis in chickens, but limited information is available on the CP lethal toxin tpeL gene. In this study, 19 CP strains isolated from NE-affected chicken farms were characterized microbiologically and molecularly and evaluated for their pathogenicity in commercial broiler chickens. Toxin typing by PCR revealed that all strains tested were positive for the netB toxin gene, but only five strains were positive for the tpeL toxin gene (LLY-TpeL 13, -TpeL 15, -TpeL 17, -TpeL 18, and -TpeL 19, simplified as TpeL 13, TpeL 15, TpeL 17, TpeL 18, and TpeL 19). High levels of TpeL proteins were detected in the concentrated culture supernatant from strains TpeL 13, 15, 17, and 19 by western blotting. Quantitative PCR showed that strains TpeL 13, 15, 17, 18, and 19 harbored a high number of copies of tpeL genes, while TpeL 18 had the highest number of copies of the tpeL gene among all CP strains tested when normalized with copy numbers of 16S rRNA gene as a housekeeping gene marker. The in vivo NE challenge test using multiple oral CP inoculations combined with a high-protein diet showed that TpeL 17 was the most virulent in inducing typical NE lesions, followed by TpeL 19 as the next most virulent, when tested in commercial broiler chickens. Infection with TpeL 17 reduced the growth rate significantly, as shown by reduced relative body weight gain percentage at day 5 postinfection. Availability of the virulent netB+tpeL+ CP strains is essential for the development of a CP-alone NE challenge model that could provide significant tools for understanding CP pathogenesis and for development of alternative to antibiotics.
Collapse
Affiliation(s)
- Changqin Gu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhezi Xianyu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, BARC, ARS, USDA, Beltsville, MD 20705
| | - Yunfei Wang
- Biostatistics Center, Duke Human Vaccine Institute, Durham, NC 27708
| | - Shudai Lin
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Liheng Liu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705,
| |
Collapse
|
14
|
Yang WY, Lee YJ, Lu HY, Branton SL, Chou CH, Wang C. The netB-positive Clostridium perfringens in the experimental induction of necrotic enteritis with or without predisposing factors. Poult Sci 2020; 98:5297-5306. [PMID: 31222251 DOI: 10.3382/ps/pez311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
The netB-positive Clostridium perfringens has been considered as the requisite to consistently induce necrotic enteritis (NE). However, use of a netB-positive strain did not guarantee consistent NE reproduction unless high protein diets or Eimeria, conceived as 2 major predisposing factors, was incorporated. To establish a refined model, the roles of dietary fishmeal inclusion, Eimeria inoculation, and netB-positive C. perfringens challenge in NE induction and the confounding effects of Eimeria infection on NE were examined. The results showed that the use of netB-positive C. perfringens without a predisposing factor failed to induce NE. Fishmeal incorporation promoted the occurrence of NE but did not significantly affect the incidence of the disease in conjunction with challenge of netB-positive C. perfringens. However, the additional participation of Eimeria infection in the same induction procedure produced significantly higher numbers of NE cases and promoted more severe lesions in chickens (P < 0.05). Inoculation of Eimeria resulted in a significant higher incidence of NE compared to the non-Eimeria treated group (P < 0.05). The results demonstrated that both netB-positive C. perfringens and predisposing factors were required for the reproduction of disease. Mild-to-moderate coccidial infection (coccidial lesion score ≤ 2) was noted in NE cases in this model but severe coccidial infection did not correlate with the occurrence of NE, indicating mild coccidial infection may be beneficial for the development of NE. If multiple species infection of Eimeria precedes the challenge of C. perfringens, days 19 to 21 (1 to 3 D after the last clostridial challenge) was the time period favorable for observations of NE lesions. The time after this period may be subject to bias of severity, incidence, or mortality of NE owing to the profound coccidial lesions in the intestinal region. This study demonstrated that the co-infection with netB-positive C. perfringens and Eimeria species under fishmeal incorporation produced a desirable NE model, being of value in studying the effectiveness of novel feed additives and alternative mitigation strategies to prevent NE.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Yue-Jia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Hsin-Yi Lu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Scott L Branton
- USDA-ARS Poultry Research Unit, Mississippi State, MS 39762-5367
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
15
|
|
16
|
Yang WY, Chou CH, Wang C. Characterization of toxin genes and quantitative analysis of netB in necrotic enteritis (NE)-producing and non-NE-producing Clostridium perfringens isolated from chickens. Anaerobe 2018; 54:115-120. [PMID: 30170048 DOI: 10.1016/j.anaerobe.2018.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Necrotic enteritis (NE) in chickens, a Clostridium perfringens infection, has re-emerged due to the removal of antibiotic growth promoters in feeds in recent years, thus contributing to significant economic losses for the industry. Toxins produced by C. perfringens in conjunction with predisposing factors are responsible for the onset and development of NE. Recently, several lines of evidence indicated the potential role of plasmid-encoded toxins in the virulence of NE, particularly necrotic enteritis B-like (NetB) toxin. However, the association of NetB, beta2 toxin (CPB2), and C. perfringens large cytotoxin (TpeL) in clinical NE isolates are not well-established. Therefore, we characterized the toxinotype and the presence of netB, cpb2, and tpeL genes in 15 NE-producing and 15 non-NE-producing C. perfringens isolates using conventional PCR and quantified netB among those isolates by quantitative PCR (qPCR). All isolates were characterized as toxinotype A and were negative for cpe, which is associated with human food poisoning. The netB was detected in 6.7% and 70% of NE-producing isolates by PCR and qPCR, respectively. In 15 non-NE-producing isolates, netB was not detected by conventional PCR, but was detected in 60% of isolates by qPCR. The presence of and the copy number of netB were not significantly different between NE- and non-NE-producing isolates (p >0.05). No difference was observed between NE- and non-NE-producing isolates in the presence of cpb2 or tpeL (p >0.05). These results suggest that the presence of netB, cpb2, and tpeL, as well as the copy number of netB in C. perfringens is not correlated with clinical NE. In addition, we suggest that qPCR, but not conventional PCR, be used to detect netB.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, Mississippi State, USA
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, Mississippi State, USA.
| |
Collapse
|
17
|
Chen K, Mishra N, Smyth J, Bar H, Schifano E, Kuo L, Chen MH. A Tailored Multivariate Mixture Model for Detecting Proteins of Concordant Change Among Virulent Strains of Clostridium Perfringens. J Am Stat Assoc 2018; 113:546-559. [PMID: 30122795 PMCID: PMC6095199 DOI: 10.1080/01621459.2017.1356314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Necrotic enteritis (NE) is a serious disease of poultry caused by the bacterium C. perfringens. To identify proteins of C. perfringens that confer virulence with respect to NE, the protein secretions of four NE disease-producing strains and one baseline non-disease-producing strain of C. perfringens were examined. The problem then becomes a clustering task, for the identification of two extreme groups of proteins that were produced at either concordantly higher or concordantly lower levels across all four disease-producing strains compared to the baseline, when most of the proteins do not exhibit significant change across all strains. However, the existence of some nuisance proteins of discordant change may severely distort any biologically meaningful cluster pattern. We develop a tailored multivariate clustering approach to robustly identify the proteins of concordant change. Using a three-component normal mixture model as the skeleton, our approach incorporates several constraints to account for biological expectations and data characteristics. More importantly, we adopt a sparse mean-shift parameterization in the reference distribution, coupled with a regularized estimation approach, to flexibly accommodate proteins of discordant change. We explore the connections and differences between our approach and other robust clustering methods, and resolve the issue of unbounded likelihood under an eigenvalue-ratio condition. Simulation studies demonstrate the superior performance of our method compared with a number of alternative approaches. Our protein analysis along with further biological investigations may shed light on the discovery of the complete set of virulence factors in NE.
Collapse
Affiliation(s)
- Kun Chen
- Department of Statistics, University of Connecticut
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut
| | - Joan Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut
| | - Haim Bar
- Department of Statistics, University of Connecticut
| | | | - Lynn Kuo
- Department of Statistics, University of Connecticut
| | | |
Collapse
|
18
|
Uzal FA, Navarro MA, Li J, Freedman JC, Shrestha A, McClane BA. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 2018; 53:11-20. [PMID: 29883627 DOI: 10.1016/j.anaerobe.2018.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Several enteric clostridial diseases can affect humans and animals. Of these, the enteric infections caused by Clostridium perfringens and Clostridium difficile are amongst the most prevalent and they are reviewed here. C. perfringens type A strains encoding alpha toxin (CPA) are frequently associated with enteric disease of many animal mammalian species, but their role in these diseased mammals remains to be clarified. C. perfringens type B encoding CPA, beta (CPB) and epsilon (ETX) toxins causes necro-hemorrhagic enteritis, mostly in sheep, and these strains have been recently suggested to be involved in multiple sclerosis in humans, although evidence of this involvement is lacking. C. perfringens type C strains encode CPA and CPB and cause necrotizing enteritis in humans and animals, while CPA and ETX producing type D strains of C. perfringens produce enterotoxemia in sheep, goats and cattle, but are not known to cause spontaneous disease in humans. The role of C. perfringens type E in animal or human disease remains poorly defined. The newly revised toxinotype F encodes CPA and enterotoxin (CPE), the latter being responsible for food poisoning in humans, and the less prevalent antibiotic associated and sporadic diarrhea. The role of these strains in animal disease has not been fully described and remains controversial. Another newly created toxinotype, G, encodes CPA and necrotic enteritis toxin B-like (NetB), and is responsible for avian necrotic enteritis, but has not been associated with human disease. C. difficile produces colitis and/or enterocolitis in humans and multiple animal species. The main virulence factors of this microorganism are toxins A, B and an ADP-ribosyltransferase (CDT). Other clostridia causing enteric diseases in humans and/or animals are Clostridium spiroforme, Clostridium piliforme, Clostridium colinum, Clostridium sordellii, Clostridium chauvoei, Clostridium septicum, Clostridium botulinum, Clostridium butyricum and Clostridium neonatale. The zoonotic transmission of some, but not all these clostridsial species, has been demonstrated.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA.
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Razmyar J, Peighambari SM, Zamani AH. Detection of a Newly Described Bacteriocin, Perfrin, Among Clostridium perfringens Isolates from Healthy and Diseased Ostriches and Broiler Chickens in Iran. Avian Dis 2018; 61:387-390. [PMID: 28957009 DOI: 10.1637/11580-010517-resnoter] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Necrotic enteritis due to Clostridium perfringens strains harboring the netB gene is a well-known disorder in poultry. The aim of this study was to investigate the association of a novel bacteriocin, perfrin, with netB among isolates from healthy and diseased ostriches and broiler chickens. Forty-six C. perfringens isolates from broiler chickens and ostriches collected from 2010 to 2014 were included in this study and subjected to PCR to detect netB and perfrin genes. Six (60%) and 9 (25%) isolates were positive for both netB and perfrin genes in broilers and ostriches, respectively. Statistical analysis found a significant difference between healthy and diseased flocks for perfrin both in broilers and ostriches. For netB, the significant difference was only found between healthy and diseased ostrich flocks. This is the first report of the presence of perfrin in netB-positive C. perfringens strains in ostriches.
Collapse
Affiliation(s)
- Jamshid Razmyar
- A Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran 9177948974
| | - Seyed Mostafa Peighambari
- B Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 9177948974
| | - Amir Hossein Zamani
- A Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran 9177948974
| |
Collapse
|
20
|
Zahoor I, Ghayas A, Basheer A. Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review. Mol Biol Rep 2017; 45:31-37. [PMID: 29264734 DOI: 10.1007/s11033-017-4138-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023]
Abstract
Global poultry production is facing many challenges and is currently under pressure due to the presence of several diseases like Necrotic Enteritis (NE). It is estimated that NE-caused global economic losses has increased from 2 billion to 6 billion US$ in 2015 because it is not easy to diagnose and control disease at the earlier stage of occurrence. Additionally, ban on the in-feed antibiotics and some other genetic and non-genetic predisposing factors affect the occurrence of the disease. Though the incidence of the disease can be reduced by minimizing the predisposing factors and through immunization of birds but there is no single remedy to control the disease. Therefore, we suggest that there is need to find out the genetic variants that could help to select the birds resistant to NE. The current review details the pertinent features about the genetic and genomics of susceptibility and immune response of birds to Necrotic Enteritis. We report here the list of candidate gene reported for their involvement with the susceptibility and/or resistance to the disease. However, most of these genes are involved in immune-related functions. For better understanding of the role of Clostridium perfringens and its toxins in the pathogenesis of disease there is need to unveil the association between any specific genetic variation and clinical status of NE. However, the presence of substantial genetic variations among different breeds/strains of chicken shows that it is possible to develop broiler strain with genetic resistant against NE. It would help in the cost-effective and sustainable production of safe broiler meat.
Collapse
Affiliation(s)
- Imran Zahoor
- Animal Breeding and Genetics Section, Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Abdul Ghayas
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Atia Basheer
- Animal Breeding and Genetics Section, Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
21
|
Lacey JA, Johanesen PA, Lyras D, Moore RJ. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol 2017; 45:302-7. [PMID: 26949841 DOI: 10.1080/03079457.2016.1153799] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.
Collapse
Affiliation(s)
- Jake A Lacey
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia.,b Poultry Cooperative Research Centre , University of New England , Armidale , Australia.,c Australian Animal Health Laboratory , CSIRO , Geelong , Australia
| | - Priscilla A Johanesen
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia
| | - Dena Lyras
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia
| | - Robert J Moore
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia.,b Poultry Cooperative Research Centre , University of New England , Armidale , Australia.,c Australian Animal Health Laboratory , CSIRO , Geelong , Australia.,d School of Science , RMIT University , Bundoora , Australia
| |
Collapse
|
22
|
Prescott JF, Smyth JA, Shojadoost B, Vince A. Experimental reproduction of necrotic enteritis in chickens: a review. Avian Pathol 2017; 45:317-22. [PMID: 26813025 DOI: 10.1080/03079457.2016.1141345] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review discusses key factors important in successful experimental reproduction of necrotic enteritis (NE) in chickens, and how these factors can be adjusted to affect the severity of the lesions induced. The critical bacterial factor is the need to use virulent, netB-positive, strains of Clostridium perfringens; disease severity can be enhanced by using netB-positive C. perfringens strains that are also tpeL-positive, by the use of young rather than old broth cultures, and by the number of days of inoculation and the number of bacteria used. Use of cereals rich in non-starch polysaccharides can enhance disease, as does use of animal proteins. Administration of coccidia, including coccidial vaccines, combined with netB-positive C. perfringens, increases the severity of experimentally-induced NE. Dietary manipulation may be less important in coccidia-based models since the latter are so effective. Disease scoring systems and welfare considerations are discussed.
Collapse
Affiliation(s)
- John F Prescott
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| | - Joan A Smyth
- b Department of Pathobiology and Veterinary Science , University of Connecticut , Storrs , CT , USA
| | - Bahram Shojadoost
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| | - Andrew Vince
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
23
|
Abstract
Necrotic enteritis in chickens develops as a result of infection with pathogenic strains of Clostridium perfringens and the presence of predisposing factors. Predisposing factors include elements that directly change the physical properties of the gut, either damaging the epithelial surface, inducing mucus production, or changing gut transit times; factors that disrupt the gut microbiota; and factors that alter the immune status of birds. In the past research into necrotic enteritis predisposing factors was directed by the simple hypothesis that low-level colonization of C. perfringens commonly occurred within the gut of healthy chickens and the predisposing factors lead to a proliferation of those bacteria to produce disease. More recently, with an increasing understanding of the major virulence factors of C. perfringens and the application of molecular techniques to define different clades of C. perfringens strains, it has become clear that the C. perfringens isolates commonly found in healthy chickens are generally not strains that have the potential to cause disease. Therefore, we need to re-evaluate hypotheses regarding the development of disease, the origin of disease causing isolates of C. perfringens, and the importance of interactions with other C. perfringens strains and with predisposing factors. Many predisposing factors that affect the physical and immunological characteristics of the gastrointestinal tract may also change the resident microbiota. Research directed towards defining the relative importance of each of these different actions of predisposing factors will improve the understanding of disease pathogenesis and may allow refinement of experiment disease models.
Collapse
Affiliation(s)
- Robert J Moore
- a School of Science , RMIT University , Bundoora , Australia.,b Poultry Cooperative Research Centre , University of New England , Armidale , Australia.,c Infection and Immunity Program, Department of Microbiology , Monash Biomedicine Discovery Institute, Monash University , Clayton , Australia
| |
Collapse
|
24
|
Mishra N, Smyth JA. Oral vaccination of broiler chickens against necrotic enteritis using a non-virulent NetB positive strain of Clostridium perfringens type A. Vaccine 2017; 35:6858-6865. [PMID: 29102330 DOI: 10.1016/j.vaccine.2017.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
Necrotic enteritis (NE) is a severe disease of chickens and turkeys caused by some strains of Clostridium perfringens type A. The disease is well controlled by the use of in-feed antibiotic growth promoters (AGPs). However, due to worldwide public and regulatory pressure to reduce the use of AGPs inter alia, there is an urgent need to develop non-antibiotic based preventative measures. Vaccination would be a suitable control measure, but currently there is no commercial vaccine. NetB (necrotic enteritis toxin B-like) is a pore-forming toxin produced by C. perfringens that has been reported as an important virulence factor in the pathogenesis of NE. The present study tests a non-virulent NetB producing strain of C. perfringens (nvNetB+), with or without adjuvants, as an orally administered live vaccine. Adjuvants used were Gel 01™, Cholera toxin (CT), Escherichia coli wild type heat-labile holotoxin (LT) and mutant E. coli LT (dmLT) (R192G/L211A). Several vaccine administration regimes were tested. All vaccination regimes elicited serum and mucosal antibody responses to alpha toxin and to secreted proteins of both nvNetB+ and a very virulent NetB positive (vvNetB+) strain (p<0.0001 to p<0.05). In some vaccinated groups, there was milder intestinal pathology upon disease challenge. 55% of birds vaccinated orally at days 2, 12 with nvNetB+ adjuvanted with CT did not develop any lesions of NE by 6 days post challenge, compared to a 100% incidence of NE lesions in the unvaccinated disease challenged group.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| | - Joan A Smyth
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
25
|
Zhou H, Lepp D, Pei Y, Liu M, Yin X, Ma R, Prescott JF, Gong J. Influence of pCP1NetB ancillary genes on the virulence of Clostridium perfringens poultry necrotic enteritis strain CP1. Gut Pathog 2017; 9:6. [PMID: 28127404 PMCID: PMC5251324 DOI: 10.1186/s13099-016-0152-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/15/2016] [Indexed: 11/30/2022] Open
Abstract
Background Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. The NetB toxin plays a critical role in the pathogenesis of NE. We previously demonstrated that netB is located within a 42 kb plasmid-encoded pathogenicity locus (NELoc-1), which also encodes 36 additional genes. Although NetB clearly plays a role in pathogenesis, the involvement of the other NELoc-1 genes has not yet been established. The current study was to provide experimental evidence to confirm the involvement of these genes in NE pathogenesis. Results The present study has characterized a virulent C. perfringens strain (CP1) that has spontaneously lost the NELoc-1-encoding plasmid, pCP1netB. When assessed for cytotoxicity on Leghorn Male Hepatoma (LMH) cells, the culture supernatant of the pCP1netB-deficient CP1 variant (CP1ΔpCP1netB) demonstrated significantly reduced cytotoxicity compared to the wild-type. In addition, CP1ΔpCP1netB was unable to cause intestinal lesions in chickens in a NE disease model. When netB alone was introduced into CP1ΔpCP1netB, in vitro cytotoxicity was restored to the wild-type level; however, it did not completely restore virulence when used to challenge broiler chickens [mean lesion score of 0.71 compared to 3.23 in the wild type control group (n = 14)]. Conclusions The results of this study suggest that other genes present in NELoc-1, in addition to netB, are required for full virulence in the chicken challenge model.
Collapse
Affiliation(s)
- Hongzhuan Zhou
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9 Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9 Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mei Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9 Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9 Canada
| | - Rongcai Ma
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - John F Prescott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9 Canada
| |
Collapse
|
26
|
To H, Suzuki T, Kawahara F, Uetsuka K, Nagai S, Nunoya T. Experimental induction of necrotic enteritis in chickens by a netB-positive Japanese isolate of Clostridium perfringens. J Vet Med Sci 2016; 79:350-358. [PMID: 27980252 PMCID: PMC5326941 DOI: 10.1292/jvms.16-0500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Necrotic enteritis (NE) is one of the most important bacterial diseases in terms of
economic losses. Clostridium perfringens necrotic enteritis toxin B,
NetB, was recently proposed as a new key virulent factor for the development of NE. The
goal of this work was to develop a necrotic enteritis model in chickens by using a
Japanese isolate of C. perfringens. The Japanese isolate has been found
to contain netB gene, which had the same nucleotide and deduced amino
acid sequences as those of prototype gene characterized in Australian strain EHE-NE18, and
also expressed in vitro a 33-kDa protein identified as NetB toxin by
nano-scale liquid chromatographic tandem mass spectrometry. In the challenge experiment,
broiler chickens fed a commercial chicken starter diet for 14 days post-hatch were changed
to a high protein feed mixed 50:50 with fishmeal for 6 days. At day 21 of age, feed was
withheld for 24 hr, and each chicken was orally challenged twice daily with 2
ml each of C. perfringens culture (109 to
1010 CFU) on 5 consecutive days. The gross necrotic lesions were observed in
90 and 12.5% of challenged and control chickens, respectively. To our knowledge, this is
the first study that demonstrated that a netB-positive Japanese isolate
of C. perfringens is able to induce the clinical signs and lesions
characteristic of NE in the experimental model, which may be useful for evaluating the
pathogenicity of field isolates, the efficacy of a vaccine or a specific drug against
NE.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Parent E, Archambault M, Charlebois A, Bernier-Lachance J, Boulianne M. A chicken intestinal ligated loop model to study the virulence of Clostridium perfringens isolates recovered from antibiotic-free chicken flocks. Avian Pathol 2016; 46:138-149. [PMID: 27917645 DOI: 10.1080/03079457.2016.1228825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Necrotic enteritis (NE) is a major problem in antibiotic-free (ABF) chicken flocks and specific strains of Clostridium perfringens are known to induce NE. The objective of this study was to develop a chicken intestinal ligated loop model in order to compare the virulence of various C. perfringens strains recovered from consecutive ABF flocks with and without NE. Intestinal loops were surgically prepared in 10 anaesthetized specific-pathogen-free chickens and alternately inoculated with C. perfringens isolates or brain heart infusion (BHI) media. Histological lesion scoring was performed for each loop. All strains from NE-affected flocks induced histological lesions compatible with NE whereas inoculation of loops with a commensal C. perfringens strain or BHI did not. Among inoculated strains, CP0994 (netB-positive and cpb2-positive) and CP-2003-1256 (netB-positive) demonstrated mean histological lesion scores significantly higher (P < 0.01) than those obtained with a commensal strain or BHI whereas strain CP1073 (netB-negative and cpb2-positive) induced intestinal lesions without significantly higher scores. In loops where villi were colonized by Gram-positive rods, significantly higher (P < 0.01) mean histological lesion scores were observed. This result supports the hypothesis that colonization of the intestinal mucosa by C. perfringens is a critical step in the pathogenesis of NE. Finally, we demonstrated the importance of controlling virulent C. perfringens strains in ABF chicken flocks as a highly virulent strain can be present in consecutive flocks with NE and possibly affect multiple flocks.
Collapse
Affiliation(s)
- Eric Parent
- a Department of Clinical Sciences , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada.,b Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Department of Pathology and Microbiology , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada
| | - Marie Archambault
- b Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Department of Pathology and Microbiology , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada
| | - Audrey Charlebois
- b Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Department of Pathology and Microbiology , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada
| | - Jocelyn Bernier-Lachance
- b Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Department of Pathology and Microbiology , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada
| | - Martine Boulianne
- a Department of Clinical Sciences , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada.,b Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Department of Pathology and Microbiology , Faculty of Veterinary Medicine of the Université de Montréal , Montreal , Canada
| |
Collapse
|
28
|
|
29
|
|
30
|
Athanasiadou S, Russell KM, Kaiser P, Kanellos T, Burgess STG, Mitchell M, Clutton E, Naylor SW, Low CJ, Hutchings MR, Sparks N. Genome wide transcriptomic analysis identifies pathways affected by the infusion of Clostridium perfringens culture supernatant in the duodenum of broilers in situ. J Anim Sci 2016; 93:3152-63. [PMID: 26115301 DOI: 10.2527/jas.2014-8597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens type A is the main etiological factor for necrotic enteritis, a multifactorial enteric disease that penalizes performance, health, and welfare of poultry. Lack of knowledge of host responses and disease pathogenesis is slowing down progress on developing therapies for disease control. A combined genomewide and targeted gene approach was used to investigate pathways and biological functions affected by the infusion of C. perfringens culture supernatant in the duodenum of broilers in 2 experiments. An in situ isolated loop of duodenum was prepared in anesthetized broilers of 3 wk of age (Exp. 1) and was infused either with crude C. perfringens culture supernatant (n = 7; treated), positive for necrotic enteritis B-like toxin (NetB) as determined by a cytotoxicity assay, or with a control preparation (n = 6; control). Birds were maintained alive for 1 h and then euthanized for tissue recovery. The use of the Affymetrix chicken genome array on RNA samples from loop tissue showed top biological functions affected by culture supernatant infusion included cell morphology, immune cell trafficking, and cell death; pathways affected included death receptor signaling, inflammatory response, and nuclear factor (NF)-κB signaling. In a second in situ study (Exp. 2), broilers were maintained alive for 4 h to monitor temporal expression patterns of targeted genes. Duodenal tissue was removed at 0.5, 1, 2, and 4 h post-infusion with culture supernatant (n = 9) or a control preparation (n = 5) for histology and gene expression analysis. Genes encoding proinflammatory cytokines, such as interferon γ (IFNγ), cell trafficking, such as neuroblastoma 1 (NBL1) and B cell CLL/Lymphoma 6 (BCL6), and cell death, such as Fas cell surface death receptor (FAS) and GTPase IMAP family member 8 (GIMAP8), were differentially expressed in the duodenum of treated and control broilers (P < 0.05). We have demonstrated that C. perfringens culture supernatant (NetB positive) infusion resulted in histological and gene expression changes consistent with necrotic enteritis in the duodenum of broilers. In the absence of live bacteria, crude culture supernatant resulted in early immunomodulation, inflammation, and cell death in the duodenum. The pathways identified here can be targeted for the development of new drugs, vaccines, and novel therapies for necrotic enteritis in broilers.
Collapse
|
31
|
França M, Barrios MA, Stabler L, Zavala G, Shivaprasad HL, Lee MD, Villegas AM, Uzal FA. Association of Beta2-PositiveClostridium perfringensType A With Focal Duodenal Necrosis in Egg-Laying Chickens in the United States. Avian Dis 2016; 60:43-9. [DOI: 10.1637/11263-081915-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechnol 2015; 6:58. [PMID: 26705471 PMCID: PMC4690362 DOI: 10.1186/s40104-015-0055-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background In the post-antibiotic era, essential oils (EO) are promising alternatives to growth-promoting antibiotics. The aim of the present study was to investigate the antibacterial activities of an EO product and its components thymol and carvacrol in vitro, and the efficacy of EO to control Clostridium perfringens challenge in broiler chickens. Results The in vitro minimum inhibitory concentration assay showed strong antibacterial activity of the EO product, thymol, and carvacrol against pathogenic Escherichia coli, C. perfringens, and Salmonella strains, and weak activity towards beneficial Lactobacillus strains. Besides, an additive effect was observed between thymol and carvacrol. The in vivo study was carried out with 448 male broiler chicks following a 4 × 2 factorial arrangement to test the effects of EO supplementation (0, 60, 120, or 240 mg/kg EO in wheat-based diet), pathogen challenge (with or without oral gavage of C. perfringens from day 14 to day 20) and their interactions. Each treatment consisted of eight replicate pens (seven birds/pen). The challenge led to macroscopic gut lesions, and resulted in a significant increase in ileal populations of C. perfringens and Escherichia subgroup (P ≤ 0.05) on day 21. Dietary EO supplementation did not influence C. perfringens numbers, but linearly alleviated intestinal lesions on day 21 and 28 (P = 0.010 and 0.036, respectively), and decreased Escherichia populations in ileum with increased EO dosages (P = 0.027 and 0.071 for day 21 and 28, respectively). For caecum, EO quadratically influenced Lactobacillus populations on day 21 (P = 0.002), and linearly decreased the numbers of total bacteria and Escherichia on day 28 (P = 0.026 and 0.060, respectively). Mean thymol and carvacrol concentrations in the small intestine were 0.21 and 0.20 μg/g in intestinal digesta (wet weight), respectively, for birds fed 60 mg/kg EO, and 0.80 and 0.71 μg/g, respectively, for birds fed 240 mg/kg EO. Conclusions These results indicated that dietary EO supplementation could affect intestinal microbiota and alleviate intestinal lesions in broilers, which may contribute in controlling C. perfringens infection in broiler chickens.
Collapse
Affiliation(s)
- Encun Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| | - Zhui Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P. R. China
| |
Collapse
|
33
|
Keokilwe L, Olivier A, Burger WP, Joubert H, Venter EH, Morar-Leather D. Bacterial enteritis in ostrich (Struthio Camelus) chicks in the Western Cape Province, South Africa. Poult Sci 2015; 94:1177-83. [PMID: 25840967 DOI: 10.3382/ps/pev084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 11/20/2022] Open
Abstract
Ostrich (Struthio camelus) chicks less than 3 mo age are observed to experience a high mortality rate that is often associated with enteritis. This study was undertaken to investigate the infectious bacteria implicated in ostrich chick enteritis. Postmortems were performed on 122 ostrich chicks aged from 1 d to 3 mo and intestinal samples were subjected to bacterial culture. Bacterial isolates were typed by PCR and serotyping. Escherichia coli (E. coli; 49%) was the most frequently isolated from the samples followed by Clostridium perfringens (C. perfringens; 20%), Enterococcus spp. (16%), and Salmonella spp. (7%). Of the E. coli, 39% were categorized as enteropathogenic E. coli, 4% enterotoxigenic E. coli, and no enterohaemorrhagic E. coli were found. The majority (93%) of C. perfringens was Type A and only 7% was Type E. C. perfringens Types B through D were not present. The netB gene that encodes NetB toxin was identified from 16% of the C. perfringens isolated. All the C. perfringens Type E harbored the netB gene and just 10% of the C. perfringens Type A had this gene. Three Salmonella serotypes were identified: Salmonella Muenchen (S. Muenchen; 80%), S. Hayindongo (13%), and S. Othmarschen (7%). The indication is that the cause of enteritis in ostrich chicks is bacterial-involving: enteropathogenic E. coli and enterotoxigenic E. coli; C. perfringens Types A and E (with the possible influence of netB gene); and S. Muenchen, S. Hayindongo, and S. Othmarschen.
Collapse
Affiliation(s)
- L Keokilwe
- Botswana National Veterinary Laboratory, Private Bag 0035, Gaborone, Botswana Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - A Olivier
- Ostrich Research Laboratory, P.O. Box 241, Oudtshoorn 6620, South Africa
| | - W P Burger
- Private Veterinary Consultant, P.O. Box 788, Oudtshoorn 6620, South Africa
| | - H Joubert
- Deltamune Laboratories, 248 Jean Avenue, Lyttleton, Centurion 0157, South Africa
| | - E H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - D Morar-Leather
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
34
|
Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. ACTA ACUST UNITED AC 2015; 1:1-11. [PMID: 29766984 PMCID: PMC5884463 DOI: 10.1016/j.aninu.2015.02.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Poultry production has undergone a substantial increase compared to the livestock industries since 1970. However, the industry worldwide is now facing challenges with the removal of in-feed antibiotics completely or gradually, as the once well-controlled poultry diseases have re-emerged to cause tremendous loss of production. Necrotic enteritis (NE) is one of the most important diseases which costs the industry over two billion dollars annually. In this paper, we review the progress on the etiology of NE and its control through dietary modifications, pre- and probiotics, short chain fatty acids, and vaccination. The other likely measures resulted in the most advances in the toxin characterization are also discussed. Vaccine strategies may have greater potential for the control of NE mainly due to clearer etiology of NE having been elucidated in recent years with the identification of necrotic enteritis toxin B-like (NetB) toxin. Therefore, the use of alternatives to in-feed antibiotics with a better understanding of the relationship between nutrition and NE, and limiting exposure to infectious agents through biosecurity and vaccination, might be a tool to reduce the incidence of NE and to improve gut health in the absence of in-feed antibiotics. More importantly, the combinations of different measures may achieve greater protection of birds against the disease. Among all the alternatives investigated, prebiotics, organic acids and vaccination have shown improved gastrointestinal health and thus, have potential for the control of NE.
Collapse
|
35
|
Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Vet Microbiol 2015; 179:23-33. [PMID: 25770894 DOI: 10.1016/j.vetmic.2015.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
Abstract
The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jackie K Cheung
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Theoret
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jorge P Garcia
- Department of Large Animal Medicine, School of Veterinary Medicine, National University of the Center of Buenos Aires Province, Tandil, Argentina
| | - Robert J Moore
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Julian I Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| |
Collapse
|
36
|
Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 2015; 9:361-77. [PMID: 24762309 DOI: 10.2217/fmb.13.168] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C. perfringens uses chromosomally encoded alpha toxin (a phospholipase C) and perfringolysin O (a pore-forming toxin) during histotoxic infections. In contrast, this bacterium causes intestinal disease by employing toxins encoded by mobile genetic elements, including C. perfringens enterotoxin, necrotic enteritis toxin B-like, epsilon toxin and beta toxin. Like perfringolysin O, the toxins with established roles in intestinal disease form membrane pores. However, the intestinal disease-associated toxins vary in their target specificity, when they are produced (sporulation vs vegetative growth), and in their sensitivity to intestinal proteases. Producing many toxins with diverse characteristics likely imparts virulence flexibility to C. perfringens so it can cause an array of diseases.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health & Food Safety Laboratory System, University of California-Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.
Collapse
|
38
|
Allaart JG, de Bruijn ND, van Asten AJAM, Fabri THF, Gröne A. NetB-producing and beta2-producing Clostridium perfringens associated with subclinical necrotic enteritis in laying hens in the Netherlands. Avian Pathol 2014; 41:541-6. [PMID: 23237366 DOI: 10.1080/03079457.2012.729809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since 2006 increasing numbers of laying hen flocks with decreased production have been reported in the Netherlands. At necropsy, birds from affected flocks showed multifocal areas of necrosis in the duodenum. Histologically the duodenum had moderate to marked villus atrophy and fusion with crypt hyperplasia and a mixed inflammatory infiltrate within the lamina propria underlying focal areas of degenerative epithelium. Multifocally, free within the intestinal lumen and associated with epithelial necrosis, were marked numbers of large rod-shaped bacteria. Anaerobic culturing and subsequent toxin typing revealed, in 19 out of 73 affected birds, the presence of Clostridium perfringens strains, either type A or type C harbouring the atypical allele of cpb2 and netB. Eighteen out of these 19 birds carried C. perfringens strains capable of producing beta2 toxin in vitro and all of these birds harboured C. perfringens strains capable of producing NetB toxin in vitro. In contrast, specific pathogen free (SPF) birds lacked gross or histological lesions in their duodenum, and C. perfringens type C was isolated from four out of 15 SPF birds tested. One of these isolates harboured the consensus three allele of cpb2 that produced beta2 toxin in vitro. None of the C. perfringens isolates originating from SPF birds harboured netB. These findings might indicate that the NetB toxin produced by C. perfringens is associated with subclinical necrotic enteritis in layers, whereas the involvement of beta2 toxin in subclinical necrotic enteritis, if any, might be variant dependent.
Collapse
Affiliation(s)
- Janneke G Allaart
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
39
|
Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. Br J Nutr 2014; 112:1098-109. [PMID: 25181320 DOI: 10.1017/s0007114514001846] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the effects of dietary arginine (Arg) supplementation on intestinal structure and functionality in broiler chickens subjected to coccidial challenge. The present study was a randomised complete block design employing a 3 × 2 factorial arrangement (n 8) with three dietary concentrations of Arg (11·1, 13·3 and 20·2 g/kg) with or without coccidial vaccine challenge (unchallenged and coccidial challenge). On day 14, birds were orally administered with coccidial vaccine or saline. On day 21, birds were killed to obtain jejunal tissue and mucosal samples for histological, gene expression and mucosal immunity measurements. Within 7 d of the challenge, there was a decrease in body-weight gain and feed intake, and an increase in the feed:gain ratio (P< 0·05). Jejunal inflammation was evidenced by villus damage, crypt dilation and goblet cell depletion. Coccidial challenge increased mucosal secretory IgA concentration and inflammatory gene (iNOS, IL-1β, IL-8 and MyD88) mRNA expression levels (P< 0·05), as well as reduced jejunal Mucin-2, IgA and IL-1RI mRNA expression levels (P< 0·05). Increasing Arg concentration (1) increased jejunal villus height (P< 0·05) and linearly increased jejunal crypt depth (P< 0·05); (2) quadratically increased mucosal maltase activity (P< 0·05) and linearly decreased mucosal secretory IgG concentration (P< 0·05) within the coccidiosis-challenged groups; and (3) linearly decreased jejunal Toll-like receptor 4 (TLR4) mRNA expression level (P< 0·05) within the coccidiosis-challenged groups. The mRNA expression of mechanistic target of rapamycin (mTOR) complex 1 pathway genes (mTOR and RPS6KB1) and the anti-apoptosis gene Bcl-2 quadratically responded to increasing dietary Arg supplementation (P< 0·05). These results indicate that dietary Arg supplementation attenuates intestinal mucosal disruption in coccidiosis-challenged chickens probably through suppressing TLR4 and activating mTOR complex 1 pathways.
Collapse
|
40
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
41
|
Cooper KK, Songer JG, Uzal FA. Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 2013; 25:314-27. [DOI: 10.1177/1040638713483468] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The world’s poultry industry has grown into a multibillion-dollar business, the success of which hinges on healthy intestinal tracts, which result in effective feed conversion. Enteric disease in poultry can have devastating economic effects on producers, due to high mortality rates and poor feed efficiency. Clostridia are considered to be among the most important agents of enteric disease in poultry. Diagnosis of enteric diseases produced by clostridia is usually challenging, mainly because many clostridial species can be normal inhabitants of the gut, making it difficult to determine their role in virulence. The most common clostridial enteric disease in poultry is necrotic enteritis, caused by Clostridium perfringens, which typically occurs in broiler chickens but has also been diagnosed in various avian species including turkeys, waterfowl, and ostriches. Diagnosis is based on clinical and pathological findings. Negative culture and toxin detection results may be used to rule out this disease, but isolation of C. perfringens and/or detection of its alpha toxin are of little value to confirm the disease because both are often found in the intestine of healthy birds. Ulcerative enteritis, caused by Clostridium colinum, is the other major clostridial enteric disease of poultry. Diagnosis of ulcerative enteritis is by documentation of typical pathological findings, coupled with isolation of C. colinum from the intestine of affected birds. Other clostridial enteric diseases include infections produced by Clostridium difficile, Clostridium fallax, and Clostridium baratii.
Collapse
Affiliation(s)
- Kerry K. Cooper
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| | - J. Glenn Songer
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| | - Francisco A. Uzal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| |
Collapse
|
42
|
Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the netB plasmid. J Bacteriol 2013; 195:1152-66. [PMID: 23292780 DOI: 10.1128/jb.01032-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.
Collapse
|
43
|
Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol 2011; 40:341-7. [PMID: 21812711 DOI: 10.1080/03079457.2011.590967] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Clostridium perfringens-induced necrotic enteritis and related subclinical disease have become economically significant problems for the broiler industry. Fortunately, scientific interest in this topic has grown: new C. perfringens virulence factors have been discovered and new insight gained about the pathogenesis of necrotic enteritis. It has been shown that alpha toxin, for a long time thought to be the key virulence factor, is not essential for the development of the disease. Moreover, it is now clearly established that only certain C. perfringens strains are capable of inducing necrotic enteritis under specific conditions that predispose to the disease and they constitute only a minority in the intestinal tract of healthy chickens. A novel pore-forming toxin, NetB, has been identified in these virulent avian C. perfringens strains. Using a gene knockout mutant, it has been shown that NetB is a critical virulence factor in the pathogenesis of necrotic enteritis in broilers. In addition to toxin production, other factors have been described that contribute to the ability of certain C. perfringens strains to cause necrotic enteritis in broilers. It has been suggested that proteolytic enzymes play an important role in the initial stages of necrotic enteritis since the villi are first affected at the level of the basement membrane and the lateral domain of the enterocytes. In field outbreaks of necrotic enteritis, a single clone of C. perfringens is dominant in intestines of all affected birds, as opposed to the mixture of different C. perfringens strains that can be isolated from healthy bird intestines. It has been proposed that bacteriocin production is responsible for the dominance of a single strain in necrotic enteritis cases. Furthermore, it has been shown that virulent strains are more able to adhere to extracellular matrix molecules than non-virulent strains. The current knowledge on the pathogenesis of the disease has been summarized in this short review.
Collapse
Affiliation(s)
- L Timbermont
- Department of Pathology, Bacteriology and Poultry Diseases, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
44
|
Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. mBio 2011; 2:mBio.00190-11. [PMID: 21954306 PMCID: PMC3181468 DOI: 10.1128/mbio.00190-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The pathogenesis of avian necrotic enteritis involves NetB, a pore-forming toxin produced by virulent avian isolates of Clostridium perfringens type A. To determine the location and mobility of the netB structural gene, we examined a derivative of the tetracycline-resistant necrotic enteritis strain EHE-NE18, in which netB was insertionally inactivated by the chloramphenicol and thiamphenicol resistance gene catP. Both tetracycline and thiamphenicol resistance could be transferred either together or separately to a recipient strain in plate matings. The separate transconjugants could act as donors in subsequent matings, which demonstrated that the tetracycline resistance determinant and the netB gene were present on different conjugative elements. Large plasmids were isolated from the transconjugants and analyzed by high-throughput sequencing. Analysis of the resultant data indicated that there were actually three large conjugative plasmids present in the original strain, each with its own toxin or antibiotic resistance locus. Each plasmid contained a highly conserved 40-kb region that included plasmid replication and transfer regions that were closely related to the 47-kb conjugative tetracycline resistance plasmid pCW3 from C. perfringens. The plasmids were as follows: (i) a conjugative 49-kb tetracycline resistance plasmid that was very similar to pCW3, (ii) a conjugative 82-kb plasmid that contained the netB gene and other potential virulence genes, and (iii) a 70-kb plasmid that carried the cpb2 gene, which encodes a different pore-forming toxin, beta2 toxin. The anaerobic bacterium Clostridium perfringens can cause an avian gastrointestinal disease known as necrotic enteritis. Disease pathogenesis is not well understood, although the plasmid-encoded pore-forming toxin NetB, is an important virulence factor. In this work, we have shown that the plasmid that carries the netB gene is conjugative and has a 40-kb region that is very similar to replication and transfer regions found within each of the sequenced conjugative plasmids from C. perfringens. We also showed that this strain contained two additional large plasmids that were also conjugative and carried a similar 40-kb region. One of these plasmids encoded beta2 toxin, and the other encoded tetracycline resistance. To our knowledge, this is the first report of a bacterial strain that carries three closely related but different independently conjugative plasmids. These results have significant implications for our understanding of the transmission of virulence and antibiotic resistance genes in pathogenic bacteria.
Collapse
|
45
|
Keyburn AL, Bannam TL, Moore RJ, Rood JI. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel) 2010; 2:1913-27. [PMID: 22069665 PMCID: PMC3153261 DOI: 10.3390/toxins2071913] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/09/2010] [Accepted: 07/22/2010] [Indexed: 01/15/2023] Open
Abstract
The Clostridium perfringens necrotic enteritis B-like toxin (NetB) is a recently discovered member of the β-barrel pore-forming toxin family and is produced by a subset of avian C. perfringens type A strains. NetB is cytotoxic for avian cells and is associated with avian necrotic enteritis. This review examines the current state of knowledge of NetB: its role in pathogenesis, its distribution and expression in C. perfringens and its vaccine potential.
Collapse
Affiliation(s)
- Anthony L. Keyburn
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia; Anthony. (A.K.)
| | - Trudi L. Bannam
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia; (T.L.B.); (R.J.M.)
| | - Robert J. Moore
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia; Anthony. (A.K.)
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia; (T.L.B.); (R.J.M.)
| | - Julian I. Rood
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia; (T.L.B.); (R.J.M.)
- Author to whom correspondence should be addressed; ; Tel.: +61-3-9902-9157; Fax: +61-3-9902-9222
| |
Collapse
|
46
|
Martin TG, Smyth JA. The ability of disease and non-disease producing strains of Clostridium perfringens from chickens to adhere to extracellular matrix molecules and Caco-2 cells. Anaerobe 2010; 16:533-9. [PMID: 20654724 DOI: 10.1016/j.anaerobe.2010.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/20/2010] [Accepted: 07/08/2010] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens is a major enteric pathogen that is responsible for causing necrotic enteritis of poultry. The ability to adhere to the host's intestinal epithelium and to extracellular matrix molecules (ECMM) in the gut, are strategies used by numerous bacterial enteropathogens, however, C. perfringens has received comparatively little attention in this respect. The present study investigated sixteen type A C. perfringens isolates from chickens, with varying disease producing ability with respect to necrotic enteritis in chickens, for their ability to adhere to nine different extracellular matrix molecules (ECMM) and to the intestinal epithelial cell line Caco-2. C. perfringens strains were able to bind to ECMMs and there was strain variation. Strains of C. perfringens that produced severe disease, were capable of binding to collagen type III, IV and V, fibrinogen, laminin and vitronectin at higher levels than less severe disease producing strains, suggesting that the ability to adhere to ECMMs might enhance virulence with respect to induction of necrotic enteritis. In addition, severe disease producing strains also bound better to collagen type III and IV and fibrinogen, than non-disease producing strains. The present study also showed that some strains of C. perfringens possessed the ability to adhere to Caco-2 cells; however no relationship was found between the ability to adhere to Caco-2 cells and disease producing ability.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | | |
Collapse
|