1
|
Xu H, Gong B, Sun Q, Li C, Zhao J, Xiang L, Li W, Guo Z, Tang YD, Leng C, Li Z, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Peng J, Zhang H. Genomic Characterization and Pathogenicity of BJEU06-1-Like PRRSV-1 ZD-1 Isolated in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6793604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 have long been cocirculating in China. To date, all PRRSV-1 strains in China have been classified as subtype 1. We investigated the prevalence of PRRSV-1 in several areas of China from 2016 to 2022 and found that BJEU06-1-like strains comprised the main epidemic branch of PRRSV-1. Pathogenicity data for this subgroup are currently lacking. In this study, the Chinese BJEU06-1-like PRRSV-1 strain ZD-1 was isolated from primary alveolar macrophages (PAMs). ZD-1 has undergone no recombination and has a 5-aa discontinuous deletion in the Nsp2 protein, similar to other BJEU06-1-like strains; additionally, ZD-1 has a 26 aa C-terminal truncation in the GP3 gene. Pathogenicity studies revealed that ZD-1 causes obvious clinical symptoms: prolonged fever; reduced body weight; alveolar epithelial proliferation and moderate alveolar diaphragm widening in the lungs; diffuse lymphocytic hyperplasia in the lymph nodes; high levels of viremia in the serum; and elevated viral loads in the lungs, lymph nodes, and tonsils. These results suggested that the BJEU06-1-like PRRSV-1 strain ZD-1 is moderately pathogenic to piglets. This is the first study to evaluate the pathogenicity of the BJEU06-1-like branch in China, enriching the understanding of PRRSV-1 in China.
Collapse
|
2
|
Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13050813. [PMID: 36899670 PMCID: PMC10000246 DOI: 10.3390/ani13050813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute, febrile, and highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Glycoprotein 5 (GP5) is a glycosylated envelope protein encoded by the PRRSV ORF5, which has good immunogenicity and can induce the body to produce neutralizing antibodies. Therefore, study of GP5 protein is of great significance in the diagnosis, prevention, and control of PRRSV and the development of new vaccines. We reviewed GP5 protein genetic variation, immune function, interaction with viral protein and host proteins, induction of cell apoptosis, and stimulation of neutralizing antibodies. GP5 protein's influence on virus replication and virulence, as well as its use as a target for viral detection and immunization are reviewed.
Collapse
|
3
|
Li C, Liu Z, Chen K, Qian J, Hu Y, Fang S, Sun Z, Zhang C, Huang L, Zhang J, Huang N. Efficacy of the Synergy Between Live-Attenuated and Inactivated PRRSV Vaccines Against a NADC30-Like Strain of Porcine Reproductive and Respiratory Syndrome Virus in 4-Week Piglets. Front Vet Sci 2022; 9:812040. [PMID: 35187144 PMCID: PMC8847452 DOI: 10.3389/fvets.2022.812040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The NADC30-like strain of porcine reproductive and respiratory syndrome virus (PRRSV) is a novel strain responsible for substantial economic losses to swine production in China. This study evaluated the cross-protective efficacy of the synergy between live-attenuated and inactivated PRRSV vaccines compared with a single vaccination with PRRS modified-live virus (MLV) vaccine against challenge with NADC30-like strain, v2016/ZJ/09-03. A total of 45 PRRSV free pigs were randomly divided into five groups: (1) strict control (SC); (2) positive control (PC); (3) single MLV dose (M1); (4) primed intramuscularly with MLV and boosted with killed vaccine 3 weeks later (MK1); and (5) intramuscular prime MLV boosted subcutaneously with killed vaccine B 3 weeks later (MK2). Serological tests in MK groups revealed no differences in both anti-N and anti-GP protein antibodies compared with M1 group, and failed to provide further protection against clinical signs, virus shedding, and gross lesions. However, the viremic titer, gross lung lesions, and average daily weight gain were significantly improved in the MLV vaccinated groups, suggesting that MLV provides substantial cross-protection against the NADC30-like virus. Thus, as a booster, the killed vaccine confers minimal additional protection in NADC30-like infected piglets.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhicheng Liu
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Chen
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jie Qian
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Yulong Hu
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Shuhe Fang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Shanghai, China
| | - Chunhong Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jianfeng Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nian Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| |
Collapse
|
4
|
Rajkhowa TK, Thanga L, Hauhnar L, Zodinpui D, Subbiah M. Molecular detection and characterization of highly pathogenic porcine reproductive and respiratory syndrome virus from a natural outbreak in wild pigs, Mizoram, India. Transbound Emerg Dis 2021; 69:e288-e298. [PMID: 34406700 DOI: 10.1111/tbed.14296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
This study reports for the first time a natural outbreak of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) caused by HP-PRRS virus (HP-PRRSV) in wild pigs characterized by sudden onset of depression, anorexia, respiratory distress, and high fever. The disease has caused severe haemorrhagic pneumonia, haemorrhagic lymphadenitis, enlarged spleen with areas of infarction, and petechial haemorrhages on the myocardium and on the surface of kidneys. HP-PRRSV was detected in representative tissue samples by reverse transcription-PCR, and the field strain was isolated in the MA104 cell line. The phylogenetic analyses based on the whole genome sequences and nucleotide sequences of open reading frame 5 (ORF5) gene showed close grouping with the subtype IV of lineage 8/8.7 of PRRSV II, which represents the HP-PRRSV strains that predominate in the pig population of China since 2010. The amino acid sequence analysis of the ORF5 gene revealed the replacement of leucine (L) at position 39 to isoleucine (I) in the primary neutralizing epitope. Among the four potential N glycosylation sites, the N34 was mutated and found to be restricted to only three N glycosylation sites. The present findings have indicated that HP-PRRSV can cause fatal outbreaks and may emerge as a major threat to the wild pig population.
Collapse
Affiliation(s)
- Tridib Kumar Rajkhowa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - Lalnun Thanga
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - Lalthapui Hauhnar
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - Doris Zodinpui
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Young JE, Dvorak CMT, Graham SP, Murtaugh MP. Isolation of Porcine Reproductive and Respiratory Syndrome Virus GP5-Specific, Neutralizing Monoclonal Antibodies From Hyperimmune Sows. Front Immunol 2021; 12:638493. [PMID: 33692807 PMCID: PMC7937800 DOI: 10.3389/fimmu.2021.638493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease which impacts the pig industry worldwide. The disease is caused by PRRS viruses (PRRSV-1 and -2) which leads to abortions and other forms of reproductive failure in sows and severe respiratory disease in growing pigs. Current PRRSV vaccines provide limited protection; only providing complete protection against closely related strains. The development of improved PRRSV vaccines would benefit from an increased understanding of epitopes relevant to protection, including those recognized by antibodies which possess the ability to neutralize distantly related strains. In this work, a reverse vaccinology approach was taken; starting first with pigs known to have a broadly neutralizing antibody response and then investigating the responsible B cells/antibodies through the isolation of PRRSV neutralizing monoclonal antibodies (mAbs). PBMCs were harvested from pigs sequentially exposed to a modified-live PRRSV-2 vaccine as well as divergent PRRSV-2 field isolates. Memory B cells were immortalized and a total of 5 PRRSV-specific B-cell populations were isolated. All identified PRRSV-specific antibodies were found to be broadly binding to all PRRSV-2 isolates tested, but not PRRSV-1 isolates. Antibodies against GP5 protein, commonly thought to possess a dominant PRRSV neutralizing epitope, were found to be highly abundant, as four out of five B cells populations were GP5 specific. One of the GP5-specific mAbs was shown to be neutralizing but this was only observed against homologous and not heterologous PRRSV strains. Further investigation of these antibodies, and others, may lead to the elucidation of conserved neutralizing epitopes that can be exploited for improved vaccine design and lays the groundwork for the study of broadly neutralizing antibodies against other porcine pathogens.
Collapse
Affiliation(s)
- Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Cheryl M T Dvorak
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
6
|
Song S, Xu H, Zhao J, Leng C, Xiang L, Li C, Fu J, Tang YD, Peng J, Wang Q, Zhao H, An T, Cai X, Zhang H, Tian ZJ. Pathogenicity of NADC34-like PRRSV HLJDZD32-1901 isolated in China. Vet Microbiol 2020; 246:108727. [PMID: 32605755 DOI: 10.1016/j.vetmic.2020.108727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes a substantial economic loss to the swine industry. Recently, NADC34-like PRRSV was reported in the USA, China and Peru and consistently attributed to a large number of abortions in the clinic. In the USA, the pathogenicity of NADC34-like PRRSV in piglets is highly variable. However, the pathogenicity of NADC34-like PRRSV in China is unclear. In this study, an NADC34-like PRRSV strain, HLJDZD32-1901, was isolated in primary alveolar macrophage (PAM) cells from a sow blood sample collected from an abortive farm in China. HLJDZD32-1901, with no recombination, has a 100-aa deletion in the NSP2 protein corresponding to positions 328-427 in the VR2332 strain. Phylogenetic analysis based on open reading frame 5 (ORF5) indicated that HLJDZD32-1901 belongs to sublineage 1.5. Animal experiments showed that the weight loss of HLJDZD32-1901-infected piglets was significantly different from that of control piglets at 8-14 dpi. In addition, the challenge group had obvious histopathological lesions, including interstitial pneumonia and enlarged lymph nodes, and increased viremia and viral loads in three tissues. However, piglets in the challenge group had only mild clinical symptoms, with no death or fever. Our results showed that NADC34-like PRRSV HLJDZD32-1901 is a mildly pathogenic strain in piglets. However, we speculate that HLJDZD32-1901 may be a highly pathogenic strain in pregnant sows based on clinical morbidity.
Collapse
Affiliation(s)
- Shuaijie Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jun Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongyuan Zhao
- School of Modern Agriculture and Biotechnology, AnKang University. Ankang 725000, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
7
|
Wei C, Dai A, Fan J, Li Y, Chen A, Zhou X, Luo M, Yang X, Liu J. Efficacy of Type 2 PRRSV vaccine against challenge with the Chinese lineage 1 (NADC30-like) PRRSVs in pigs. Sci Rep 2019; 9:10781. [PMID: 31346199 PMCID: PMC6658503 DOI: 10.1038/s41598-019-47239-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
The objective of the present study was to determine the cross-protection of Ingelvac PRRS MLV against challenge with the new lineage 1 PRRSV emerged in China in pigs. Two lineage 1 PRRSV strains (FJZ03 and FJWQ16 originated from recombination event between NADC30 and JXA1-like strain). We found that pigs vaccinated with the vaccine were protected against challenge with the FJZ03 as shown by fewer days of clinical fever, reduced lung pathology scores, lower PRRS virus load in the blood and developed broadly neutralizing antibodies with high titers to FJZ03. In contrast, vaccine provided limited protection against challenge with FJWQ16 with higher fever, lower antibody titers, lower neutralizing antibodies and higher viral loads in blood. These results demonstrate PRRSV-MLV provides incomplete protection against new lineage 1 PRRSVs.
Collapse
Affiliation(s)
- Chunhua Wei
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Jialin Fan
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Yan Li
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Anni Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Manlin Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaoyan Yang
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Jiankui Liu
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China. .,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China. .,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Emergence of Two different recombinant PRRSV strains with low neutralizing antibody susceptibility in China. Sci Rep 2019; 9:2490. [PMID: 30792441 PMCID: PMC6385303 DOI: 10.1038/s41598-019-39059-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
PRRSV causes major economic loss in global swine industry. 41 of 131 (31.29%) tissue samples collected from pig farms in central and east China from 2016 to 2017 were confirmed as PRRSV positive in RT-PCR. Base on phylogenetic analysis for ORF5 and ORF6, 3 isolates closely related to QYYZ strain form a new subgroup IV, while 3 other ones were clustered into subgroup III, represented by NADC30. Numerous amino acid substitutions involved in viral neutralization susceptibility were identified in GP5 among these isolates. Two emerging PRRSV strains (ZJnb16-2, SDbz16-2) were successfully isolated and sequenced. ZJnb16-2 was identified as a recombinant virus between strain QYYZ and JXA1 while SDbz16-2 was an inter-subgenotype recombinant virus of strains NADC30 and JXA1. As shown in the pathogenicity evaluation in piglets, ZJnb16-2 is highly pathogenic while SDbz16-2 is mild. Hyper-immune sera against major vaccine strains HUN4-F112 and JK-100 failed to neutralize either ZJnb16-2 or SDbz16-2. Only 0.8–2.0% of pig serum samples which were confirmed as PRRSV-positive with commercial ELISA kits presented neutralization reactivity against either ZJnb16-2 or SDbz16-2. The study confirmed that the viral genomic recombination contributes to the emergence of new pathogenic PRRSVs in China, which may escape from the protective immunity elicited by the conventional vaccines, highlighting the necessity in updates of vaccine strains and the need for a universal vaccine against PRRSV.
Collapse
|
9
|
Sun YK, Li Q, Yu ZQ, Han XL, Wei YF, Ji CH, Lu G, Ma CQ, Zhang GH, Wang H. Emergence of novel recombination lineage 3 of porcine reproductive and respiratory syndrome viruses in Southern China. Transbound Emerg Dis 2018; 66:578-587. [PMID: 30414310 DOI: 10.1111/tbed.13067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023]
Abstract
Lineage 3 of porcine reproductive and respiratory syndrome viruses, which belong to North America type 2, has a long epidemic history in China. The novel lineage 3 viruses constantly emerging in recent years are characterized by a high detection rate and significant pathogenicity. In this study, we investigated the prevalence of lineage 3 in southern China and selected two isolated strains for genome and virulence analyses. A cross-sectional epidemiology investigation indicated that the prevalence of lineage 3 antigens was 35.68% (95% CI: 27.6-44.3%) among 227 samples collected from over 100 infected farms from January 2016 to July 2017 in southern China. Two novel isolates of lineage 3 were selected. After 20 passages, Marc-145 cells were not susceptible to those viruses. Full-length genome analysis indicated that the two strains share 95.2% homology with each other and 95.7%-96.2% with highly pathogenic porcine reproductive and respiratory syndrome viruses (HP-PRRSVs; JXA1-like strain, lineage 8.7). Phylogenetic and molecular evolutionary results showed that for the two isolates, HP-PRRSV provides most of the ORF1 gene. Animal experiment revealed discrepancies in virulence between the strains. Although challenge resulted in 100% morbidity, the isolate carrying most of the HP-PRRSV ORF1 caused severe clinical symptoms and 40% mortality, whereas the other isolate containing part of the ORF1 gene caused no mortality. Overall, these findings suggest that lineage 3 viruses might be commonly circulating in most of southern China. Frequent recombination events within HP-PRRSVs of this lineage with changing virulence could represent potential threats to the pig industry.
Collapse
Affiliation(s)
- Yan-Kuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhi-Qing Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiao-Liang Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ying-Fang Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Chi-Hai Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Chun-Quan Ma
- Department of Animal Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Gui-Hong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
RAJKHOWA TK, VANLALRUATI C, SINGH YD, RAVINDRAN R, ARYA RS. Genetic variation of highly pathogenic Indian porcine reproductive and respiratory syndrome viruses after introduction in 2013. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i10.84071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To study its possible link to pathogenicity, the genomic variation in full ORF5 and ORF7 genes, and their encoded proteins in 26 field HP-PRRSV isolates from three major HP-PRRS outbreaks occurred in India, since 2013 was analysed. Sequence analysis and phylogenetic tree revealed involvement of genetically different strain in each outbreak of India rather persistence of a single strain. Analysis and comparison of N protein amino acid sequences of HP-PRRSV with VR2332 revealed consistent mutation at position 15D to N or K and 46 K to R in all the HP-PRRSV. GP5 protein showed consistent mutations at 29 positions from that of VR2332. The potential Nglycosylation sites in GP5 was found variable from 4–5 with one additional N-glycan moiety around the neutralizing epitope B. However, the ‘decoy’ epitope A was found highly conserved in all the HP-PRRSV.
Collapse
|
11
|
Antiviral Strategies against PRRSV Infection. Trends Microbiol 2017; 25:968-979. [DOI: 10.1016/j.tim.2017.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 01/03/2023]
|
12
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
13
|
Leng C, Zhang W, Zhang H, Kan Y, Yao L, Zhai H, Li M, Li Z, Liu C, An T, Peng J, Wang Q, Leng Y, Cai X, Tian Z, Tong G. ORF1a of highly pathogenic PRRS attenuated vaccine virus plays a key role in neutralizing antibody induction in piglets and virus neutralization in vitro. Virol J 2017; 14:159. [PMID: 28830563 PMCID: PMC5568364 DOI: 10.1186/s12985-017-0825-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens in swine in most countries, especially China. Two PRRSV attenuated live vaccine strains (HuN4-F112 and CH-1R) are currently widely used in China. Our previous study showed that HuN4-F112, but not CH-1R, induced high anti-nucleocapsid (N) antibody and neutralizing antibody (NA) titers. Additionally, sera from HuN4-F112 inoculated pigs induced low cross neutralization of CH-1R. METHODS In the present study, 6 chimeric viruses through exchanging 5' untranslated region (UTR) + open reading frame (ORF)1a, ORF1b, and ORF2-7 + 3'UTR between HuN4-F112 and CH-1R were constructed and rescued based on the infectious clones of rHuN4-F112 and rCH-1R. The characteristics of these viruses were investigated in vitro and vivo. RESULTS All the three fragments, 5'UTR + ORF1a, ORF1b, and ORF2-7 + 3'UTR, could affect the replication efficiencies of rHuN4-F112 and rCH-1R in vitro. Additionally, both 5'UTR + ORF1a and ORF2-7 + 3'UTR affected the anti-N antibody and NA responses targeting rHuN4-F112 and rCH-1R in piglets. CONCLUSIONS The 5'UTR + ORF1a region of HuN4-F112 played a key role in inducing NAs in piglets. Furthermore, we confirmed for the first time that ORF1a contains a neutralization region. This study provides important information that can be used for further study of the generation of anti-PRRSV NAs.
Collapse
Affiliation(s)
- Chaoliang Leng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China.,Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Wuchao Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Mingliang Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Yumin Leng
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China.
| | - Guangzhi Tong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China. .,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
14
|
Liu J, Zhou X, Zhai J, Li B, Wei C, Dai A, Yang X, Luo M. Genetic diversity and evolutionary characteristics of type 2 porcine reproductive and respiratory syndrome virus in southeastern China from 2009 to 2014. Arch Virol 2017; 162:2603-2615. [PMID: 28500445 DOI: 10.1007/s00705-017-3393-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/26/2017] [Indexed: 11/26/2022]
Abstract
The objective of this study was to assess the genetic diversity of porcine reproductive and respiratory syndrome virus circulating in Fujian province (southeastern China). Based on 53 ORF5 nucleotide sequences collected from nine sites, both highly pathogenic (sublineage 8.7) and lineage 1 strains were circulating in Fujian in 2009-2014 along with lineages 3 and 5.1. Notably, the lineage 1 strains were closely related to the NADC30 strain circulating in North America and were the predominant strains in 2014. In addition, we found that nonstructural protein 2 (NSP2) was the most variable nonstructural protein in Fujian isolates, with a 36-amino-acid (aa) insertion and seven different deletions detected in the 53 sequences examined. Similarly, analysis of GP5 amino acid sequences showed that the isolates were highly variable in primary neutralizing epitopes. Interesting, FJ3.2 and FJ7-2 strains have the mutation N44K, but they exhibited high replication and high titers in MARC-145 and PAM cells. The complete genome sequences determined for 12 type 2 isolates were 82.1-99.3% identical and were 15,016-15,407 nucleotides (nt), in length excluding the poly(A) tail. The strains also shared 88.2-99.4% identity with strain VR2332 (the prototype North American strain), 83.4-99.2% identity with strain JXA1 (the prototype high-pathogenicity Chinese strain), 88.2-97.1% identity with strain CH-1a (the prototype classical Chinese strain), and 82.9-97.1% identity with strain NADC30 (the prototype NADC30-like strain). Strikingly, phylogenetic and molecular evolutionary analyses indicated that strain FJW05 is a spontaneous recombinant between a circulating lineage 1 virus and the vaccine strain JXA1-R, which is derived from the highly pathogenic strain JXA-1. Collectively, the data highlight the epidemiology of porcine reproductive and respiratory syndrome in Fujian and may aid in selecting a suitable vaccine for use on pig farms.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junqiong Zhai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Chunhua Wei
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China
| | - Xiaoyan Yang
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, China.
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, China.
| | - Manlin Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
15
|
GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) as a target for homologous and broadly neutralizing antibodies. Vet Microbiol 2017; 209:90-96. [PMID: 28528961 DOI: 10.1016/j.vetmic.2017.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023]
Abstract
Virus neutralization (VN) responses range from narrowly focused antibodies with only homologous neutralizing activity against the virus used for infection, to antibodies that can neutralize both Type 1 and Type 2 viruses, referred to as broadly neutralizing antibody (bnAb). Even though neutralizing epitopes are likely distributed among several structural glycoproteins, this paper focuses on the ectodomain region of GP5 as a model system for investigating the role for neutralizing and non-neutralizing antibodies in protection and disease. Epitope B within GP5 possesses several features common to broadly neutralizing epitopes. In the proposed model, accessibility of antibody to Epitope B is blocked by homologous neutralizing and non-neutralizing antibodies, which bind flanking hypervariable domains. Additional mechanisms for blocking the accessibility of bnAb include conformational alterations within the GP5-M heterodimer and glycan shielding. This model explains how the continuous escape from homologous neutralization provides a mechanism for persistence. The proposed mechanism for immune evasion is not unique to PRRSV, but can be found in other persistent viruses, such as hepatitis C virus (HCV).
Collapse
|
16
|
Liu JK, Zhou X, Zhai JQ, Li B, Wei CH, Dai AL, Yang XY, Luo ML. Emergence of a novel highly pathogenic porcine reproductive and respiratory syndrome virus in China. Transbound Emerg Dis 2017; 64:2059-2074. [PMID: 28198110 DOI: 10.1111/tbed.12617] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/26/2023]
Abstract
From 2014 to 2015, four novel highly pathogenic PRRS virus (HP-PRRSV) strains named 14LY01-FJ, 14LY02-FJ 15LY01-FJ, and 15LY02-FJ were isolated from high morbidity (100%) and mortality (40%-80%) in piglets and sows in Fujian Province. To further our knowledge about these novel virus strains, we characterized their complete genomes and determined their pathogenicity in piglets. Full-length genome sequencing analysis showed that these four isolates were closely related to type 2 (North American type, NA-type) isolates, with 88.1%-96.3% nucleotide similarity, but only 60.6%-60.8% homology to the Lelystad virus (LV) (European type, EU-type). The full length of the four isolates was determined to be 15017 or 15018 nucleotides (nt), excluding the poly(A) tail. Furthermore, the four isolates had three discontinuous deletions (aa 322-432, aa 483, and aa 504-522) within hypervariable region II (HV-II) of Nsp2, as compared to the reference strain VR-2332. This deletion pattern in the four isolates is consistent with strain MN184 and strain NADC30 isolated from America. Phylogenetic and molecular evolutionary analyses indicated that these virulent strains originated from a natural recombination event between the JXA1-like HP-PRRSV (JXA-1 is one of the earliest Chinese HP-PRRSV strains; sublineage 8.7) and the NADC30-like (lineage 1) PRRSV. Animal experiments demonstrated that these four strains caused significant weight loss and severe histopathological lung lesions as compared to the negative control group. High mortality rate (40% or 80%) was found in piglets infected with any one of the four strains, similar to that found with other Chinese HP-PRRSV strains. This study showed that the novel variant PRRSV was HP-PRRSV, and it is therefore critical to monitor PRRSV evolution in China and develop a method for controlling PRRS.
Collapse
Affiliation(s)
- J-K Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - X Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - J-Q Zhai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - B Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - C-H Wei
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - A-L Dai
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - X-Y Yang
- College of Life Sciences of Longyan University, Longyan, Fujian Province, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province, China
| | - M-L Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Peng J, Yuan Y, Du Y, Wu J, Li B, Li J, Yu J, Hu L, Shen S, Wang J, Zhu R. Potentiation of Taishan Pinus massoniana pollen polysaccharide on the immune response and protection elicited by a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit in pigs. Mol Cell Probes 2016; 30:83-92. [PMID: 26828953 DOI: 10.1016/j.mcp.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yanmei Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoquan Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jun Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Hu
- Shandong Center for Animal Disease Prevention and Control, Jinan, China
| | - Si Shen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China.
| | - Ruiliang Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China.
| |
Collapse
|
18
|
Peng J, Yuan Y, Shen S, Niu Z, Du Y, Wu J, Li J, Yu J, Wang T, Wang J. Immunopotentiation of four natural adjuvants co-administered with a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit. Virus Genes 2016; 52:261-9. [DOI: 10.1007/s11262-016-1299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|
19
|
Production and evaluation of virus-like particles displaying immunogenic epitopes of porcine reproductive and respiratory syndrome virus (PRRSV). Int J Mol Sci 2015; 16:8382-96. [PMID: 25874763 PMCID: PMC4425087 DOI: 10.3390/ijms16048382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most significant infectious disease currently affecting the swine industry worldwide. Several inactivated and modified live vaccines (MLV) have been developed to curb PRRSV infections. However, the efficacy and safety of these vaccines are unsatisfactory, and hence, there is a strong demand for the development of new PRRS universal vaccines. Virus-like particle (VLP)-based vaccines are gaining increasing acceptance compared to subunit vaccines, as they present the antigens in a more veritable conformation and are readily recognized by the immune system. Hepatitis B virus core antigen (HBcAg) has been successfully used as a carrier for more than 100 viral sequences. In this study, hybrid HBcAg VLPs were generated by fusion of the conserved protective epitopes of PRRSV and expressed in E. coli. An optimized purification protocol was developed to obtain hybrid HBcAg VLP protein from the inclusion bodies. This hybrid HBcAg VLP protein self-assembled to 23-nm VLPs that were shown to block virus infection of susceptible cells when tested on MARC 145 cells. Together with the safety of non-infectious and non-replicable VLPs and the low cost of production through E. coli fermentation, this hybrid VLP could be a promising vaccine candidate for PRRS.
Collapse
|
20
|
Wang Q, Peng J, Sun Y, Chen J, An T, Leng C, Li L, Zhao H, Guo X, Ge X, Yang H, Tian Z. Unique epitopes recognized by monoclonal antibodies against HP-PRRSV: deep understanding of antigenic structure and virus-antibody interaction. PLoS One 2014; 9:e111633. [PMID: 25360600 PMCID: PMC4216098 DOI: 10.1371/journal.pone.0111633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/29/2014] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is a member of the genus Arterivirus within the family Arteriviridae. N and GP3 proteins are the immunodominance regions of the PRRSV viral proteins. To identify the B-cell linear antigenic epitopes within HP-PRRSV N and GP3 proteins, two monoclonal antibodies (mAbs) against N and GP3 proteins were generated and characterized, designated as 3D7 and 1F10 respectively. The mAb 3D7 recognized only HuN4-F112 not the corresponding virulent strain (HuN4-F5). It also recognized two other commercial vaccines (JXA1-R and TJM-F92), but not two other HP-PRRSV strains (HNZJJ-F1 and HLJMZ-F2). The B-cell epitope recognized by the mAb 3D7 was localized to N protein amino acids 7–33. Western blot showed that the only difference amino acid between HuN4-F112-N and HuN4-F5-N did not change the mAb 3D7 recognization to N protein. The epitope targeted by the mAb 1F10 was mapped by truncated proteins. We found a new epitope (68-76aa) can be recognized by the mAb. However, the epitope could not be recognized by the positive sera, suggesting the epitope could not induce antibody in pigs. These results should extend our understanding of the antigenic structure of the N protein and antigen-antibody reactions of the GP3 protein in different species.
Collapse
Affiliation(s)
- Qian Wang
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, China
| | - Jinmei Peng
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Sun
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiazeng Chen
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Li
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyuan Zhao
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, China
- * E-mail: (ZT); (HY)
| | - Zhijun Tian
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
21
|
Identification of two dominant linear epitopes on the GP3 protein of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). Res Vet Sci 2014; 97:238-43. [PMID: 25135493 DOI: 10.1016/j.rvsc.2014.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/30/2014] [Accepted: 07/20/2014] [Indexed: 10/24/2022]
Abstract
Glycosylated protein 3 (GP3) of PRRSV is variable between different PRRSV strains, so it is helpful for subtype classifying by using distinct epitopes. In this study, two dominant linear GP3 epitopes that were recognized by highly dilute serum in an enzyme-linked immunosorbent assay (ELISA) were identified. Sequence alignments of 36 North American (NA) PRRSV isolates revealed that the epitope H(87)DELGFMV(94) is well conserved, whereas the epitope T(59)RQAAAEILE(68) differs in other low-virulence NA-type strains, which have at least one amino acid mutation in this region. A mutational analysis revealed that none of these mutations could be recognized by the purified antibodies directed against the corresponding epitope, indicating that the genetic variations altered the antigenicity of the antigenic region. Using ELISA, we also found that antibodies directed against the two epitopes were present in more than 45 of 50 HP-PRRS-positive pig sera, suggesting that their antigenicity is excellent in vivo.
Collapse
|
22
|
Wang Q, Chen J, Peng J, An T, Leng C, Sun Y, Guo X, Ge X, Tian Z, Yang H. Characterisation of novel linear antigen epitopes on North American-type porcine reproductive and respiratory syndrome virus M protein. Arch Virol 2014; 159:3021-8. [PMID: 25037720 DOI: 10.1007/s00705-014-2174-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022]
Abstract
The M protein, encoded by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF6 gene, is considered to be one of the most conserved PRRSV proteins. In recent decades, highly specific monoclonal antibodies (Mabs) have been exploited to provide reliable diagnoses for many diseases. In this study, two different Mab clones targeting the linear epitopes on the PRRSV M protein were generated and characterized. Both Mabs showed binding activity against the native PRRSV virion and recombinant M protein when analyzed by immunofluorescence assay (IFA) and Western blot. The targeted epitope of each Mab was mapped by serial truncation of the M protein to generate overlapping fragments. Fine epitope mapping was then performed using a panel of expressed polypeptides. The polypeptide sequences of the two epitopes recognized by Mabs 1C8 and 3F7 were (3)SSLD(6) and (155)VLGGRKAVK(163), respectively, with the former being a newly identified epitope on the M protein. In both cases, these two epitopes were finely mapped for the first time. Alignments of Mab epitope sequences revealed that the two epitopes on the M protein were highly conserved between the North American-type strains. These Mabs, along with their mapped epitopes, are useful for the development of diagnostic and research tools, including immunofluorescence, ELISA and Western blot.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leng CL, Tian ZJ, Zhang WC, Zhang HL, Zhai HY, An TQ, Peng JM, Ye C, Sun L, Wang Q, Sun Y, Li L, Zhao HY, Chang D, Cai XH, Zhang GH, Tong GZ. Characterization of two newly emerged isolates of porcine reproductive and respiratory syndrome virus from Northeast China in 2013. Vet Microbiol 2014; 171:41-52. [DOI: 10.1016/j.vetmic.2014.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
|
24
|
Nguyen VG, Kim HK, Moon HJ, Park SJ, Chung HC, Choi MK, Park BK. Evolutionary Dynamics of a Highly Pathogenic Type 2 Porcine Reproductive and Respiratory Syndrome Virus: Analyses of Envelope Protein-Coding Genes. Transbound Emerg Dis 2013; 62:411-20. [PMID: 23981823 DOI: 10.1111/tbed.12154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has long been an economically devastating swine viral disease. The recent emergence of a highly pathogenic type 2 PRRSV with high mobility and mortality in China, spreading in Vietnam, Laos, and Thailand has placed neighbouring countries at risk. This study applied a codon-based extension of the Bayesian relaxed clock model and the fixed effects maximum-likelihood method to investigate and compare the evolutionary dynamics of type 2 PRRSV for all of known structural envelope protein-coding genes. By comparing the highly pathogenic type 2 PRRSV clade against the typical type 2 PRRSV clade, this study demonstrated that the highly pathogenic clade evolved at high rates in all of the known structural genes but did not display rapid evolutionary dynamics compared with typical type 2 PRRSV. In contrast, the ORF3, ORF5 and ORF6 genes of the highly pathogenic clade evolved in a qualitatively different manner from the genes of the typical clade. At the population level, several codons of the sequence elements that were involved in viral neutralization, as well as codons that were associated with in vitro attenuation/over-attenuation, were predicted to be selected differentially between the typical clade and the highly pathogenic clade. The results of this study suggest that the multigenic factors of the envelope protein-coding genes contribute to diversifying the biological properties (virulence, antigenicity, etc.) of the highly pathogenic clade compared with the typical clade of type 2 PRRSV.
Collapse
Affiliation(s)
- V G Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Vietnam
| | - H K Kim
- Research Evaluation Team, Institute for Basic Science, Daejeon, Korea
| | - H J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - S J Park
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - H C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - M K Choi
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - B K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|