1
|
Huynh LT, Sohn EJ, Park Y, Kim J, Shimoda T, Hiono T, Isoda N, Hong SH, Lee HN, Sakoda Y. Development of a dual immunochromatographic test strip to detect E2 and E rns antibodies against classical swine fever. Front Microbiol 2024; 15:1383976. [PMID: 38666258 PMCID: PMC11043574 DOI: 10.3389/fmicb.2024.1383976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Eun-Ju Sohn
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Youngmin Park
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Juhun Kim
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | | | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung-Hee Hong
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Ha-Na Lee
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Bohórquez JA, Wang M, Díaz I, Alberch M, Pérez-Simó M, Rosell R, Gladue DP, Borca MV, Ganges L. The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever. Viruses 2022; 14:v14091954. [PMID: 36146761 PMCID: PMC9502879 DOI: 10.3390/v14091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Miaomiao Wang
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ivan Díaz
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Marta Pérez-Simó
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Bellaterra, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Correspondence: (D.P.G.); (M.V.B.); (L.G.)
| |
Collapse
|
3
|
Bai Y, Jia R, Wei Q, Wang L, Sun Y, Li Y, Luo J, Zhang G. Development and application of a high-sensitivity immunochromatographic test strip for detecting classical swine fever virus antibodies. Transbound Emerg Dis 2021; 69:e788-e798. [PMID: 34724351 DOI: 10.1111/tbed.14367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF) is caused by classical swine fever virus (CSFV) and has led to huge economic losses in the pig industry worldwide. Although vaccination and other control measures have been carried out, it is essential to establish a rapid and valid method for CSF vaccination monitoring and clinical diagnosis. The CSFV E2 protein has been widely used as a major antigen for antibody detection. It is important to improve the affinity between the E2 protein and CSFV antibodies to improve the performance of the detection method. In this study, a recombinant E2 extracellular protein (amino acids 1-331) with a native homodimer conformation and high affinity for the anti-CSFV-E2 monoclonal antibody WH303 was expressed using a Bac-to-Bac baculovirus expression system. A novel immunochromatographic test strip based on the recombinant CSFV E2 protein was developed for CSFV antibody detection. The sensitivity of this strip for detecting CSFV standard-positive serum was 1:102400, 4 times higher than that of the previously developed CnC2 test strip. No cross-reactivity with antibodies of other swine viruses was observed. Detection of clinical swine serum samples (n = 813) demonstrated that the agreements of this E2 test strip with three commercial ELISA kits were 97.17% (790/813), 95.94% (780/813), and 93.73% (762/813), respectively. Our data indicate that a novel E2 test strip with enhanced sensitivity has been developed and can be applied for clinical sample detection, providing a new, powerful and simple approach for CSFV antibody monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Rui Jia
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Li Wang
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Yaning Sun
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Yiwei Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
4
|
Bohórquez JA, Sozzi E, Wang M, Alberch M, Abad X, Gaffuri A, Lelli D, Rosell R, Pérez LJ, Moreno A, Ganges L. The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transbound Emerg Dis 2021; 69:1539-1555. [PMID: 33896109 DOI: 10.1111/tbed.14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross-reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon-alpha levels early after infection and cross-neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV-infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV-infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.
Collapse
Affiliation(s)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Mònica Alberch
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Xavier Abad
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramadería, Pesca i Alimentació (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Lester Josue Pérez
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
5
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Lentiviral-mediated delivery of classical swine fever virus Erns gene into porcine kidney-15 cells for production of recombinant ELISA diagnostic antigen. Mol Biol Rep 2019; 46:3865-3876. [PMID: 31016614 DOI: 10.1007/s11033-019-04829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family causes contagious fatal disease in swine. Antibodies against E2, Erns and NS3 proteins of virus can be detected in infected animals. Development of an ELISA coating antigen to improve the sensitivity of detecting Erns-specific antibodies in pig sera is always desirable for diagnosis as well as for differentiation of infected from vaccinated animals. In present study, a lentivirus-based gene delivery system was used to develop a stable PK-15 cell line expressing Erns (PK-Erns) for production of diagnostic antigen. The Lenti-Erns virus was purified from the supernatant of co-transfected 293LTV cells and used to transduce PK-15 cells. The homogenous PK-Erns cell line was produced by single cell cloning by monitoring eGFP expression. The Erns gene in the genomic DNA and RNA transcripts in total RNA isolated from PK-Erns cells were detected by PCR and RT-PCR, respectively. Expression of 45 kDa Erns glycoprotein was detected in western blot using CSFV-specific hyperimmune sera. The use of PK-Erns cell lysate as antigen in serial dilution and single dilution ELISAs with known positive and negative pig sera was investigated. The PK-Erns ELISA revealed sensitivity equivalent to commercial HerdChek ELISA kit. The sensitivity, specificity and accuracy of the PK-Erns ELISA was 95%, 100% and 96.66%, respectively compared to ELISA using purified CSFV as coating antigen. When field pig sera (n = 69) were tested in PK-Erns ELISA, a significant correlation between the titers from serial dilution and single dilution ELISA was observed. This indicated that PK-Erns cell line can serve as continuous source of ELISA diagnostic antigen for detection of CSFV-specific antibodies in pig sera.
Collapse
|
7
|
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C. Virulence evaluation of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 2019; 232:114-120. [PMID: 31030834 DOI: 10.1016/j.vetmic.2019.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
Classical swine fever (CSF) remains an important pig disease in China, where it usually presents with mild or atypical clinical manifestations, with large scale outbreaks rarely seen. This has led to speculation about the possible circulation of viral strains of low virulence. To investigate this possibility, five field isolates within the predominant genotype 2 (2.1b, 2.1c, 2.1 h and 2.2) were evaluated and compared by experimental infection of naturally farrowed but colostrum-deprived piglets. All infected piglets displayed clinical signs, including persistent high fever, depression, anorexia, dyspnea, conjunctivitis, constipation, and hesitant gait. Typical pathological lesions, including pulmonary edema, hemorrhagic or cellulosic exudation, and swelling and hemorrhage of lymph nodes, were observed. Viremia and Erns protein expression in the blood of all infected animals were detectable from 3 to 5 days post infection (DPI), their presence correlating with the onset of fever, clinical signs and leukopenia. E2 antibody did not develop in any of the field CSFV-infected piglets during the disease course, while Erns antibody was detectable in 4-56% of infected animals at various time points. Mortalities ranged from 20 to 80% within 21 DPI, progressing to 100% by 43 DPI. Based on clinical scores and fatalities within 21 DPI, 2 of the 5 field isolates were classified as of moderate virulence and 3 of high virulence; i.e., no field isolates of low virulence were identified. The study has provided data supporting the use of these isolates as challenge viruses to evaluate the efficacy of current CSF vaccines.
Collapse
Affiliation(s)
- Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Shijiang Mi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Zhihua Dou
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Liying Zhang
- College of Animal Sciences, Jilin University, Changchun, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China.
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
8
|
Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn ® CSF Marker): a review of vaccine properties. Vet Res 2017; 48:51. [PMID: 28915927 PMCID: PMC5603031 DOI: 10.1186/s13567-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. However, until recently, the available live vaccines did not allow a serological marker concept that is essentially important to circumvent long-term trade restrictions. In 2014, a new live attenuated marker vaccine, Suvaxyn® CSF Marker (Zoetis), was licensed by the European Medicines Agency. This vaccine is based on pestivirus chimera “CP7_E2alf” that carries the main immunogen of CSF virus “Alfort/187”, glycoprotein E2, in a bovine viral diarrhea virus type 1 backbone (“CP7”). This review summarizes the available data on design, safety, efficacy, marker diagnostics, and its possible integration into control strategies.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
9
|
Postel A, Austermann-Busch S, Petrov A, Moennig V, Becher P. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transbound Emerg Dis 2017; 65 Suppl 1:248-261. [PMID: 28795533 DOI: 10.1111/tbed.12676] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Classical swine fever (CSF) represents a major health and trade problem for the pig industry. In endemic countries or those with a wild boar reservoir, CSF remains a priority for Veterinary Services. Surveillance as well as stamping out and/or vaccination are the principle tools of prevention and control, depending on the context. In the past decades, marker vaccines and accompanying diagnostic tests allowing the discrimination of infected from vaccinated animals have been developed. In the European Union, an E2 subunit and a chimeric live vaccine have been licensed and are available for the use in future disease outbreak scenarios. The implementation of commonly accepted and globally harmonized concepts could pave the way to replace the ethically questionable stamping out policy by a vaccination-to-live strategy and thereby avoid culling of a large number of healthy animals and save food resources. Although a number of vaccines and diagnostic tests are available worldwide, technological advancement in both domains is desirable. This work provides a summary of an analysis undertaken by the DISCONTOOLS group of experts on CSF. Details of the analysis can be downloaded from the web site at http://www.discontools.eu/.
Collapse
Affiliation(s)
- Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophia Austermann-Busch
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anja Petrov
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Moennig
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
11
|
Meyer D, Fritsche S, Luo Y, Engemann C, Blome S, Beyerbach M, Chang CY, Qiu HJ, Becher P, Postel A. The double-antigen ELISA concept for early detection of E rns -specific classical swine fever virus antibodies and application as an accompanying test for differentiation of infected from marker vaccinated animals. Transbound Emerg Dis 2017; 64:2013-2022. [PMID: 28158921 DOI: 10.1111/tbed.12611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 11/30/2022]
Abstract
Emergency vaccination with live marker vaccines represents a promising control strategy for future classical swine fever (CSF) outbreaks, and the first live marker vaccine is available in Europe. Successful implementation is dependent on a reliable accompanying diagnostic assay that allows differentiation of infected from vaccinated animals (DIVA). As induction of a protective immune response relies on virus-neutralizing antibodies against E2 protein of CSF virus (CSFV), the most promising DIVA strategy is based on detection of Erns -specific antibodies in infected swine. The aim of this study was to develop and to evaluate a novel Erns -specific prototype ELISA (pigtype CSFV Erns Ab), which may be used for CSF diagnosis including application as an accompanying discriminatory test for CSFV marker vaccines. The concept of a double-antigen ELISA was shown to be a solid strategy to detect Erns -specific antibodies against CSFV isolates of different genotypes (sensitivity: 93.5%; specificity: 99.7%). Furthermore, detection of early seroconversion is advantageous compared with a frequently used CSFV E2 antibody ELISA. Clear differences in reactivity between sera taken from infected animals and animals vaccinated with various marker vaccines were observed. In combination with the marker vaccine CP7_E2alf, the novel ELISA represents a sensitivity of 90.2% and a specificity of 93.8%. However, cross-reactivity with antibodies against ruminant pestiviruses was observed. Interestingly, the majority of samples tested false-positive in other Erns -based antibody ELISAs were identified correctly by the novel prototype Erns ELISA and vice versa. In conclusion, the pigtype CSFV Erns Ab ELISA can contribute to an improvement in routine CSFV antibody screening, particularly for analysis of sera taken at an early time point after infection and is applicable as a DIVA assay. An additional Erns antibody assay is recommended for identification of false-positive results in a pig herd immunized with the licensed CP7_E2alf marker vaccine.
Collapse
Affiliation(s)
- D Meyer
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Y Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute (HVRI), Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - S Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - M Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - C-Y Chang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, Tamsui District, New Taipei City, Taiwan
| | - H-J Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute (HVRI), Chinese Academy of Agricultural Sciences, Harbin, China
| | - P Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
12
|
Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-State-of-the-art. Vet Microbiol 2017; 206:10-20. [PMID: 28069290 DOI: 10.1016/j.vetmic.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/24/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
13
|
THE CHALLENGE OF DETECTING CLASSICAL SWINE FEVER VIRUS CIRCULATION IN WILD BOAR (SUS SCROFA): SIMULATION OF SAMPLING OPTIONS. J Wildl Dis 2016; 52:828-836. [PMID: 27479901 DOI: 10.7589/2015-09-240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classical swine fever (CSF) is one of the most important viral diseases of domestic pigs ( Sus scrofa domesticus) and wild boar ( Sus scrofa ). For at least 4 decades, several European Union member states were confronted with outbreaks among wild boar and, as it had been shown that infected wild boar populations can be a major cause of primary outbreaks in domestic pigs, strict control measures for both species were implemented. To guarantee early detection and to demonstrate freedom from disease, intensive surveillance is carried out based on a hunting bag sample. In this context, virologic investigations play a major role in the early detection of new introductions and in regions immunized with a conventional vaccine. The required financial resources and personnel for reliable testing are often large, and sufficient sample sizes to detect low virus prevalences are difficult to obtain. We conducted a simulation to model the possible impact of changes in sample size and sampling intervals on the probability of CSF virus detection based on a study area of 65 German hunting grounds. A 5-yr period with 4,652 virologic investigations was considered. Results suggest that low prevalences could not be detected with a justifiable effort. The simulation of increased sample sizes per sampling interval showed only a slightly better performance but would be unrealistic in practice, especially outside the main hunting season. Further studies on other approaches such as targeted or risk-based sampling for virus detection in connection with (marker) antibody surveillance are needed.
Collapse
|
14
|
Saubusse T, Masson JD, Le Dimma M, Abrial D, Marcé C, Martin-Schaller R, Dupire A, Le Potier MF, Rossi S. How to survey classical swine fever in wild boar (Sus scrofa) after the completion of oral vaccination? Chasing away the ghost of infection at different spatial scales. Vet Res 2016; 47:21. [PMID: 26810218 PMCID: PMC4727256 DOI: 10.1186/s13567-015-0289-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 12/14/2015] [Indexed: 11/23/2022] Open
Abstract
Oral mass vaccination (OMV) is considered as an efficient strategy for controlling classical swine fever (CSF) in wild boar. After the completion of vaccination, the presence of antibodies in 6–12 month-old hunted wild boars was expected to reflect a recent CSF circulation. Nevertheless, antibodies could also correspond to the long-lasting of maternal antibodies. This paper relates an experience of surveillance which lasted 4 years after the completion of OMV in a formerly vaccinated area, in north-eastern France (2010–2014). First, we conducted a retrospective analysis of the serological data collected in 6–12 month-old hunted wild boars from 2010 up to 2013, using a spatial Bayesian model accounting for hunting data autocorrelation and heterogeneity. At the level of the whole area, seroprevalence in juvenile boars decreased from 28% in 2010–2011 down to 1% in 2012–2013, but remained locally high (above 5%). The model revealed the existence of one particular seroprevalence hot-spot where a longitudinal survey of marked animals was conducted in 2013–2014, for deciphering the origin of antibodies. Eleven out of 107 captured piglets were seropositive when 3–4 months-old, but their antibody titres progressively decreased until 6–7 months of age. These results suggest piglets were carrying maternal antibodies, few of them carrying maternal antibodies lasting until the hunting season. Our study shows that OMV may generate confusion in the CSF surveillance several years after the completion of vaccination. We recommend using quantitative serological tools, hunting data modelling and capture approaches for better interpreting serological results after vaccination completion. Surveillance perspectives are further discussed.
Collapse
Affiliation(s)
- Thibault Saubusse
- ONCFS, Office National de la Chasse et de la Faune Sauvage, Unité Sanitaire de la Faune, Micropolis, la Bérardie, Belle Aureille, 05000, Gap, France.
| | - Jean-Daniel Masson
- ONCFS, Office National de la Chasse et de la Faune Sauvage, Unité Sanitaire de la Faune, Micropolis, la Bérardie, Belle Aureille, 05000, Gap, France.
| | - Mireille Le Dimma
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP53, 22440, Ploufragan, France.
| | - David Abrial
- INRA, Unité d'Epidémiologie Animale, Theix, 63122, Saint-Genès-Champanelle, France.
| | - Clara Marcé
- Direction générale de l'alimentation, Bureau de la santé animale, Paris, France.
| | - Regine Martin-Schaller
- Direction départementale de la protection des populations du Bas-Rhin, Strasbourg, France.
| | - Anne Dupire
- Direction départementale de la protection des populations de la Moselle, Metz, France.
| | - Marie-Frédérique Le Potier
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP53, 22440, Ploufragan, France.
| | - Sophie Rossi
- ONCFS, Office National de la Chasse et de la Faune Sauvage, Unité Sanitaire de la Faune, Micropolis, la Bérardie, Belle Aureille, 05000, Gap, France.
| |
Collapse
|
15
|
Rossi S, Staubach C, Blome S, Guberti V, Thulke HH, Vos A, Koenen F, Le Potier MF. Controlling of CSFV in European wild boar using oral vaccination: a review. Front Microbiol 2015; 6:1141. [PMID: 26557109 PMCID: PMC4615961 DOI: 10.3389/fmicb.2015.01141] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Classical swine fever (CSF) is among the most detrimental diseases for the swine industry worldwide. Infected wild boar populations can play a crucial role in CSF epidemiology and controlling wild reservoirs is of utmost importance for preventing domestic outbreaks. Oral mass vaccination (OMV) has been implemented to control CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of vaccination experiences illustrates the potential for that option. The C-strain live vaccine was confirmed to be highly efficacious and palatable baits were developed for oral delivery in free ranging wild boars. The first field trials were performed in Germany in the 1990’s and allowed deploying oral baits at a large scale. The delivery process was further improved during the 2000’s among different European countries. Optimal deployment has to be early regarding disease emergence and correctly designed regarding the landscape structure and the natural food sources that can compete with oral baits. OMV deployment is also highly dependent on a local veterinary support working closely with hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy for CSF control in free ranging wild boar when vaccination is wide spread and lasting for a sufficient period of time. Alternative disease control strategies such as intensified hunting or creating physical boundaries such as fences have been, in contrast, seldom satisfactory and reliable. However, monitoring outbreaks has been challenging during and after vaccination deployment since OMV results in a low probability to detect virus-positive animals and the live-vaccine currently available does not allow serological differentiation of infected from vaccinated animals. The development of a new marker vaccine and companion test is thus a promising option for better monitoring outbreaks during OMV deployment as well as help to better determine when to stop vaccination efforts. After rabies in red fox, the use of OMV against CSF in European wild boar can be considered as a second example of successful disease control in wildlife. The 30 years of disease control experience included in this review may provide options for improving future disease management within wild populations.
Collapse
Affiliation(s)
- Sophie Rossi
- Unité Sanitaire de la Faune, Office National de la Chasse et de la Faune Sauvage Gap, France
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Vittorio Guberti
- Instituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia, Italy
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ Leipzig, Germany
| | - Ad Vos
- Development Vaccines Technologies, IDT Biologika GmbH Dessau-Rosslau, Germany
| | - Frank Koenen
- Operational Direction Interactions and Surveillance, Centrum voor Onderzoek in Diergeneeskunde en Agrochemie-Centre d'Etude et de Recherches Vétérinaires et Agrochimiques Ukkel, Belgium
| | | |
Collapse
|
16
|
Goller KV, Dräger C, Höper D, Beer M, Blome S. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo. Arch Virol 2015; 160:3121-5. [PMID: 26392285 DOI: 10.1007/s00705-015-2611-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.
Collapse
Affiliation(s)
- Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
17
|
Luo Y, Li L, Austermann-Busch S, Dong M, Xu J, Shao L, Lei J, Li N, He WR, Zhao B, Li S, Li Y, Liu L, Becher P, Sun Y, Qiu HJ. Enhanced expression of the Erns protein of classical swine fever virus in yeast and its application in an indirect enzyme-linked immunosorbent assay for antibody differentiation of infected from vaccinated animals. J Virol Methods 2015; 222:22-7. [DOI: 10.1016/j.jviromet.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/18/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
18
|
Pannhorst K, Fröhlich A, Staubach C, Meyer D, Blome S, Becher P. Evaluation of an Erns-based enzyme-linked immunosorbent assay to distinguish Classical swine fever virus-infected pigs from pigs vaccinated with CP7_E2alf. J Vet Diagn Invest 2015; 27:449-60. [PMID: 26179095 DOI: 10.1177/1040638715592446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Infections with Classical swine fever virus (CSFV) are a major economic threat to pig production. To combat CSF outbreaks and to maintain trade, new marker vaccines were developed that allow differentiation of infected from vaccinated animals (DIVA principle). The chimeric pestivirus CP7_E2alf was shown to be safe and efficacious. Its DIVA strategy is based on the detection of CSFV E(rns)-specific antibodies that are only developed on infection. However, for the new marker vaccine to be considered a valuable control tool, a validated discriminatory assay is needed. One promising candidate is the already commercially available enzyme-linked immunosorbent assay, PrioCHECK CSFV E(rns) ELISA (Prionics BV, Lelystad, The Netherlands). Four laboratories of different European Union member states tested 530 serum samples and country-specific field sera from domestic pigs and wild boar. The ELISA displayed a good robustness. However, based on its reproducibility and repeatability, ranges rather than single values for diagnostic sensitivity and specificity were defined. The ELISA displayed a sensitivity of 90-98% with sera from CSFV-infected domestic pigs. A specificity of 89-96% was calculated with sera from domestic pigs vaccinated once with CP7_E2alf. The ELISA detected CSFV infections in vaccinated domestic pigs with a sensitivity of 82-94%. The sensitivity was lower with sera taken ≤21 days post-challenge indicating that the stage of CSFV infection had a considerable influence on testing. Taken together, the PrioCHECK CSFV E(rns) ELISA can be used for detection of CSFV infections in CP7_E2alf-vaccinated and nonvaccinated domestic pig populations, but should only be applied on a herd basis by testing a defined number of animals.
Collapse
Affiliation(s)
- Katrin Pannhorst
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Andreas Fröhlich
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Christoph Staubach
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| |
Collapse
|
19
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
20
|
Everett HE, Crudgington BS, Sosan-Soulé O, Crooke HR. Differential detection of classical swine fever virus challenge strains in C-strain vaccinated pigs. BMC Vet Res 2014; 10:281. [PMID: 25495277 PMCID: PMC4280032 DOI: 10.1186/s12917-014-0281-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Control of classical swine fever (CSF) by vaccination ideally requires that field strain infection can be detected irrespective of the vaccination status of the herd. To inform on the usefulness of molecular tests compatible with genetic Differentiation of Infected from Vaccinated Animals (DIVA) principles when using live-attenuated vaccines, tonsil homogenates from a vaccination-challenge experiment were analyzed using a differential real-time qRT-PCR for the C-strain vaccine or real-time qRT-PCR assays developed to specifically detect the challenge strains used. Results In animals with high or moderate levels of blood viraemia, which were not, or not fully, protected by vaccination, challenge virus RNA was readily detected in tonsil homogenates. In three out of the seven vaccinated animals that had high or moderate viraemia, the vaccine strain RNA also could be detected but at lower levels. Lower but varying levels of challenge and/or vaccine virus RNA were detected in tonsil homogenate samples from animals with no or low-level viraemia, and in groups solely consisting of such animals, no transmission of infection to naïve in-contact animals occurred. In one group of animals that were vaccinated 3 days prior to challenge, viraemia levels varied from high to absent and transmission of challenge virus to naïve in-contact animals occurred. The DIVA assay revealed challenge virus in all tonsil homogenates from this group, even in those animals that did not have viraemia and were protected from clinical disease by vaccination. Such animals, particularly in a low biosecurity/informal farm setting, could constitute a risk for disease control in the field. Conclusions Genetic DIVA testing is useful for detecting the presence of field virus infection especially in non-viraemic animals without overt clinical signs but which are incompletely protected by vaccination. Such tests could particularly be useful to inform decisions prior to and during cessation of a control strategy that employs vaccination.
Collapse
Affiliation(s)
- Helen E Everett
- Virology Department, APHA, New Haw, Addlestone, KT15 3NB, UK.
| | | | | | - Helen R Crooke
- Virology Department, APHA, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
21
|
Differentiation of classical swine fever virus infection from CP7_E2alf marker vaccination by a multiplex microsphere immunoassay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:65-71. [PMID: 25378351 DOI: 10.1128/cvi.00271-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classical swine fever (CSF) is a highly contagious viral disease of pigs that has a tremendous socioeconomic impact. Vaccines are available for disease control. However, most industrialized countries are implementing stamping-out strategies to eliminate the disease and avoid trade restrictions. These restrictions can be avoided through the use of marker vaccines such as CP7_E2alf. Marker vaccines have to be accompanied by reliable and robust discriminatory assays. In this context, a multiplex microsphere immunoassay for serological differentiation of infected from vaccinated animals (DIVA) was developed to distinguish CSF virus (CSFV)-infected animals from CP7_E2alf-vaccinated animals. To this end, three viral proteins, namely, CSFV E2, CSFV E(rns), and bovine viral diarrhea virus (BVDV) E2, were produced in insect cells using a baculovirus expression system; they were used as antigens in a microsphere immunoassay, which was further evaluated by testing a large panel of pig sera and compared to a well-characterized commercial CSFV E2 antibody enzyme-linked immunosorbent assays (ELISAs) and a test version of an improved CSFV E(rns) antibody ELISA. Under a cutoff median fluorescence intensity value of 5,522, the multiplex microsphere immunoassay had a sensitivity of 98.5% and a specificity of 98.9% for the detection of antibodies against CSFV E2. The microsphere immunoassay and the CSFV E(rns) ELISA gave the same results for 155 out of 187 samples (82.8%) for the presence of CSFV E(rns) antibodies. This novel multiplex immunoassay is a valuable tool for measuring and differentiating immune responses to vaccination and/or infection in animals.
Collapse
|
22
|
DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif. Vet Microbiol 2014; 170:224-31. [DOI: 10.1016/j.vetmic.2014.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/20/2022]
|
23
|
First assessment of classical swine fever marker vaccine candidate CP7_E2alf for oral immunization of wild boar under field conditions. Vaccine 2014; 32:2050-5. [DOI: 10.1016/j.vaccine.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/21/2022]
|
24
|
Blome S, Gabriel C, Schmeiser S, Meyer D, Meindl-Böhmer A, Koenen F, Beer M. Efficacy of marker vaccine candidate CP7_E2alf against challenge with classical swine fever virus isolates of different genotypes. Vet Microbiol 2013; 169:8-17. [PMID: 24411658 DOI: 10.1016/j.vetmic.2013.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Classical swine fever (CSF) is among the most important viral disease of domestic and feral pigs and has a serious impact on animal health and pig industry. In most countries with industrialized pig production, prophylactic vaccination against CSF is banned, and all efforts are directed towards eradication of the disease, e.g. by culling of infected herds and animal movement restrictions. Nevertheless, emergency vaccination remains an option to minimize the socio-economic impact of outbreaks. For this application, potent vaccines are needed that allow differentiation of infected from vaccinated animals. Among the promising candidates for next generation marker vaccines is the chimeric pestivirus CP7_E2alf. Efficacy studies are usually carried out using highly virulent CSFV strains of genotype 1 that do not mirror the current field situation where strains of genotype 2 predominate. To prove that CP7_E2alf also protects against these strains, efficacy was assessed after single oral vaccination of wild boar and single intramuscular vaccination of domestic pigs using challenge models with recent CSFV strains and the highly virulent strain "Koslov" (genotype 1.1). It could be demonstrated that CP7_E2alf pilot vaccine batches for intramuscular and oral use were able to protect pigs from challenge infection with a highly virulent CSFV. Moreover, solid protection was also achieved in case of challenge infection with recent field strains of genotypes 2.1 and 2.3. Thus, broad applicability under field conditions can be assumed.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Claudia Gabriel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Stefanie Schmeiser
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Denise Meyer
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Alexandra Meindl-Böhmer
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Frank Koenen
- CODA-CERVA, Groeselenberg 99, 1180 Ukkel, Belgium
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
25
|
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013; 100:133-50. [DOI: 10.1016/j.antiviral.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 01/13/2023]
|
26
|
Simplified serum neutralization test based on enhanced green fluorescent protein-tagged classical swine fever virus. J Clin Microbiol 2013; 51:2710-2. [PMID: 23698523 DOI: 10.1128/jcm.00859-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutralization immunofluorescence test (NIFT), currently used for detecting neutralizing antibodies (NAbs) against classical swine fever virus (CSFV), is time-consuming. Here, a simplified neutralization test based on enhanced green fluorescent protein (EGFP)-tagged CSFV (EGFP-NT) was developed for direct detection of anti-CSFV NAbs without immunostaining. The relative sensitivity and specificity between EGFP-NT and NIFT or blocking enzyme-linked immunosorbent assay (ELISA) were both 100%. The NAb titers by EGFP-NT and the blocking rates by blocking ELISA showed a good correlation.
Collapse
|