1
|
Park K, Kim J, Noh J, Kim K, Yang E, Kim SG, Cho HK, Byun KS, Kim JH, Lee YS, Shim JO, Shin M, Kim WK, Song JW. First detection and characterization of hepatitis E virus (Rocahepevirus ratti) from urban Norway rats (Rattus norvegicus) in the Republic of Korea. J Med Virol 2024; 96:e29401. [PMID: 38235603 DOI: 10.1002/jmv.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Hepatitis E virus (HEV), an emerging zoonotic pathogen, poses a significant public health concern worldwide. Recently, rat HEV (Rocahepevirus ratti genotype C1; HEV-C1) has been reported to cause zoonotic infections and hepatitis in humans. Human infections with HEV-C1 are considered to be underestimated worldwide due to limited knowledge of transmission routes, genome epidemiology, and the risk assessment of zoonosis associated with these viruses. A total of 186 wild Norway rats (Rattus norvegicus) were collected from the Republic of Korea (ROK) between 2011 and 2021. The prevalence of HEV-C1 RNA was 8 of 180 (4.4%) by reverse-transcription polymerase chain reaction. We first reported three nearly whole-genome sequences of HEV-C1 newly acquired from urban rats in the ROK. Phylogenetic analysis demonstrated that Korea-indigenous HEV-C1 formed an independent genetic group with those derived from R. norvegicus rats in other countries, indicating geographical and genetic diversity. Our findings provide critical insights into the molecular prevalence, genome epidemiology, and zoonotic potential of Rocahepevirus. This report raises awareness of the presence of Rocahepevirus-related hepatitis E among physicians in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Shin
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Benavent S, Carlos S, Reina G. Rocahepevirus ratti as an Emerging Cause of Acute Hepatitis Worldwide. Microorganisms 2023; 11:2996. [PMID: 38138140 PMCID: PMC10745784 DOI: 10.3390/microorganisms11122996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to humans, a genetically highly divergent rat origin hepevirus (RHEV) can cause hepatitis possessing a potential risk of cross-species infection and zoonotic transmission. Rocahepevirus ratti, formerly known as Orthohepevirus C, is a single-stranded RNA virus, recently reassigned to Rocahepevirus genus in the Hepeviridae family, including genotypes C1 and C2. RHEV primarily infects rats but has been identified as a rodent zoonotic virus capable of infecting humans through the consumption of contaminated food or water, causing both acute and chronic hepatitis cases in both animals and humans. This review compiles data concluding that 60% (295/489) of RHEV infections are found in Asia, being the continent with the highest zoonotic and transmission potential. Asia not only has the most animal cases but also 16 out of 21 human infections worldwide. Europe follows with 26% (128/489) of RHEV infections in animals, resulting in four human cases out of twenty-one globally. Phylogenetic analysis and genomic sequencing will be employed to gather global data, determine epidemiology, and assess geographical distribution. This information will enhance diagnostic accuracy, pathogenesis understanding, and help prevent cross-species transmission, particularly to humans.
Collapse
Affiliation(s)
- Sara Benavent
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Caballero-Gómez J, Rivero-Juárez A, Cano-Terriza D, Fajardo T, Buono F, Jose-Cunilleras E, García J, Alguacil E, Rivero A, García-Bocanegra I. Epidemiological survey and risk factors associated with Paslahepevirus balayani in equines in Europe. One Health 2023; 17:100619. [PMID: 38024277 PMCID: PMC10665168 DOI: 10.1016/j.onehlt.2023.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Paslahepevirus balayani (HEV) is an important emerging zoonotic virus in Europe. Although domestic pigs and wild boar are the main reservoirs of this pathogen, susceptibility to this virus has been confirmed in a growing number of animal species, including equines. However, their role in the epidemiology of this virus remains poorly understood. Our aim was to assess HEV circulation and identify potential risk factors associated with exposure in equid species in different European countries. A total of 596 equines, including 496 horses, 63 donkeys and 37 mules/hinnies bred in four European countries (Spain, Italy, United Kingdom and Ireland) were sampled. Thirty-three animals (5.5%; 95%CI: 3.7-7.4) had anti-HEV antibodies. Seropositivity was found in 4.6% of horses, 11.1% of donkeys and 8.1% of mules/hinnies tested. By country, 6.3%, 5.4%, 5.0% and 4.0% of the equines sampled in Spain, Italy, United Kingdom and Ireland, respectively, were seropositive, respectively. Statistical analysis showed that "species" and "drinking water from ponds and streams" were potential risk factors associated with HEV seropositivity in equines in Europe. HEV RNA was not detected in any (0.0%; 95%CI: 0.0-1.8) of the 202 equines tested. Our results provide evidence of a low, spatially homogeneous and widespread viral circulation that is not equal across species in equid populations in the European countries analyzed and indicate that these species appear to play a limited role in the epidemiology of this virus. Further studies are required to elucidate the differences in seroprevalence between donkeys, mules/hinnies and horses and to determine the risk of zoonotic transmission of this pathogen from equid species.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Rivero-Juárez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Fajardo
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francesco Buono
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Eduard Jose-Cunilleras
- Servei de Medicina Interna Equina, Departament de Medicina Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
5
|
Animal reservoirs for hepatitis E virus within the Paslahepevirus genus. Vet Microbiol 2023; 278:109618. [PMID: 36640568 DOI: 10.1016/j.vetmic.2022.109618] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans. It is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae family. The majority of concerning HEV genotypes belong to the Paslahepevirus genus and are subsequently divided into eight genotypes. HEV genotypes 1 and 2 exclusively infect humans and primates while genotypes 3 and 4 infect both humans and other mammals. Whereas HEV genotypes 5 and 6 are isolated from wild boars and genotypes 7 and 8 were identified from camels in the United Arab Emirates and China, respectively. HEV mainly spreads from humans to humans via the fecal-oral route. However, some genotypes with the capability of zoonotic transmissions, such as 3 and 4 transmit from animals to humans through feces, direct contact, and ingestion of contaminated meat products. As we further continue to uncover novel HEV strains in various animal species, it is becoming clear that HEV has a broad host range. Therefore, understanding the potential animal reservoirs for this virus will allow for better risk management and risk mitigation of infection with HEV. In this review, we mainly focused on animal reservoirs for the members of the species Paslahepevirus balayani and provided a comprehensive list of the host animals identified to date.
Collapse
|
6
|
Caballero-Gómez J, García-Bocanegra I, Cano-Terriza D, Beato-Benítez A, Ulrich RG, Martínez J, Guerra R, Martínez-Valverde R, Martínez-Nevado E, Ángel Quevedo-Muñoz M, Sierra-Arqueros C, Planas J, de Castro-García N, Rivero A, Rivero-Juarez A. Monitoring of hepatitis E virus in zoo animals from Spain, 2007-2021. Transbound Emerg Dis 2022; 69:3992-4001. [PMID: 36083467 PMCID: PMC10087427 DOI: 10.1111/tbed.14702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV, family Hepeviridae) is an important emerging and zoonotic pathogen. In recent decades, the number of human cases of zoonotic hepatitis E has increased considerably in industrialized countries and HEV has been detected in an expanding range of mammal species. Although domestic pigs and wild boar are considered the main reservoirs of zoonotic HEV genotypes, the role of other susceptible animals in the epidemiology of the virus is still poorly understood. A large-scale, long-term study was carried out (1) to assess HEV exposure in captive zoo animals in Spain and (2) to determine the dynamics of seropositivity in individuals that were sampled longitudinally during the study period. Between 2007 and 2021, serum samples from 425 zoo animals belonging to 109 animal species (including artiodactyls, carnivores, perissodactyls, proboscideans and rodents) were collected from 11 different zoological parks in Spain. Forty-six of these animals at seven of these zoos were also longitudinally sampled. Anti-HEV antibodies were detected in 36 (8.5%; 95% CI: 5.8-11.1) of 425 sampled zoo animals. Specific antibodies against HEV-3 and HEV-C1 antigens were confirmed in ELISA-positive animals using western blot assay. Two of 46 longitudinally surveyed animals seroconverted during the study period. Seropositivity was significantly higher in carnivores and perissodactyls than in artiodactyls, and also during the period 2012-2016 compared with 2007-2011. HEV RNA was not detected in any of the 262 animals that could be tested by RT-PCR. To the best of the author's knowledge, this is the first large-scale, long-term surveillance on HEV in different orders of zoo mammals. Our results indicate exposure to HEV-3 and HEV-C1 in zoo animals in Spain and confirm a widespread but not homogeneous spatiotemporal circulation of HEV in captive species in this country. Further studies are required to determine the role of zoo species, particularly carnivores and perissodactyls, in the epidemiology of HEV and to clarify the origins of infection in zoological parks.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Departamento Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, España.,Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Ignacio García-Bocanegra
- Departamento Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, España.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - David Cano-Terriza
- Departamento Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, España.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Adrián Beato-Benítez
- Departamento Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, España
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
7
|
Yoon J, Park T, Sohn Y, Lee SK, Park BJ, Ahn HS, Go HJ, Kim DH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Surveillance of hepatitis E virus in the horse population of Korea: A serological and molecular approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105317. [PMID: 35738550 DOI: 10.1016/j.meegid.2022.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen causing hepatitis worldwide. Despite the prevalent evidence of interspecies HEV infection in various animal species, the role of horses in HEV epidemiology remains unclear. In this study, we investigated the prevalence of HEV infection in 283 blood and 114 fecal samples from 397 horses using sandwich enzyme-linked immunosorbent assay and nested reverse transcription-polymerase chain reaction. Among the 283 serum samples, 35 were positive for anti-HEV antibodies (12.4%; 95% confidence interval: 8.8-16.8), and four of the five sampling regions (80%) had these seropositive individuals. Analyses of the potential risk factors for HEV infection revealed that racing horses had a significantly higher risk of infection (P = 0.01). However, HEV RNA was not detected in any of the tested serum and fecal samples. To the best of our knowledge, this is the first epidemiological HEV study on horses in Republic of Korea, thereby providing evidence of HEV exposure in the horse population in Korea and specifying the risk factors for HEV infection.
Collapse
Affiliation(s)
- Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju 63346, Republic of Korea; Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju 63346, Republic of Korea
| | - Yongwoo Sohn
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju 63346, Republic of Korea
| | - Sang-Kyu Lee
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju 63346, Republic of Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Center for Animal Blood Medical Science, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Caballero‐Gómez J, Rivero‐Juarez A, Zorrilla I, López G, Nájera F, Ulrich RG, Ruiz‐Rubio C, Salcedo J, Rivero A, Paniagua J, García‐Bocanegra I. Hepatitis E virus in the endangered Iberian lynx (Lynx pardinus). Transbound Emerg Dis 2022; 69:e2745-e2756. [PMID: 35690914 PMCID: PMC9796619 DOI: 10.1111/tbed.14624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 01/01/2023]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen in Europe. In the Iberian Peninsula, wild boar (Sus scrofa) is considered the main wildlife reservoir of HEV. This wild ungulate shares habitat and resources with other potential HEV carriers in Iberian Mediterranean ecosystems, although information about the role of such sympatric species in the HEV epidemiological cycle is still very limited. The aims of the present large-scale, long-term study were: (1) to determine the seroprevalence and prevalence of HEV in both free-living and captive populations of the Iberian lynx (Lynx pardinus), the most endangered felid in the world; (2) to determine potential risk factors associated with HEV exposure in this species and (3) to evaluate the dynamics of seropositivity in longitudinally sampled animals during the study period. Between 2010 and 2021, serum samples from 275 Iberian lynxes were collected in free-ranging and captive populations across the Iberian Peninsula. Forty-four of the 275 lynxes were also longitudinally sampled during the study period. A double-antigen sandwich ELISA was used to test for the presence of antibodies against HEV. A subset of seropositive samples was analysed by Western blot (WB) assay to confirm exposure to HEV. In addition, serum, liver and/or faecal samples from 367 individuals were tested for orthohepevirus RNA by RT-PCR. A total of 50 (18.2%; 95% CI: 14.1-23.2) of the 275 animals analysed had anti-HEV antibodies by ELISA. Exposure to HEV was confirmed by WB in most of the ELISA-positive Iberian lynxes analysed. Significantly higher seroprevalence was found in captive (33.6%) compared to free-ranging (7.4%) individuals. Within captive population, the GEE model identified 'age' (senile, adult and subadult) as risk a factor potentially associated with HEV exposure in the Iberian lynx. Thirteen (29.5%) of 44 longitudinally surveyed individuals seroconverted against HEV during the study period. HEV RNA was detected in the faeces of one (1/364; 0.3%; 95% CI: 0.0-0.8) free-ranging adult animal sampled in 2021. Phylogenetic analysis showed that the sequenced strain belongs to HEV-3f subtype and shared a high nucleotide sequence identity (97-99.6%) with human HEV-3f sequences from Spain and France. To the best of the authors' knowledge, this is the first survey study on HEV in the Iberian lynx and the first molecular report of HEV-A infection in free-ranging felines. Our results indicate high exposure to HEV-3 in Iberian lynx populations, particularly those kept in captivity. The serological results suggest widespread but not homogeneous circulation of HEV in Iberian lynx populations. Further studies are required to assess the epidemiological role of this endangered species as a potential spillover host of HEV.
Collapse
Affiliation(s)
- Javier Caballero‐Gómez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades InfecciosasInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Universitario Reina SofíaUniversidad de CórdobaCórdobaSpain,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ)Departamento de Sanidad AnimalUniversidad de CórdobaCórdobaSpain,CIBERINFEC, ISCIII – CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| | - Antonio Rivero‐Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades InfecciosasInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Universitario Reina SofíaUniversidad de CórdobaCórdobaSpain,CIBERINFEC, ISCIII – CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| | - Irene Zorrilla
- Centro de Análisis y Diagnóstico de la Fauna SilvestreAgencia de Medio Ambiente y Agua de AndalucíaConsejería de Agricultura, GanaderíaPesca y Desarrollo Sostenible, Junta de AndalucíaMálagaSpain
| | - Guillermo López
- Centro de Análisis y Diagnóstico de la Fauna SilvestreAgencia de Medio Ambiente y Agua de AndalucíaConsejería de Agricultura, GanaderíaPesca y Desarrollo Sostenible, Junta de AndalucíaMálagaSpain
| | - Fernando Nájera
- Departamento de Fisiología AnimalFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain,Asistencia Técnica de la Dirección General del Medio Natural y Desarrollo Sostenible de la Junta de Comunidades de Castilla‐La ManchaToledoSpain
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious DiseasesFriedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthGreifswald‐Insel RiemsGermany,German Centre for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsGreifswald‐Insel RiemsGermany
| | - Carmen Ruiz‐Rubio
- Centro de Análisis y Diagnóstico de la Fauna SilvestreAgencia de Medio Ambiente y Agua de AndalucíaConsejería de Agricultura, GanaderíaPesca y Desarrollo Sostenible, Junta de AndalucíaMálagaSpain
| | - Javier Salcedo
- Consejería de Agricultura, GanaderaPesca y Desarrollo Sostenible. Junta de AndalucíaSevillaSpain
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades InfecciosasInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Universitario Reina SofíaUniversidad de CórdobaCórdobaSpain,CIBERINFEC, ISCIII – CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| | - Jorge Paniagua
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ)Departamento de Sanidad AnimalUniversidad de CórdobaCórdobaSpain
| | - Ignacio García‐Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ)Departamento de Sanidad AnimalUniversidad de CórdobaCórdobaSpain,CIBERINFEC, ISCIII – CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain,Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM)Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad AnimalCordobaSpain
| |
Collapse
|
9
|
Johne R, Althof N, Nöckler K, Falkenhagen A. [Hepatitis E virus-a zoonotic virus: distribution, transmission pathways, and relevance for food safety]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:202-208. [PMID: 34982174 PMCID: PMC8813789 DOI: 10.1007/s00103-021-03476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Das Hepatitis-E-Virus (HEV) ist ein Erreger einer akuten Hepatitis beim Menschen. Darüber hinaus treten zunehmend auch chronische Infektionen mit fataler Leberzirrhose bei immunsupprimierten Transplantationspatienten auf. Die Zahl der gemeldeten Hepatitis-E-Fälle in Deutschland hat in den vergangenen Jahren stark zugenommen. Hier kommt vor allem der Genotyp 3 vor, der zoonotisch von Tieren auf den Menschen übertragen werden kann. Haus- und Wildschweine, die ohne die Ausbildung klinischer Symptome infiziert werden, stellen das Hauptreservoir dar. In diesem Artikel werden die Verbreitung von HEV in Tieren in Deutschland, mögliche Übertragungswege des Virus und insbesondere die Bedeutung von Lebensmitteln bei der Übertragung anhand der aktuellen wissenschaftlichen Literatur dargestellt. HEV ist in Haus- und Wildschweinen in Deutschland stark verbreitet und wird hauptsächlich über direkten Kontakt oder den Verzehr von Lebensmitteln, die aus diesen Tieren hergestellt wurden, auf den Menschen übertragen. Beim HEV-RNA-Nachweis in spezifischen Lebensmitteln bleibt allerdings oft unklar, ob das enthaltene Virus noch infektiös ist oder durch die Herstellungsbedingungen inaktiviert wurde. Neuere Studien weisen auf eine hohe Stabilität des HEV unter verschiedenen physikochemischen Bedingungen hin, wohingegen eine Inaktivierung unter anderem durch Erhitzung erreicht wird. Generell wird deshalb ein ausreichendes Erhitzen von Schweinefleisch und -leber vor dem Verzehr empfohlen und für Risikogruppen zusätzlich der Verzicht auf den Verzehr kurzgereifter Rohwürste. Weitere Forschungen sind nötig, um relevante Risikolebensmittel zu identifizieren, alternative Übertragungswege zu untersuchen und effiziente Maßnahmen zu entwickeln, die eine zoonotische Virusübertragung zukünftig verringern oder vermeiden.
Collapse
Affiliation(s)
- Reimar Johne
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| | - Nadine Althof
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Karsten Nöckler
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | | |
Collapse
|
10
|
Caballero-Gómez J, Rivero-Juarez A, Jurado-Tarifa E, Jiménez-Martín D, Jiménez-Ruiz E, Castro-Scholten S, Ulrich RG, López-López P, Rivero A, García-Bocanegra I. Serological and molecular survey of hepatitis E virus in cats and dogs in Spain. Transbound Emerg Dis 2021; 69:240-248. [PMID: 34951935 DOI: 10.1111/tbed.14437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is currently recognized as one of the major causes of acute human hepatitis worldwide. In Europe, the increasing number of hepatitis E cases is mainly associated with the consumption of animal food products or contact with infected animals. Dogs and cats have been suggested as a zoonotic source of HEV infection. The aim of this study was to assess Orthohepevirus circulation, including HEV-A, HEV-B and HEV-C species, in sympatric urban cats and dogs in southern Spain. Between 2017 and 2020, blood samples were collected from 144 stray cats and 152 dogs, both strays and pets. The presence of antibodies against HEV were tested using a double-antigen sandwich ELISA and seropositive samples were further analyzed by western blot. A RT-PCR was performed to detect RNA of Orthohepevirus species (HEV-A, HEV-B and HEV-C). A total of 19 (6.4%; 95%CI: 3.6-9.2) of the 296 animals tested showed anti-HEV antibodies by ELISA. Seropositivity was significantly higher in dogs (9.9%; 15/152; 95%CI: 5.1-14.6) than in cats (2.8%; 4/144; 95%CI: 0.1-5.5). Ten out of the 18 ELISA-positive animals that could be further analyzed by western blot, reacted against HEV-3 and/or HEV-C1 antigens, which suggest circulation of both genotypes in urban cats and dogs in the study area. However, HEV-A, HEV-B and HEV-C RNA was not detected in any of the tested sera. This is the first study to assess HEV circulation in both stray cats and dogs in Europe. Our results provide evidence of HEV exposure in sympatric urban cat and dog populations in southern Spain. Further studies are needed to determine the role of these species in the epidemiology of HEV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España.,Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Estefanía Jurado-Tarifa
- Centro de Sanidad y Bienestar Animal (SBA), Empresa Municipal de Saneamiento de Córdoba (SADECO), Córdoba, 14005, España
| | - Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España
| | - Elena Jiménez-Ruiz
- Centro de Sanidad y Bienestar Animal (SBA), Empresa Municipal de Saneamiento de Córdoba (SADECO), Córdoba, 14005, España
| | - Sabrina Castro-Scholten
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, 17493, Germany
| | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España.,CIBERINFEC
| |
Collapse
|
11
|
Parraud D, Lhomme S, Péron JM, Da Silva I, Tavitian S, Kamar N, Izopet J, Abravanel F. Rat Hepatitis E Virus: Presence in Humans in South-Western France? Front Med (Lausanne) 2021; 8:726363. [PMID: 34540871 PMCID: PMC8448288 DOI: 10.3389/fmed.2021.726363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Hepatitis E Virus (HEV) is one of the most common causes of hepatitis worldwide, and South-Western France is a high HEV seroprevalence area. While most cases of HEV infection are associated with the species Orthohepevirus-A, several studies have reported a few cases of HEV infections due to Orthohepevirus-C (HEV-C) that usually infects rats. Most of these human cases have occurred in immunocompromised patients. We have screened for the presence of HEV-C in our region. Methods and Results: We tested 224 sera, mostly from immunocompromised patients, for HEV-C RNA using an in-house real time RT-PCR. Liver function tests gave elevated results in 63% of patients: mean ALT was 159 IU/L (normal < 40 IU/L). Anti-HEV IgG (49%) and anti-HEV IgM (9.4%) were frequently present but none of the samples tested positive for HEV-C RNA. Conclusion: HEV-C does not circulate in the human population of South-Western France, despite the high seroprevalence of anti-HEV IgG.
Collapse
Affiliation(s)
- Delphine Parraud
- Virology Laboratory, National Reference Centre of Hepatitis E Viruses, Federal Institute of Biology, University Hospital, Toulouse, France
| | - Sébastien Lhomme
- Virology Laboratory, National Reference Centre of Hepatitis E Viruses, Federal Institute of Biology, University Hospital, Toulouse, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse, France
| | - Jean Marie Péron
- Department of Gastroenterology, Rangueil University Hospital, Toulouse, France
| | - Isabelle Da Silva
- Virology Laboratory, National Reference Centre of Hepatitis E Viruses, Federal Institute of Biology, University Hospital, Toulouse, France
| | - Suzanne Tavitian
- Department of Hematology, Cancer University Institute of Toulouse, Toulouse, France
| | - Nassim Kamar
- Departments of Nephrology and Organ Transplantation, Rangueil University Hospital, INSERM U1043, IFR-BMT, University Paul Sabatier, Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, National Reference Centre of Hepatitis E Viruses, Federal Institute of Biology, University Hospital, Toulouse, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse, France
| | - Florence Abravanel
- Virology Laboratory, National Reference Centre of Hepatitis E Viruses, Federal Institute of Biology, University Hospital, Toulouse, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse, France
| |
Collapse
|
12
|
Hardgrove E, Zimmerman DM, von Fricken ME, Deem S. A scoping review of rodent-borne pathogen presence, exposure, and transmission at zoological institutions. Prev Vet Med 2021; 193:105345. [PMID: 34090722 DOI: 10.1016/j.prevetmed.2021.105345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rodents are one of the major taxa most likely to carry zoonotic diseases, harboring more than 85 unique zoonotic pathogens. While the significance of rodents' capacity to carry and transmit disease has been characterized in urban settings, the zoo environment is particularly unique given the overlap of collection, free-living, and feeder rodents as well as non-rodent collection animals, staff, and visitors. ELIGIBILITY CRITERIA This scoping review examines reports of rodent-borne pathogen detection or transmission in zoo settings extracted from the literature. Papers were included in the final analysis if there was evidence of presence or exposure to a pathogen in a rodent at a zoological institution. SOURCES OF EVIDENCE Publications were included from PubMed, CAB Abstracts and Biological Abstracts searched in August 2019. CHARTING METHODS Data extracted from publications on pathogen presence/exposure included publication identifiers, study identifiers, infectious agent identifiers, rodent identifiers, and non-rodent collection animal identifiers. Extraction from papers with evidence of disease transmission included number of rodents involved in transmission, non-rodent collection animal species and numbers, and job title of humans involved, diagnostic tests performed, and clinical outcomes. RESULTS Aggregate literature examined included 207 publications presenting evidence of pathogen presence and/or exposure in rodents across 43 countries in over 140 zoological institutions. A total of 143 infectious agent genera were identified, comprising 14 viral genera, 31 bacterial genera, 83 parasitic genera, and 15 fungal genera. Of these infectious agents, over 75 % were potentially zoonotic. The most common disease-causing agent genera identified were Leptospira, Toxoplasma, Salmonella, and Yersinia. Additional screening for evidence of pathogen transmission across species yielded 30 publications, indicating an area for future investigation to better inform surveillance and management priorities in order to reduce exposure, infection, and transmission. CONCLUSIONS Analyzing the breadth of rodent species and pathogens identified at zoos highlights the unique opportunity zoos have to be at the forefront of the early detection and identification of novel hosts and geographic ranges of rodent-borne pathogens with high impact on both endangered species and people. The overlap of these populations at zoos exemplifies the importance of considering One Health when prioritizing surveillance and risk mitigation of rodent reservoirs at zoos.
Collapse
Affiliation(s)
- Emily Hardgrove
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| | - Dawn M Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, 3001 Connecticut Ave NW, Washington, DC, 20008, USA; Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, 06520, USA.
| | - Michael E von Fricken
- Department of Global and Community Health, George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA.
| | - Sharon Deem
- Institute for Conservation Medicine, Saint Louis Zoo, One Government Drive, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Velavan TP, Pallerla SR, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT. Hepatitis E: An update on One Health and clinical medicine. Liver Int 2021; 41:1462-1473. [PMID: 33960603 DOI: 10.1111/liv.14912] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 03/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus (HEV) is one of the main causes of acute hepatitis and the de facto global burden is underestimated. HEV-related clinical complications are often undetected and are not considered in the differential diagnosis. Convincing findings from studies suggest that HEV is clinically relevant not only in developing countries but also in industrialized countries. Eight HEV genotypes (HEV-1 to HEV-8) with different human and animal hosts and other HEV-related viruses are in circulation. Transmission routes vary by genotype and location, with large waterborne outbreaks in developing countries and zoonotic food-borne infections in developed countries. An acute infection can be aggravated in pregnant women, organ transplant recipients, patients with pre-existing liver disease and immunosuppressed patients. HEV during pregnancy affects the fetus and newborn with an increased risk of vertical transmission, preterm and stillbirth, neonatal jaundice and miscarriage. Hepatitis E is associated with extrahepatic manifestations that include neurological disorders such as neuralgic amyotrophy, Guillain-Barré syndrome and encephalitis, renal injury and haematological disorders. The risk of transfusion-transmitted HEV is increasingly recognized in Western countries where the risk may be because of a zoonosis. RNA testing of blood components is essential to determine the risk of transfusion-transmitted HEV. There are currently no approved drugs or vaccines for HEV infections. This review focuses on updating the latest developments in zoonoses, screening and diagnostics, drugs in use and under development, and vaccines.
Collapse
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Srinivas R Pallerla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, Berlin, Germany
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner Hannover-Braunschweig, Braunschweig, Germany
| | - Claus-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
14
|
Capozza P, Decaro N, Beikpour F, Buonavoglia C, Martella V. Emerging Hepatotropic Viruses in Cats: A Brief Review. Viruses 2021; 13:v13061162. [PMID: 34204394 PMCID: PMC8233973 DOI: 10.3390/v13061162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.
Collapse
|
15
|
Capozza P, Martella V, Lanave G, Beikpour F, Di Profio F, Palombieri A, Sarchese V, Marsilio F, La Rosa G, Suffredini E, Camero M, Buonavoglia C, Di Martino B. A surveillance study of hepatitis E virus infection in household cats. Res Vet Sci 2021; 137:40-43. [PMID: 33932821 DOI: 10.1016/j.rvsc.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) typically causes self-limiting acute viral hepatitis, however chronic infection and extrahepatic manifestations have increasingly become a significant health problem. Domestic pigs and wild boars are the main reservoirs of HEV genotype 3 and genotype 4 for human infections in industrialized countries, although molecular and serological evidence suggest that several additional animal species may act as HEV hosts. In this study, by assessing serologically and molecularly the sera of 324 household cats from Apulia region (Italy), HEV antibodies were detected with an overall prevalence of 3.1%. Viral RNA was not detected in the sera of the animals using both HEV-specific assays and a pan-hepevirus broadly reactive set of primers for Hepeviridae. These findings document a low seroprevalence to HEV in cats in the investigated geographical setting. The exact nature of the HEV-like strains circulating in feline population remains to be established.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Farzad Beikpour
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Camero
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
16
|
Review of Hepatitis E Virus in Rats: Evident Risk of Species Orthohepevirus C to Human Zoonotic Infection and Disease. Viruses 2020; 12:v12101148. [PMID: 33050353 PMCID: PMC7600399 DOI: 10.3390/v12101148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) (family Hepeviridae) is one of the most common human pathogens, causing acute hepatitis and an increasingly recognized etiological agent in chronic hepatitis and extrahepatic manifestations. Recent studies reported that not only are the classical members of the species Orthohepevirus A (HEV-A) pathogenic to humans but a genetically highly divergent rat origin hepevirus (HEV-C1) in species Orthohepevirus C (HEV-C) is also able to cause zoonotic infection and symptomatic disease (hepatitis) in humans. This review summarizes the current knowledge of hepeviruses in rodents with special focus of rat origin HEV-C1. Cross-species transmission and genetic diversity of HEV-C1 and confirmation of HEV-C1 infections and symptomatic disease in humans re-opened the long-lasting and full of surprises story of HEV in human. This novel knowledge has a consequence to the epidemiology, clinical aspects, laboratory diagnosis, and prevention of HEV infection in humans.
Collapse
|
17
|
Kozyra I, Jabłoński A, Bigoraj E, Rzeżutka A. Wild Boar as a Sylvatic Reservoir of Hepatitis E Virus in Poland: A Cross-Sectional Population Study. Viruses 2020; 12:v12101113. [PMID: 33008103 PMCID: PMC7600272 DOI: 10.3390/v12101113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
The most important wildlife species in the epidemiology of hepatitis E virus (HEV) infections are wild boars, which are also the main reservoir of the virus in a sylvatic environment. The aim of the study was a serological and molecular assessment of the prevalence of HEV infections in wild boars in Poland. In total, 470 pairs of samples (wild boar blood and livers) and 433 samples of faeces were tested. An ELISA (ID.vet, France) was used for serological analysis. For the detection of HEV RNA, real-time (RT)-qPCR was employed. The presence of specific anti-HEV IgG antibodies was found in 232 (49.4%; 95%CI: 44.7–54%) sera, with regional differences observed in the seroprevalence of infections. HEV RNA was detected in 57 (12.1%, 95%CI: 9.3–15.4%) livers and in 27 (6.2%, 95%CI: 4.1–8.9%) faecal samples, with the viral load ranging from 1.4 to 1.7 × 1011 G.C./g and 38 to 9.3 × 107 G.C./mL, respectively. A correlation between serological and molecular results of testing of wild boars infected with HEV was shown. HEV infections in wild boars appeared to be common in Poland.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
| | - Artur Jabłoński
- Department of Large Animal Diseases and Clinic, Warsaw University of Life Sciences, Nowoursynowska Street 100, 02-797 Warsaw, Poland;
| | - Ewelina Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
- Correspondence: ; Tel.: +48–081-889–3036
| |
Collapse
|
18
|
Liver Transudate, a Potential Alternative to Detect Anti-Hepatitis E Virus Antibodies in Pigs and Wild Boars ( Sus scrofa). Microorganisms 2020; 8:microorganisms8030450. [PMID: 32210090 PMCID: PMC7144013 DOI: 10.3390/microorganisms8030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, cases of hepatitis E virus (HEV) infection have increased in Europe in association with the consumption of contaminated food, mainly from pork products but also from wild boars. The animal’s serum is usually tested for the presence of anti-HEV antibodies and viral RNA but, in many cases such as during hunting, an adequate serum sample cannot be obtained. In the present study, liver transudate was evaluated as an alternative matrix to serum for HEV detection. A total of 125 sera and liver transudates were tested by enzyme-linked immunosorbent assay at different dilutions (1:2, 1:10, 1:20), while 58 samples of serum and liver transudate were checked for the presence of HEV RNA by RT-qPCR. Anti- HEV antibodies were detected by ELISA in 68.0% of the serum samples, and in 61.6% of the undiluted transudate, and in 70.4%, 56.8%, and 44.8% of 1:2, 1:10, or 1:20 diluted transudate, respectively. The best results were obtained for the liver transudate at 1:10 dilution, based on the Kappa statistic (0.630) and intraclass correlation coefficient (0.841). HEV RNA was detected by RT-qPCR in 22.4% of the serum samples and 6.9% of the transudate samples, all samples used for RT-qPCR were positive by ELISA. Our results indicate that liver transudate may be an alternative matrix to serum for the detection of anti-HEV antibodies.
Collapse
|
19
|
Trojnar E, Kästner B, Johne R. No Evidence of Hepatitis E Virus Infection in Farmed Deer in Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:81-83. [PMID: 31625032 DOI: 10.1007/s12560-019-09407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/28/2019] [Indexed: 05/20/2023]
Abstract
Hepatitis E virus (HEV) is a zoonotic agent, which is mainly transmitted by consumption of undercooked meat products originating from infected animals. Domestic pigs and wild boars are the major animal reservoirs, but HEV infections have been also repeatedly described in wild deer species. However, farmed deer has been only sparsely investigated so far. Here, 108 blood and 106 liver samples from fallow deer, red deer, and sika deer strictly hold in game enclosures from 11 farms in Germany were analyzed for markers of HEV infection. Using a commercial double antigen sandwich ELISA, 3/108 (2.7%) serum samples were scored borderline for HEV-specific antibodies, whereas the remaining samples were negative. No HEV-RNA (0%) was detected in the 106 liver samples. The results suggest a low risk of HEV infection in farmed deer in Germany.
Collapse
Affiliation(s)
- Eva Trojnar
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Bernd Kästner
- Thuringian State Office for Agriculture and Rural Area, Naumburger Straße 98, 07743, Jena, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
20
|
Wang B, Harms D, Yang XL, Bock CT. Orthohepevirus C: An Expanding Species of Emerging Hepatitis E Virus Variants. Pathogens 2020; 9:pathogens9030154. [PMID: 32106525 PMCID: PMC7157548 DOI: 10.3390/pathogens9030154] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that has received an increasing amount of attention from virologists, clinicians, veterinarians, and epidemiologists over the past decade. The host range and animal reservoirs of HEV are rapidly expanding and a plethora of emerging HEV variants have been recently identified, some of which have the potential for interspecies infection. In this review, the detection of genetically diverse HEV variants, classified into and presumably associated with the species Orthohepevirus C, currently comprising HEV genotypes C1 and C2, by either serological or molecular approach is summarized. The distribution, genomic variability, and evolution of Orthohepevirus C are analyzed. Moreover, the potential risk of cross-species infection and zoonotic transmission of Orthohepevirus C are discussed.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - C.-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- Correspondence: ; Tel.: +49-30-18754-2379; Fax: +49-30-18754-2617
| |
Collapse
|
21
|
De Sabato L, Ianiro G, Monini M, De Lucia A, Ostanello F, Di Bartolo I. Detection of hepatitis E virus RNA in rats caught in pig farms from Northern Italy. Zoonoses Public Health 2019; 67:62-69. [PMID: 31592576 DOI: 10.1111/zph.12655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) strains belonging to the Orthohepevirus genus are divided into four species (A-D). HEV strains included in the Orthohepevirus A species infect humans and several other mammals. Among them, the HEV-3 and HEV-4 genotypes are zoonotic and infect both humans and animals, of which, pigs and wild boar are the main reservoirs. Viruses belonging to the Orthohepevirus C species (HEV-C) have been considered to infect rats of different species and carnivores. Recently, two studies reported the detection of HEV-C1 (rat HEV) RNA in immunocompromised and immunocompetent patients, suggesting a possible transmission of rat HEV to humans. The role of rats and mice as reservoir of HEV and the potential zoonotic transmission is still poorly known and deserves further investigation. To this purpose, in this study, the presence of HEV RNA was investigated in the intestinal contents and liver samples from 47 Black rats (Rattus rattus) and 21 House mice (Mus musculus) captured in four pig farms in Northern Italy. The presence of both Orthohepevirus A and C was investigated by the real-rime RT-PCR specific for HEV-1 to HEV-4 genotypes of Orthohepevirus A species and by a broad spectrum hemi-nested RT-PCR capable of detecting different HEV species including rat HEV. The intestinal content from two Black rats resulted positive for HEV-C1 RNA and for HEV-3 RNA, respectively. None of the House mice was HEV RNA positive. Sequence analyses confirmed the detection of HEV-C1, genotype G1 and HEV-3 subtype e. The viral strain HEV-3e detected in the rat was identical to swine HEV strains detected in the same farm. Liver samples were negative for the detection of either rat HEV or HEV-3.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia De Lucia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Ryll R, Heckel G, Corman VM, Drexler JF, Ulrich RG. Genomic and spatial variability of a European common vole hepevirus. Arch Virol 2019; 164:2671-2682. [PMID: 31399875 DOI: 10.1007/s00705-019-04347-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Rodents host different orthohepeviruses, namely orthohepevirus C genotype HEV-C1 (rat hepatitis E virus, HEV) and the additional putative genotypes HEV-C3 and HEV-C4. Here, we screened 2,961 rodents from Central Europe by reverse transcription polymerase chain reaction (RT-PCR) and identified HEV RNA in 13 common voles (Microtus arvalis) and one bank vole (Myodes glareolus) with detection rates of 2% (95% confidence interval [CI]: 1-3.4) and 0.08% (95% CI: 0.002-0.46), respectively. Sequencing of a 279-nucleotide RT-PCR amplicon corresponding to a region within open reading frame (ORF) 1 showed a high degree of similarity to recently described common vole-associated HEV (cvHEV) sequences from Hungary. Five novel complete cvHEV genome sequences from Central Europe showed the typical HEV genome organization with ORF1, ORF2 and ORF3 and RNA secondary structure. Uncommon features included a noncanonical start codon in ORF3, multiple insertions and deletions within ORF1 and ORF2/ORF3, and the absence of a putative ORF4. Phylogenetic analysis showed all of the novel cvHEV sequences to be monophyletic, clustering most closely with an unassigned bird-derived sequence and other sequences of the species Orthohepevirus C. The nucleotide and amino acid sequence divergence of the common vole-derived sequences was significantly correlated with the spatial distance between the trapping sites, indicating mostly local evolutionary processes. Detection of closely related HEV sequences in common voles in multiple localities over a distance of 800 kilometers suggested that common voles are infected by cvHEV across broad geographic distances. The common vole-associated HEV strain is clearly divergent from HEV sequences recently found in narrow-headed voles (Microtus gregalis) and other cricetid rodents.
Collapse
Affiliation(s)
- René Ryll
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany. .,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany.
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
23
|
Murphy EG, Williams NJ, Jennings D, Chantrey J, Verin R, Grierson S, McElhinney LM, Bennett M. First detection of Hepatitis E virus (Orthohepevirus C) in wild brown rats (Rattus norvegicus) from Great Britain. Zoonoses Public Health 2019; 66:686-694. [PMID: 31033238 PMCID: PMC6767579 DOI: 10.1111/zph.12581] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.
Collapse
Affiliation(s)
- Ellen G Murphy
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Nicola J Williams
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Julian Chantrey
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Ranieri Verin
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Sylvia Grierson
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Lorraine M McElhinney
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Malcolm Bennett
- School of Veterinary Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
24
|
Simanavicius M, Juskaite K, Verbickaite A, Jasiulionis M, Tamosiunas PL, Petraityte-Burneikiene R, Zvirbliene A, Ulrich RG, Kucinskaite-Kodze I. Detection of rat hepatitis E virus, but not human pathogenic hepatitis E virus genotype 1-4 infections in wild rats from Lithuania. Vet Microbiol 2018; 221:129-133. [PMID: 29981698 DOI: 10.1016/j.vetmic.2018.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Abstract
Rat hepatitis E virus (HEV) is an orthohepevirus which is related to other HEV found in humans and other mammals. It was first identified in Norway rats (Rattus norvegicus) from Germany in 2010, and later it has been detected in Black rats (Rattus rattus) and Norway rats from USA, China, Indonesia, Vietnam and many European countries. In this study, we describe molecular and serological investigations of Black and Norway rats trapped in Lithuania, Eastern Europe, for infections with rat HEV and human HEV genotypes 1-4. Rat HEV-specific real-time reverse transcription-PCR (RT-qPCR) analysis of rat liver samples revealed the presence of rat HEV in 9 of 109 (8.3%) samples. In contrast, a RT-qPCR specific for HEV genotypes 1-4 did not reveal any positive samples. A nested broad spectrum RT-PCR was used for a confirmation of rat HEV infection with a subsequent sequencing of the amplified rat HEV genome fragment. Phylogenetic analysis revealed a clustering of all newly identified rat HEV sequences with Norway rat-derived rat HEV sequences from Germany within the species Orthohepevirus C. An indirect ELISA using a yeast-expressed truncated rat HEV capsid protein variant revealed 31.2% seropositive samples indicating a high rate of rat HEV circulation in the rat population examined. In conclusion, the current investigation confirms rat HEV infections in Norway and Black rats in Lithuania, Eastern Europe, and the non-persistent nature of HEV infection.
Collapse
Affiliation(s)
| | - Karolina Juskaite
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | - Arune Verbickaite
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | | | | | | | - Aurelija Zvirbliene
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany.
| | | |
Collapse
|
25
|
Ryll R, Eiden M, Heuser E, Weinhardt M, Ziege M, Höper D, Groschup MH, Heckel G, Johne R, Ulrich RG. Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany. INFECTION GENETICS AND EVOLUTION 2018; 61:155-159. [PMID: 29597055 DOI: 10.1016/j.meegid.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5'- and 3'- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6-86.4% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0-93.1%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits.
Collapse
Affiliation(s)
- René Ryll
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Elisa Heuser
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Markus Weinhardt
- Department of Zoology, State Museum of Natural History, Stuttgart, Germany
| | - Madlen Ziege
- Department of Ecology and Evolution, University of Frankfurt, Frankfurt am Main, Germany; University of Potsdam, Plant Ecology and Nature Conservation, Potsdam (Golm), Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne, Switzerland
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Insel Riems, Germany.
| |
Collapse
|