1
|
Ferrara G, Pagnini U, Parisi A, Amoroso MG, Fusco G, Iovane G, Montagnaro S. A pseudorabies outbreak in hunting dogs in Campania region (Italy): a case presentation and epidemiological survey. BMC Vet Res 2024; 20:323. [PMID: 39026329 PMCID: PMC11256590 DOI: 10.1186/s12917-024-04189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Pseudorabies is an infection of domestic and wild pigs that has occasionally been reported in dogs with fatal encephalitis. Hunting dogs are predisposed to pseudorabies exposure due to incorrect practices (administration of raw infected meat) or close contact with infected wild boars. This study described an outbreak of pseudorabies in two hunting dogs in the Campania region, southern Italy. CASE PRESENTATION Two hunting dogs were hospitalized after a hunting trip, with fever, itching, and self-inflicted lesions. Laboratory tests showed mild anemia and marked leukocytosis. Despite conservative therapy, both animals died 48 h after the presentation of symptoms. One of the carcasses was sent to the Department of Veterinary Medicine and Animal Production in Naples to confirm the suspicion of pseudorabies. DNA was extracted from different matrices and used as a template for real-time PCR to detect PRV. Several samples (brain, cerebellum, brainstem, lung, and liver) tested positive. Subsequent sequence analyses of glycoprotein E from DNA extracted from the brain stem revealed a sequence similarity to those described in previous cases of pseudorabies in dogs in Italy, France and Belgium. One month after the outbreak, blood samples were collected from 42 dogs belonging to the same hunting team and from 245 dogs (cohort population) living in the Campania region. All samples were tested with two commercial ELISAs to detect seroconversion against glycoproteins B and E. A seroprevalence of 19% was observed in the hunting team affected by the outbreak, while only 0.8% was observed in the regional dog population. CONCLUSIONS The data reported in this study demonstrate potential exposure to PRV by dead-end hosts, particularly hunting dogs. The sequencing results indicated the homogeneity of PRV strains circulating in the different Italian regions.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Antonio Parisi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health-Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, Naples, 80055, Italy
| | - Giovanna Fusco
- Department of Animal Health-Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, Naples, 80055, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
2
|
Moreno A, Musto C, Gobbi M, Maioli G, Menchetti M, Trogu T, Paniccià M, Lavazza A, Delogu M. Detection and molecular analysis of Pseudorabies virus from free-ranging Italian wolves (Canis lupus italicus) in Italy - a case report. BMC Vet Res 2024; 20:9. [PMID: 38172819 PMCID: PMC10765938 DOI: 10.1186/s12917-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The only natural hosts of Pseudorabies virus (PRV) are members of the family Suidae (Sus scrofa scrofa). In mammals, the infection is usually fatal and typically causes serious neurologic disease. This study describes four Aujeszky's disease cases in free-ranging Italian wolves (Canis lupus italicus). In Italy, the wolf is a strictly protected species and is in demographic expansion. CASE PRESENTATION Three wolves (Wolf A, B, and C) were found in a regional park in Northern Italy, and one (Wolf D) was found in Central Italy. Wolf A and D were alive at the time of the finding and exhibited a fatal infection with epileptic seizures and dyspnoea, dying after a few hours. Wolf B presented scratching lesions under the chin and a detachment of the right earlobe, whilst Wolf C was partially eaten. The wolves showed hepatic congestion, diffuse enteritis, moderate pericardial effusion, severe bilateral pneumonia, and diffuse hyperaemia in the brain. The diagnostic examinations included virological analyses and detection of toxic molecules able to cause serious neurological signs. All four wolves tested positive for pseudorabies virus (PrV). The analysed sequences were placed in Italian clade 1, which is divided into two subclades, "a" and "b". The sequences of Wolf A, B, and C were closely related to other Italian sequences in the subclade b, originally obtained from wild boars and hunting dogs. The sequence from Wolf D was located within the same clade and was closely related to the French hunting dog sequences belonging to group 4. CONCLUSION Results showed the presence of PrV strains currently circulating in wild boars and free-ranging Italian wolves. The genetic characterisation of the PrV UL44 sequences from the four wolves confirmed the close relationship with the sequences from wild boars and hunting dogs. This fact supports a possible epidemiological link with the high PrV presence in wild boars and the possibility of infection in wolves through consumption of infected wild boar carcasses or indirect transmission. To the best of our knowledge, this study is the first detection of Pseudorabies virus in free-ranging Italian wolves in northern and central Italy.
Collapse
Affiliation(s)
- Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124, Brescia, Italy
| | - Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, 06126, Italy
| | - Giulia Maioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124, Brescia, Italy
| | - Marika Menchetti
- Neurology and Neurosurgery Division, San Marco Veterinary Clinic, Veggiano, Padua, 35030, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124, Brescia, Italy
| | - Marta Paniccià
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, 06126, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124, Brescia, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
3
|
Ren J, Tan S, Chen X, Yao J, Niu Z, Wang Y, Ma L, Gao X, Niu S, Liang L, Li J, Zhao Y, Tian WX. Genomic Characterization and gE/gI-Deleted Strain Construction of Novel PRV Variants Isolated in Central China. Viruses 2023; 15:1237. [PMID: 37376537 DOI: 10.3390/v15061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudorabies virus (PRV) variants have caused substantial economic losses in the swine industry in China since 2011. To surveil the genetic variation in PRV field strains, here, two novel variant strains of PRV were isolated from Shanxi Province in central China and were designated SX1910 and SX1911. To identify the genetic characteristics of the two isolates, their complete genomes were sequenced, and phylogenetic analysis and sequence alignment revealed that field PRV variants have undergone genetic variations; notably, the protein-coding sequences UL5, UL36, US1 and IE180 exhibited extensive variation and contained one or more hypervariable regions. Furthermore, we also found that the glycoproteins gB and gD of the two isolates had some novel amino acid (aa) mutations. Importantly, most of these mutations were located on the surface of the protein molecule, according to protein structure model analysis. We constructed a mutant virus of SX1911 with deletion of the gE and gI genes via CRISPR/Cas9. When tested in mice, SX1911-ΔgE/gI-vaccinated mice were protected within a comparable range to Bartha-K61-vaccinated mice. Additionally, a higher dose of inactivated Bartha-K61 protected the mice from lethal SX1911 challenge, while a lower neutralization titer, higher viral load and more severe microscopic lesions were displayed in Bartha-K61-vaccinated mice. These findings highlight the need for continuous monitoring of PRV and novel vaccine development or vaccination program design for PRV control in China.
Collapse
Affiliation(s)
- Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shanshan Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd., Beijing 101102, China
| | - Jiying Yao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhihong Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing 102629, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Junping Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yujun Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
6
|
Chang C, Wang H, Hua T, Zhang D, Hong W, Deng B, Tang B. A single dose of Astragalus saponins adjuvanted inactivated vaccine for pseudorabies virus protected mice against lethal challenge. Front Vet Sci 2022; 9:1036161. [PMID: 36478947 PMCID: PMC9719957 DOI: 10.3389/fvets.2022.1036161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Pseudorabies (PR) is an important infectious disease of swine that causes enormous economic losses to the swine industry in China. Immunization with vaccines is a routine practice to control this disease. PRV inactivated vaccines usually require a booster vaccination to provide complete immune protection. Therefore, Astragalus saponins (AST) have been added as an immunopotentiator to improve the immune efficacy and reduce the immunization times for the PRV inactivated vaccine. The results in mice have shown that a single dose of AST-adjuvanted PRV inactivated vaccine promoted higher production of gB-specific IgG, IgG1, and IgG2a and neutralizing antibody, secretion of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines, and lymphocyte proliferation than mice immunized without AST. Compared to mice immunized without AST, a single dose of the AST-adjuvanted PRV inactivated vaccine improved the survival percentage of mice and reduced the PRV viral loads in the lungs and brains after lethal challenge. In summary, AST was an effective immunopotentiator to improve the immune efficacy of a single dose PRV inactivated vaccine.
Collapse
Affiliation(s)
- Chen Chang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Haiyan Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tao Hua
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Daohua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weibin Hong
- Dongguan Animal Disease Control and Prevention Center, Dongguan, China
| | - Bihua Deng
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
7
|
Liu A, Xue T, Zhao X, Zou J, Pu H, Hu X, Tian Z. Pseudorabies Virus Associations in Wild Animals: Review of Potential Reservoirs for Cross-Host Transmission. Viruses 2022; 14:v14102254. [PMID: 36298809 PMCID: PMC9609849 DOI: 10.3390/v14102254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudorabies virus (PRV) has received widespread attention for its potential health effects on humans, wildlife, domestic animals, and livestock. In this review, we focus on PRV dynamics in wildlife, given the importance of wild-origin PRV transmission to domestic and farm animals. Wild boars, pigs, and raccoons can serve as reservoirs of PRV, with viral transmission to domestic livestock occurring via several routes, such as wild herd exposure, contaminated meat consumption, and insect vector transmission. Many endangered feline and canine species can be infected with PRV, with acute disease and death within 48 h. The first confirmed human case of PRV infection in mainland China was reported in 2017. Thus, PRV exhibits potentially dangerous cross-host transmission, which is likely associated with inappropriate vaccination, poor awareness, and insufficient biosecurity. Currently, no vaccine provides full protection against PRV in all animals. Here, we summarize the epidemiology and pathogenesis of PRV infection in wild, domestic, and farmed animals, which may facilitate the design of novel therapeutics and strategies for controlling PRV infection and improving wildlife protection in China.
Collapse
Affiliation(s)
- Aijing Liu
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tong Xue
- School of Mathematical Science, Harbin Normal University, Harbin 150001, China
| | - Xiang Zhao
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
| | - Jie Zou
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
| | - Hongli Pu
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
| | - Xiaoliang Hu
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
| | - Zhige Tian
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China
- Correspondence:
| |
Collapse
|
8
|
Jin YL, Yin D, Xing G, Huang YM, Fan CM, Fan CF, Qiu XH, Dong WR, Yan Y, Gu JY, Zhou JY. The Inactivated gE/TK Gene-Deleted Vaccine Against Pseudorabies Virus Type II Confers Effective Protection in Mice and Pigs. Front Microbiol 2022; 13:943707. [PMID: 35992698 PMCID: PMC9389536 DOI: 10.3389/fmicb.2022.943707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The highly virulent and antigenic variant of Pseudorabies virus (PRV) that emerged from classical Bartha-K61-vaccinated pig herds has caused substantial economic losses to the swine industry in China since 2011. A safe and more effective vaccine is most desirable. In this study, a gE/TK gene-deficient PRV, namely, HD/c, was constructed based on a PRV type II DX strain isolated from a commercial vaccine-immunized farm and the HD/c-based inactivated vaccine was formulated and evaluated for its safety, immunogenicity, and protective efficacy in mice and piglets. The resulting PRV HD/c strain has a similar growth curve to the parental DX strain. After vaccination, the inactivated HD/c vaccine did not cause any visible gross pathological or histopathological changes in the tissues of mice and piglets and provided rapid and potent protection against the challenge of the classical and variant PRVs at day 21 post-vaccination in mice. A single immunization of 108.5TCID50 inactivated PRV HD/c strain-elicited robust immunity with high titer of neutralizing antibody and provided complete protection from the lethal challenge of PRV DX strain in piglets. These results indicated that the inactivated PRV HD/c vaccine with the deletion of gE/TK genes was a safe and effective PRV vaccine candidate for the control of PRV.
Collapse
Affiliation(s)
- Yu-Lan Jin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- The Experimental Teaching Center, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Di Yin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xing
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Ming Huang
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Chun-Mei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Fei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Huo Qiu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Ren Dong
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Yan Gu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Ji-Yong Zhou
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Ji-Yong Zhou
| |
Collapse
|
9
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
10
|
Generation of Premature Termination Codon (PTC)-Harboring Pseudorabies Virus (PRV) via Genetic Code Expansion Technology. Viruses 2022; 14:v14030572. [PMID: 35336979 PMCID: PMC8950157 DOI: 10.3390/v14030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.
Collapse
|
11
|
Aytogu G, Toker EB, Yavas O, Kadiroglu B, Ates O, Ozyigit MO, Yesilbag K. First isolation and molecular characterization of pseudorabies virus detected in Turkey. Mol Biol Rep 2022; 49:1679-1686. [PMID: 35031924 DOI: 10.1007/s11033-021-06974-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pigs are the main host species for the pseudorabies virus. It causes fatal encephalitis in many species, including humans. This article aims to report the first clinical case of pseudorabies as well as isolation and molecular characterization of the virus from a hunting dog in Bursa province, Turkey. METHODS AND RESULTS The dog shows clinical signs including pruritus and neurological signs such as stumbling and inability to stand up compatible with pseudorabies. The virus isolates were obtained from the supernatant of fresh tissue samples from the cerebellum, cornu ammonis, spleen, salivary gland, conjunctival swab, serum, and PBMC samples. The glycoprotein C region is targeted for viral DNA amplification. Pseudorabies virus genome detected both in fresh tissues and supernatants of third passage on Vero cells. The number of PCR positive samples was dramatically increased after cell culture inoculations. Genome sequencing of strain Bursa-10303, which was isolated from a non-endemic area, identified it to belong to clade A. CONCLUSIONS This study confirms the possible presence of pseudorabies infection in the wildlife reservoirs in Turkey. Future studies may clarify the importance of the infection in Turkey region, where there is no prevalent pig production.
Collapse
Affiliation(s)
- Gizem Aytogu
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Eda B Toker
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozkan Yavas
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Berfin Kadiroglu
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozer Ates
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Musa Ozgur Ozyigit
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Kadir Yesilbag
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
12
|
Ciarello FP, Moreno A, Miragliotta N, Antonino A, Fiasconaro M, Purpari G, Amato B, Ippolito D, Di Marco Lo Presti V. Aujeszky's disease in hunting dogs after the ingestion of wild boar raw meat in Sicily (Italy): clinical, diagnostic and phylogenetic features. BMC Vet Res 2022; 18:27. [PMID: 34996475 PMCID: PMC8742332 DOI: 10.1186/s12917-022-03138-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aujeszky's disease is caused by Suid Herpes Virus-1 and species belonging to the genus Sus scrofa are the main reservoir hosts. This virus, however, is capable of infecting and causing severe disease, with an almost constant fatal outcome in other species, both domestic and wild (carnivores, monogastric herbivores and ruminants). Moreover, the possibility of transmission to humans has been demonstrated. This study reports and describes the clinical, diagnostic, pathological and phylogenetic aspects of two cases of Aujeszky's disease in two hunting dogs following the ingestion of infected wild boar raw meat. These cases are contextualized in the province of Messina (Sicily), where a high prevalence of Aujeszky's disease has been recorded (average of 12,20% in the period 2010–2019) in farmed pig, and with evidence of spread to other species. A severe outbreak in cattle has recently been reported in these areas. Nevertheless, cases of Aujeszky's disease in dogs are rarely reported and this study represents the first well-documented report in this species in Sicily. Case presentation After a wild boar hunt, two dogs showed neurological symptoms and intense itching unresponsive to therapy. Diagnosis of Aujeszky's disease was made based on clinical suspicion, anamnestic information and confirmed by the isolation of the virus from the brain of both dogs. In addition, molecular typing, sequencing and phylogenetic analysis of the Real-Time PCR products were performed. The sequences studied were placed in the Italian Clade 1 along with the sequences obtained from wild boars and hunting dogs from Italy and France. Conclusions The finding of this disease in non-natural hosts in Sicilian multi-host epidemiological contexts suggests that the risk of inter-species transmission is concrete and that attention should be paid to developing disease control programs in these territories. The data obtained from genome sequencing of the two SuHV-1 isolates contribute to the enrichment of the GenBank with unknown sequences and the phylogenetic analysis implementation. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03138-2.
Collapse
Affiliation(s)
- Flavia Pruiti Ciarello
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Ana Moreno
- National Reference Center for Aujeszky's Disease, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna " Bruno Ubertini", Via Bianchi, 9 - 25124, Brescia, Italy
| | - Nicola Miragliotta
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Aliberti Antonino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Michele Fiasconaro
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Benedetta Amato
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Dorotea Ippolito
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy.
| | - Vincenzo Di Marco Lo Presti
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| |
Collapse
|
13
|
First Isolation and Molecular Characterization of Pseudorabies Virus in a Hunting Dog in Sicily (Southern Italy). Vet Sci 2021; 8:vetsci8120296. [PMID: 34941823 PMCID: PMC8706632 DOI: 10.3390/vetsci8120296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudorabies virus (PrV) is the etiological agent of Aujeszky's disease, a viral infection that causes neurological lethal illness in mammals other than swine. Herein, we describe the occurrence of PrV infection in a hunting dog that had been bitten by an infected wild boar in Sicily, reporting for the first time genetic and phylogenetic data on the virus strain isolated in a dog in this Italian region. The dog was referred for severe neurological signs, respiratory distress, and intense itch around the muzzle. Death occurred within 48 h to the onset of clinical signs. On gross examination, self-induced skin lesions to the head due to intense itching and diffuse cerebral congestion were observed, whereas mild, aspecific, nonsuppurative meningitis was histologically diagnosed. Diffuse PrV positivity in neurons of the brainstem was observed by immunohistochemistry. PrV DNA was isolated and amplified from olfactory bulbs by nested PCR, targeting the viral glycoprotein G gene, and the sequence obtained matched with sequences of PrV isolates from dogs and wild boar. Isolation of PrV in the dog herein analysed denotes the spread of the virus in wild boar populations in Sicily and provides a proof of direct interspecies transmission. Thus, there is an urgent need to increase our understanding of the epidemiology of the PrV infection in wildlife to provide tools to trace possible spill over into domestic pigs or other livestock.
Collapse
|
14
|
Tk-deleted pseudorabies virus retains high pathogenicity in rats. J Vet Res 2021; 65:401-405. [PMID: 35111992 PMCID: PMC8775734 DOI: 10.2478/jvetres-2021-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction The pseudorabies virus (PRV) gene encoding thymidine kinase (tk) is an important virulence-associated factor. Attenuation of PRV in susceptible animals is a frequent result of tk deletion. The aim of the study was to assess the pathogenicity of tk-deleted PRV in rats. Material and Methods Sprague Dawley rats were infected with the tk-deleted PRV strain SuHV-1 ΔTK:247via intranasal or intramuscular inoculation. PRV loads in ten tissues from dead and euthanised rats were determined using real-time PCR. Results Infection with SuHV-1 ΔTK:247 could cause death in rats. The 50% lethal dose (LD50) of SuHV-1 ΔTK:247 via intranasal inoculation was 103.16 TCID50 in rats. Intramuscular inoculation required a higher dose of SuHV-1 ΔTK:247 (105.0 TCID50). A high SuHV-1 ΔTK:247 titre was observed in the trigeminal ganglia or spinal cord of dead rats. Conclusion The results of this study show that rats are highly susceptible to PRV infection, and tk deletion did not completely diminish the pathogenicity of PRV in rats.
Collapse
|
15
|
Retrieving Historical Cases of Aujeszky's Disease in Sicily (Italy): Report of a Natural Outbreak Affecting Sheep, Goats, Dogs, Cats and Foxes and Considerations on Critical Issues and Perspectives in Light of the Recent EU Regulation 429/2016. Pathogens 2021; 10:pathogens10101301. [PMID: 34684250 PMCID: PMC8540801 DOI: 10.3390/pathogens10101301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Aujeszky’s disease is caused by Suid alphaherpesvirus 1, and its main reservoir host is the pig. However, other species are also susceptible. Infection with this virus causes a severe neurological clinical picture named Aujeszky’s disease, usually accompanied by itching and death a few days after the onset of symptoms. This study reports a multi-species outbreak of Aujeszky’s disease that occurred in Sicily, which led to the death of 2 goats, 15 sheep, 2 dogs, 2 cats and 2 foxes. The diagnosis was made by culture, indirect immunofluorescence on brain samples and confirmed by biological test on rabbits. This study reports the first cases of Aujeszky’s disease in Italy in cats, goat and sheep. The finding of Aujeszky’s disease in several species in Sicily suggests a potential epizootic risk. In such areas where a multi-host system is recognised, an analysis of the risk factors should be carried out in order to develop targeted strategies for the control and eradication of the disease. The critical issues that hinder the control of Aujeszky’s disease in the studied territory and perspectives for eradication in the light of EU regulation 429/2016 are also discussed.
Collapse
|
16
|
Ren CZ, Hu WY, Zhang JW, Wei YY, Yu ML, Hu TJ. Establishment of inflammatory model induced by Pseudorabies virus infection in mice. J Vet Sci 2021; 22:e20. [PMID: 33774936 PMCID: PMC8007442 DOI: 10.4142/jvs.2021.22.e20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. OBJECTIVES Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. METHODS Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. RESULTS At 10⁵-10⁶ TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 10² TCID50 of PRV produced a significant inflammatory mediator increase. CONCLUSIONS An inflammatory model induced by PRV infection was established in mice, and 10² TCID50 PRV was considered as the best concentration for the establishment of the model.
Collapse
Affiliation(s)
- Chun Zhi Ren
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.,Guangxi Agricultural Vocational College, Nanning 530007, PR China
| | - Wen Yue Hu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jin Wu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ying Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mei Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| | - Ting Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
17
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
18
|
Li H, Liang R, Pang Y, Shi L, Cui S, Lin W. Evidence for interspecies transmission route of pseudorabies virus via virally contaminated fomites. Vet Microbiol 2020; 251:108912. [PMID: 33160195 DOI: 10.1016/j.vetmic.2020.108912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Pseudorabies virus (PRV) is a zoonotic agent with a wide host range, causing significant economic losses in animal husbandry and potential public health risk globally. The causative agent has recently gained attention due to the inter-species transmission among different species of animals, even human beings. Although PRV's prevalence is found in many species of animals, regardless of whether the strain involved is a vaccine, classical or variant, few lines of evidence for the viral transmission route are available. Here, we reported that viral contamination is associated with the inter-species transmission of PRV. We found that PRV contamination was widely distributed in the environment of pig farms, that viral distribution in the environment is associated with the implementation of biosecurity measures, and that PRV could transmit from pigs to dogs through virally contaminated fomites. Collectively, our findings provide a basis for understanding the ecology and transmission route of PRV and underscore the importance of implementing biosecurity measures to control this disease.
Collapse
Affiliation(s)
- Hongxin Li
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yanling Pang
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Wencheng Lin
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
19
|
Tu L, Lian J, Pang Y, Liu C, Cui S, Lin W. Retrospective detection and phylogenetic analysis of pseudorabies virus in dogs in China. Arch Virol 2020; 166:91-100. [PMID: 33074409 DOI: 10.1007/s00705-020-04848-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years as a result of a recent outbreak of pseudorabies. The causative agent has a wide spectrum of hosts, including pigs, cattle, sheep, dogs, cats, bats, bears, and even some avian species. Although dog-related cases of pseudorabies have been reported regularly, many cases are overlooked, and few PRV strains are isolated because death occurs rapidly after PRV infection and veterinarians often do not test for PRV in dogs. Here, we performed a retrospective detection of PRV in dogs from July 2017 to December 2018. We found that PRV (including gE-deleted strains, classical strains, and variant strains) is prevalent in dogs regardless of season and region and that the epidemic PRV strains in dogs share high sequence similarity with gC and gE genes of swine epidemic strains and commercial vaccine strains. Collectively, our findings underscore the importance of PRV surveillance in dogs, which is beneficial for understanding the epidemiology of PRV in dogs and assists in efforts aimed at effectively controlling this disease.
Collapse
Affiliation(s)
- Lu Tu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jiamin Lian
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanling Pang
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cun Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Wencheng Lin
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
20
|
Moreno A, Chiapponi C, Sozzi E, Morelli A, Silenzi V, Gobbi M, Lavazza A, Paniccià M. Detection of a gE-deleted Pseudorabies virus strain in an Italian red fox. Vet Microbiol 2020; 244:108666. [PMID: 32402347 DOI: 10.1016/j.vetmic.2020.108666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
This study describes an Aujeszky's disease case in an adult male red fox found in an urban area in Central Italy, that exhibited a fatal infection with neurological lesions, but neither itching nor skin lesions. Diagnostic examinations included histology, and parasitological, bacteriological and virological analyses. Detection of parasitic enteric pathogens, bacteria, E. coli, Leptospira spp., rabies, canine distemper virus, parvovirus, hepatitis E virus and pseudorabies virus (PrV) was performed. Results showed the presence of a gE-deleted PrVthat was closely related to the NIA-3 strain but differed from the PrV strains currently circulating in wild boars and domestic pigs in Italy. All the results led to the conclusion that the fox suffered from Aujeszky's disease caused by a gE-deleted PrV strain closely related to a vaccine strain. The epidemiological link between the PrV vaccine strain and fox infection remains unclear. It could involve vaccinated pigs as a primary source of infection by direct or indirect contact with the red fox or less likely it could be related to improper use of the vaccine in the fox.
Collapse
Affiliation(s)
- Ana Moreno
- National Center for Aujeszky's Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia Romagna, Via A Bianchi, 9, 25124 Brescia, Italy.
| | - Chiara Chiapponi
- Diagnostic Laboratory of Parma, Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia Romagna, Via Dei Mercati, 13A, 43126 Parma, Italy
| | - Enrica Sozzi
- National Center for Aujeszky's Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia Romagna, Via A Bianchi, 9, 25124 Brescia, Italy
| | - Alessandra Morelli
- Diagnostic Laboratory of Fermo, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Contrada San Martino, 6/A, 63023 Fermo, Italy
| | - Valentina Silenzi
- Diagnostic Laboratory of Fermo, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Contrada San Martino, 6/A, 63023 Fermo, Italy
| | - Marco Gobbi
- Diagnostic Department, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G Salvemini, 1, 06126 Perugia, Italy
| | - Antonio Lavazza
- National Center for Aujeszky's Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia Romagna, Via A Bianchi, 9, 25124 Brescia, Italy
| | - Marta Paniccià
- Diagnostic Laboratory of Fermo, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Contrada San Martino, 6/A, 63023 Fermo, Italy
| |
Collapse
|
21
|
Lian K, Zhang M, Zhou L, Song Y, Wang G, Wang S. First report of a pseudorabies-virus-infected wolf (Canis lupus) in China. Arch Virol 2019; 165:459-462. [PMID: 31863263 DOI: 10.1007/s00705-019-04502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022]
Abstract
We provide the first report of a wolf infected with pseudorabies virus (PRV) in China. We observed the clinical symptoms and also dissected tissue samples from the wolf. The samples were ground under sterile conditions and injected subcutaneously into the necks of rabbits, which subsequently developed intense pruritus symptoms and died. The PRV strain from the wolf was isolated in porcine kidney (PK)-15 cells and was specifically recognized by pig PRV antibody-positive serum, as shown by indirect immunofluorescence. Tissues from the dead wolf and rabbits were examined by polymerase chain reaction (PCR), and the PCR-amplified partial glycoprotein E gene was sequenced, which confirmed that the wolf had died as a result of PRV infection.
Collapse
Affiliation(s)
- Kaiqi Lian
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China.,Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, 455000, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, 455000, China
| | - Mingliang Zhang
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Lingling Zhou
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Yuwei Song
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Guodong Wang
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Shuangshan Wang
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China. .,Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, 455000, China.
| |
Collapse
|
22
|
Yin H, Li Z, Zhang J, Huang J, Kang H, Tian J, Qu L. Construction of a US7/US8/UL23/US3-deleted recombinant pseudorabies virus and evaluation of its pathogenicity in dogs. Vet Microbiol 2019; 240:108543. [PMID: 31902487 DOI: 10.1016/j.vetmic.2019.108543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Since 2011, to control the spread of pseudorabies (PR), US7/US8/UL23-deleted recombinant PRV (rPRV) vaccines based on current variants have been developed. The vaccines can provide effective immune protection to pigs, but fur-bearing animals, such as dogs, foxes, and minks, are increasingly infected by PRV due to consuming contaminated raw meat or offal from immunized pigs. It is suspected that the attenuated PRV vaccine strain is not safe for these fur-bearing animals. To confirm this, we construct a US7/US8/UL23-deleted and a US7/US8/UL23/US3-deleted rPRV based on PRV GL isolated from fox using the CRISPR/Cas9 method. Growth kinetics in vitro and pathogenicity in dogs were compared between the wild type and both rPRVs. The results showed that the growth kinetics of wild-type PRV and US7/US8/UL23-deleted rPRV were faster than those of US7/US8/UL23/US3-deleted recombinant PRV from 24 h to 48 h post infection. Moreover, PRV GL- and rPRVdelUS7/US8/UL23-infected cells formed cell-cell fusion, but the rPRVdelUS7/US8/UL23/US3-infected cells did not. Dogs challenged with wild-type PRV or US7/US8/UL23-deleted rPRV showed obvious nervous symptoms, and all the dogs died, but the group challenged with the US7/US8/UL23/US3-deleted rPRV did not show any nervous symptoms, and all the dogs survived for the duration of the experiment. Tissue viral load analyses also showed that the virulence of the US7/US8/UL23/US3-deleted rPRV was significantly reduced in dogs. This study provides evidence that the US7/US8/UL23-deleted rPRV variant still exhibits high virulence for dogs and also highlights the role of the US3 gene in the pathogenicity of PRV in dogs and provides a strategy for developing a safer vaccine.
Collapse
Affiliation(s)
- Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|