1
|
Obregon-Gutierrez P, Bonillo-Lopez L, Correa-Fiz F, Sibila M, Segalés J, Kochanowski K, Aragon V. Gut-associated microbes are present and active in the pig nasal cavity. Sci Rep 2024; 14:8470. [PMID: 38605046 PMCID: PMC11009223 DOI: 10.1038/s41598-024-58681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The nasal microbiota is a key contributor to animal health, and characterizing the nasal microbiota composition is an important step towards elucidating the role of its different members. Efforts to characterize the nasal microbiota composition of domestic pigs and other farm animals frequently report the presence of bacteria that are typically found in the gut, including many anaerobes from the Bacteroidales and Clostridiales orders. However, the in vivo role of these gut-microbiota associated taxa is currently unclear. Here, we tackled this issue by examining the prevalence, origin, and activity of these taxa in the nasal microbiota of piglets. First, analysis of the nasal microbiota of farm piglets sampled in this study, as well as various publicly available data sets, revealed that gut-microbiota associated taxa indeed constitute a substantial fraction of the pig nasal microbiota that is highly variable across individual animals. Second, comparison of herd-matched nasal and rectal samples at amplicon sequencing variant (ASV) level showed that these taxa are largely shared in the nasal and rectal microbiota, suggesting a common origin driven presumably by the transfer of fecal matter. Third, surgical sampling of the inner nasal tract showed that gut-microbiota associated taxa are found throughout the nasal cavity, indicating that these taxa do not stem from contaminations introduced during sampling with conventional nasal swabs. Finally, analysis of cDNA from the 16S rRNA gene in these nasal samples indicated that gut-microbiota associated taxa are indeed active in the pig nasal cavity. This study shows that gut-microbiota associated taxa are not only present, but also active, in the nasal cavity of domestic pigs, and paves the way for future efforts to elucidate the function of these taxa within the nasal microbiota.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Laura Bonillo-Lopez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Karl Kochanowski
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
2
|
Obregón-Gutierrez P, Aragón V, Correa-Fiz F. Analysis of the Nasal Microbiota in Healthy and Diseased Pigs. Methods Mol Biol 2024; 2815:93-113. [PMID: 38884913 DOI: 10.1007/978-1-0716-3898-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Massive sequencing of a fragment of 16S rRNA gene allows the characterization of bacterial communities in different body sites: the microbiota. Nasal microbiota can be analyzed by DNA extraction from nasal swabs, amplification of the specific fragment of interest, and posterior sequencing. The raw sequences obtained need to go through a computational process to check their quality and then assign the taxonomy. Here, we will describe the complete process from sampling to get the microbial diversity of nasal microbiota in health and disease.
Collapse
Affiliation(s)
- Pau Obregón-Gutierrez
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Virginia Aragón
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain.
| |
Collapse
|
3
|
Bonillo-Lopez L, Obregon-Gutierrez P, Huerta E, Correa-Fiz F, Sibila M, Aragon V. Intensive antibiotic treatment of sows with parenteral crystalline ceftiofur and tulathromycin alters the composition of the nasal microbiota of their offspring. Vet Res 2023; 54:112. [PMID: 38001497 PMCID: PMC10675909 DOI: 10.1186/s13567-023-01237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.
Collapse
Affiliation(s)
- Laura Bonillo-Lopez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Eva Huerta
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain.
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
4
|
Bacterial topography of the upper and lower respiratory tract in pigs. Anim Microbiome 2023; 5:5. [PMID: 36647171 PMCID: PMC9843957 DOI: 10.1186/s42523-023-00226-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/24/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Understanding the complex structures and interactions of the bacterial communities inhabiting the upper (URT) and lower (LRT) respiratory tract of pigs is at an early stage. The objective of this study was to characterize the bacterial topography of three URT (nostrils, choana, and tonsils) and LRT (proximal trachea, left caudal lobe and secondary bronchi) sites in pigs. Thirty-six post-mortem samples from six pigs were analysed by 16S rRNA gene quantification and sequencing, and the microbiota in nostrils and trachea was additionally profiled by shotgun sequencing. RESULTS The bacterial composition obtained by the two methods was congruent, although metagenomics recovered only a fraction of the diversity (32 metagenome-assembled genomes) due to the high proportion (85-98%) of host DNA. The highest abundance of 16S rRNA copies was observed in nostrils, followed by tonsils, trachea, bronchi, choana and lung. Bacterial richness and diversity were lower in the LRT compared to the URT. Overall, Firmicutes and Proteobacteria were identified as predominant taxa in all sample types. Glasserella (15.7%), Streptococcus (14.6%) and Clostridium (10.1%) were the most abundant genera but differences in microbiota composition were observed between the two tracts as well as between sampling sites within the same tract. Clear-cut differences were observed between nasal and tonsillar microbiomes (R-values 0.85-0.93), whereas bacterial communities inhabiting trachea and lung were similar (R-values 0.10-0.17). Moraxella and Streptococcus were more common in bronchial mucosal scraping than in lavage, probably because of mucosal adherence. The bacterial microbiota of the choana was less diverse than that of the nostrils and similar to the tracheal microbiota (R-value 0.24), suggesting that the posterior nasal cavity serves as the primary source of bacteria for the LRT. CONCLUSION We provide new knowledge on microbiota composition and species abundance in distinct ecological niches of the pig respiratory tract. Our results shed light on the distribution of opportunistic bacterial pathogens across the respiratory tract and support the hypothesis that bacteria present in the lungs originate from the posterior nasal cavity. Due to the high abundance of host DNA, high-resolution profiling of the pig respiratory microbiota by shotgun sequencing requires methods for host DNA depletion.
Collapse
|
5
|
Impact of Raised without Antibiotics Measures on Antimicrobial Resistance and Prevalence of Pathogens in Sow Barns. Antibiotics (Basel) 2022; 11:antibiotics11091221. [PMID: 36139998 PMCID: PMC9495050 DOI: 10.3390/antibiotics11091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing concern over the emergence of antimicrobial resistance (AMR) in animal production as a result of extensive and inappropriate antibiotic use has prompted many swine farmers to raise their animals without antibiotics (RWA). In this study, the impact of implementing an RWA production approach in sow barns on actual on-farm antibiotic use, the emergence of AMR, and the abundance of pathogens was investigated. Over a 13-month period, fecal and nasopharynx samples were collected at 3-month intervals from sows raised in RWA barns and sows in conventional barns using antibiotics in accordance with the new regulations (non-RWA). Whole genome sequencing (WGS) was used to determine the prevalence of AMR and the presence of pathogens in those samples. Records of all drug use from the 13-month longitudinal study indicated a significant reduction in antimicrobial usage in sows from RWA barns compared to conventional non-RWA barns. Antifolates were commonly administered to non-RWA sows, whereas β-lactams were widely used to treat sows in RWA barns. Metagenomic analyses demonstrated an increased abundance of pathogenic Actinobacteria, Firmicutes, and Proteobacteria in the nasopharynx microbiome of RWA sows relative to non-RWA sows. However, WGS analyses revealed that the nasal microbiome of sows raised under RWA production exhibited a significant increase in the frequency of resistance genes coding for β-lactams, MDR, and tetracycline.
Collapse
|
6
|
Ke L, Liu X, Du B, Wang Y, Zheng Y, Li Q. Component analysis and risk assessment of biogas slurry from biogas plants. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Arruda AG, Deblais L, Hale VL, Madden C, Pairis-Garcia M, Srivastava V, Kathayat D, Kumar A, Rajashekara G. A cross-sectional study of the nasal and fecal microbiota of sows from different health status within six commercial swine farms. PeerJ 2021; 9:e12120. [PMID: 34616608 PMCID: PMC8451438 DOI: 10.7717/peerj.12120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Cull sows are a unique population on swine farms, often representing poor producing or compromised animals, and even though recent studies have reported that the microbiome is associated with susceptibility to diseases, the microbiome of the cull sow population has not been explored. The main objective of this study was to investigate whether there were differences in fecal and upper respiratory tract microbiota composition for groups of sows of different health status (healthy, cull, and compromised/ clinical sows) and from different farms (1 to 6). Methods Six swine farms were visited once. Thirty individual fecal samples and nasal swabs were obtained at each farm and pooled by five across health status and farm. Samples underwent 16S rRNA gene amplicon sequencing and nasal and fecal microbiota were analyzed using QIIME2 v.2021.4. Results Overall, the diversity of the nasal microbiota was lower than the fecal microbiota (p < 0.01). No significant differences were found in fecal or nasal alpha diversity by sow's health status or by farm. There were significant differences in nasal microbial composition by farm and health status (PERMANOVA, p < 0.05), and in fecal microbiota by farm (PERMANOVA, p < 0.05), but not by health status. Lastly, at the L7 level, there was one differentially abundant taxa across farms for each nasal and fecal pooled samples. Discussion This study provided baseline information for nasal and fecal microbiota of sows under field conditions, and results suggest that farm of origin can affect microbial diversity and composition. Furthermore, sow's health status may have an impact on the nasal microbiota composition.
Collapse
Affiliation(s)
- Andreia G Arruda
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Loic Deblais
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Vanessa L Hale
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Monique Pairis-Garcia
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, United States of America
| | - Vishal Srivastava
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Dipak Kathayat
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Gireesh Rajashekara
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
8
|
Chrun T, Leng J, La Ragione RM, Graham SP, Tchilian E. Changes in the Nasal Microbiota of Pigs Following Single or Co-Infection with Porcine Reproductive and Respiratory Syndrome and Swine Influenza A Viruses. Pathogens 2021; 10:1225. [PMID: 34684174 PMCID: PMC8540314 DOI: 10.3390/pathogens10101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
Host-microbiota interactions are important in shaping immune responses that have the potential to influence the outcome of pathogen infection. However, most studies have focused on the gut microbiota and its possible association with disease outcome, while the role of the nasal microbiota and respiratory pathogen infection has been less well studied. Here we examined changes in the composition of the nasal microbiota of pigs following experimental infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), swine influenza A H3N2 virus (H3N2) or both viruses. DNA extracted from nasal swabs were subjected to 16S rRNA sequencing to study the composition of the nasal microbiota. Bacterial richness fluctuated in all groups, with a slight reduction in pigs singly infected with PRRSV-2 and H3N2 during the first 5 days of infection compared to uninfected controls. In contrast, nasal bacterial richness remained relatively stable after PRRSV-2/H3N2 co-infection. PRRSV-2 and H3N2, alone or in combination differentially altered the abundance and distribution of bacterial families. Single and co-infection with PRRSV-2 or H3N2 was associated with the expansion of the Neisseriaceae family. A positive correlation between H3N2 viral load and the relative abundance of the Neisseriaceae was observed. However, further mechanistic studies are required to understand the significance of the changes in specific bacterial families following these viral infections.
Collapse
Affiliation(s)
- Tiphany Chrun
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;
| | | | - Simon P. Graham
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| | - Elma Tchilian
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| |
Collapse
|
9
|
Mach N, Baranowski E, Nouvel LX, Citti C. The Airway Pathobiome in Complex Respiratory Diseases: A Perspective in Domestic Animals. Front Cell Infect Microbiol 2021; 11:583600. [PMID: 34055660 PMCID: PMC8160460 DOI: 10.3389/fcimb.2021.583600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory infections in domestic animals are a major issue for veterinary and livestock industry. Pathogens in the respiratory tract share their habitat with a myriad of commensal microorganisms. Increasing evidence points towards a respiratory pathobiome concept, integrating the dysbiotic bacterial communities, the host and the environment in a new understanding of respiratory disease etiology. During the infection, the airway microbiota likely regulates and is regulated by pathogens through diverse mechanisms, thereby acting either as a gatekeeper that provides resistance to pathogen colonization or enhancing their prevalence and bacterial co-infectivity, which often results in disease exacerbation. Insight into the complex interplay taking place in the respiratory tract between the pathogens, microbiota, the host and its environment during infection in domestic animals is a research field in its infancy in which most studies are focused on infections from enteric pathogens and gut microbiota. However, its understanding may improve pathogen control and reduce the severity of microbial-related diseases, including those with zoonotic potential.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Baranowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Laurent Xavier Nouvel
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
10
|
Guo H, Gu J, Wang X, Song Z, Qian X, Sun W, Nasir M, Yu J. Negative effects of oxytetracycline and copper on nitrogen metabolism in an aerobic fermentation system: Characteristics and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123890. [PMID: 33264956 DOI: 10.1016/j.jhazmat.2020.123890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Aerobic fermentation is a sustainable option for livestock waste treatment, but little is known about the microbial mechanism that allows oxytetracycline (OTC) and copper (Cu) to affect nitrogen metabolism during aerobic fermentation. In this study, contamination with OTC and Cu alone or in combination reduced the total nitrogen (TN) content of the fermentation products. Metagenomic analysis demonstrated that the contribution of microorganisms to nitrogen metabolism changed significantly in different stages of fermentation. OTC and Cu affected the formation and utilization pattern of NO2--N by microorganisms, which were mainly responsible for the reduced N2O emissions. In the presence of OTC and/or Cu, Myxococcus_stipitatus, Myxococcus_xanthus, and Gimesia_maris were evidently enriched at the end of fermentation, and their increased roles in the dissimilatory reduction of nitrite to ammonium were confirmed by network analysis. Ardenticatena_maritima was the main contributor to denitrification (NO3--N to NO). Furthermore, organic matter (OM) was the most important factor responsible for driving the variation in nitrogen-transforming microorganisms and controlling denitrification. OTC affected the formation of OM, which can directly affect TN (λ = -0.37, p < 0.001), and the adverse impact of Cu on nirK- and nifH-dominant microorganisms was validated (p < 0.05).
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Pirolo M, Espinosa-Gongora C, Bogaert D, Guardabassi L. The porcine respiratory microbiome: recent insights and future challenges. Anim Microbiome 2021; 3:9. [PMID: 33499988 PMCID: PMC7934557 DOI: 10.1186/s42523-020-00070-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Understanding the structure of the respiratory microbiome and its complex interactions with opportunistic pathogenic bacteria has become a topic of great scientific and economic interest in livestock production, given the severe consequences of respiratory disease on animal health and welfare. The present review focuses on the microbial structures of the porcine upper and lower airways, and the factors that influence microbiome development and onset of respiratory disease. Following a literature search on PubMed and Scopus, 21 articles were selected based on defined exclusion criteria (20 studies performed by 16S rRNA gene sequencing and one by shotgun metagenomics). Analysis of the selected literature indicated that the microbial structure of the upper respiratory tract undergoes a remarkable evolution after birth and tends to stabilise around weaning. Antimicrobial treatment, gaseous ammonia concentration, diet and floor type are amongst the recognized environmental factors influencing microbiome structure. The predominant phyla of the upper respiratory tract are Proteobacteria and Firmicutes with significant differences at the genus level between the nasal and the oropharyngeal cavity. Only five studies investigated the lower respiratory tract and their results diverged in relation to the relative abundance of these two phyla and even more in the composition of the lung microbiome at the genus level, likely because of methodological differences. Reduced diversity and imbalanced microbial composition are associated with an increased risk of respiratory disease. However, most studies presented methodological pitfalls concerning specimen collection, sequencing target and depth, and lack of quality control. Standardization of sampling and sequencing procedures would contribute to a better understanding of the structure of the microbiota inhabiting the lower respiratory tract and its relationship with pig health and disease.
Collapse
Affiliation(s)
- Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Science, Roma Tre University, Rome, Italy
| | - Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Debby Bogaert
- Center for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathobiology & Population Sciences, Royal Veterinary College, United Kingdom, Hawkhead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
12
|
Correa-Fiz F, Neila-Ibáñez C, López-Soria S, Napp S, Martinez B, Sobrevia L, Tibble S, Aragon V, Migura-Garcia L. Feed additives for the control of post-weaning Streptococcus suis disease and the effect on the faecal and nasal microbiota. Sci Rep 2020; 10:20354. [PMID: 33230191 PMCID: PMC7683732 DOI: 10.1038/s41598-020-77313-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Medicated feed is a common strategy to control the occurrence of Streptococcus suis disease in swine production, but feed additives may constitute an alternative to metaphylaxis. In a farm with post-weaning S. suis disease, the following additives were tested: lysozyme (Lys), medium chain fatty acids plus lysozyme (FA + Lys), FA plus a natural anti-inflammatory (FA + antiinf) and amoxicillin (Amox). During the course of the study, FA + antiinf and Amox groups showed lower prevalence of clinical signs compatible with S. suis disease than the rest of the groups. Piglets from the FA + antiinf group showed high diversity and richness in their nasal and faecal microbiota. Diet supplements did not have major effects on the faecal microbiota, where the genus Mitsuokella was the only differentially present in the FA + Lys group. In the nasal microbiota, piglets from FA + antiinf presented higher differential abundance of a sequence variant from Ruminococcaceae and lower abundance of an unclassified genus from Weeksellaceae. In general, we detected more significant changes in the nasal than in the feacal microbiota, and found that parity of the dams affected the microbiota composition of their offspring, with piglets born to gilts exhibiting lower richness and diversity. Our results suggest that additives could be useful to control post-weaning disease when removing antimicrobials in farms.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sebastian Napp
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | | | - Laia Sobrevia
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Simon Tibble
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Lourdes Migura-Garcia
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Ricker N, Trachsel J, Colgan P, Jones J, Choi J, Lee J, Coetzee JF, Howe A, Brockmeier SL, Loving CL, Allen HK. Toward Antibiotic Stewardship: Route of Antibiotic Administration Impacts the Microbiota and Resistance Gene Diversity in Swine Feces. Front Vet Sci 2020; 7:255. [PMID: 32509805 PMCID: PMC7249142 DOI: 10.3389/fvets.2020.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Oral antibiotics are a critical tool for fighting bacterial infections, yet their use can have negative consequences, such as the disturbance of healthy gut bacterial communities and the dissemination of antibiotic residues in feces. Altering antibiotic administration route may limit negative impacts on intestinal microbiota and reduce selective pressure for antimicrobial resistance genes (ARG) persistence and mobility. Thus, a study was performed in pigs to evaluate route of therapeutic oxytetracycline (oxytet) administration, an antibiotic commonly used in the U.S. swine industry, on intestinal microbial diversity and ARG abundance. Given that oral antibiotics would be in direct contact with intestinal bacteria, we hypothesized that oral administration would cause a major shift in intestinal bacterial community structure when compared to injected antibiotic. We further postulated that the impact would extend to the diversity and abundance of ARG in swine feces. At approximately 3 weeks-of-age, piglets were separated into three groups (n = 21–22 per group) with two groups receiving oxytet (one via injection and the second via feed) and a third non-medicated group. Oxytet levels in the plasma indicated injected antibiotic resulted in a spike 1 day after administration, which decreased over time, though oxytet was still detected in plasma 14 days after injection. Conversely, in-feed oxytet delivery resulted in lower but less variable oxytet levels in circulation and high concentrations in feces. Similar trends were observed in microbial community changes regardless of route of oxytet administration; however, the impact on the microbial community was more pronounced at all time points and in all samples with in-feed administration. Fecal ARG abundance was increased with in-feed administration over injected, with genes for tetracycline and aminoglycoside resistance enriched specifically in the feces of the in-feed group. Sequencing of plasmid-enriched samples revealed multiple genetic contexts for the resistance genes detected and highlighted the potential role of small plasmids in the movement of antibiotic resistance genes. The findings are informative for disease management in food animals, but also manure management and antibiotic therapy in human medicine for improved antibiotic stewardship.
Collapse
Affiliation(s)
- Nicole Ricker
- Food Safety and Enteric Pathogens Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States.,Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States
| | - Phillip Colgan
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Jennifer Jones
- Food Safety and Enteric Pathogens Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States
| | - Jinlyung Choi
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Jaejin Lee
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Johann F Coetzee
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Adina Howe
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Susan L Brockmeier
- Virus and Prion Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States
| | - Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, ARS-USDA National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
14
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|