1
|
Robé C, Projahn M, Boll K, Blasse A, Merle R, Roesler U, Friese A. Survival of highly related ESBL- and pAmpC- producing Escherichia coli in broiler farms identified before and after cleaning and disinfection using cgMLST. BMC Microbiol 2024; 24:143. [PMID: 38664628 PMCID: PMC11044539 DOI: 10.1186/s12866-024-03292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.
Collapse
Affiliation(s)
- Caroline Robé
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.
| | - Michaela Projahn
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Katrin Boll
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Department Food Safety, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Anja Blasse
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Ribeiro LF, Nespolo NM, Rossi GAM, Fairbrother JM. Exploring Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Food-Producing Animals and Animal-Derived Foods. Pathogens 2024; 13:346. [PMID: 38668301 PMCID: PMC11054374 DOI: 10.3390/pathogens13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials serve as crucial treatments in both veterinary and human medicine, aiding in the control and prevention of infectious diseases. However, their misuse or overuse has led to the emergence of antimicrobial resistance, posing a significant threat to public health. This review focuses on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and their associated food products, which contribute to the proliferation of antimicrobial-resistant strains. Recent research has highlighted the presence of ESBL-producing E. coli in animals and animal-derived foods, with some studies indicating genetic similarities between these isolates and those found in human infections. This underscores the urgent need to address antimicrobial resistance as a pressing public health issue. More comprehensive studies are required to understand the evolving landscape of ESBLs and to develop strategic public health policies grounded in the One Health approach, aiming to control and mitigate their prevalence effectively.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, s/n, Jardim Zenith, Monte Carmelo 38500-000, Minas Gerais State, Brazil;
| | - Natália Maramarque Nespolo
- Federal University of São Carlos (UFSCar), Rod. Washington Luís, s/n—Monjolinho, São Carlos 13565-905, São Paulo State, Brazil;
| | - Gabriel Augusto Marques Rossi
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, Espírito Santo State, Brazil;
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Vitt AR, Sørensen AN, Bojer MS, Bortolaia V, Sørensen MCH, Brøndsted L. Diverse bacteriophages for biocontrol of ESBL- and AmpC-β-lactamase-producing E. coli. iScience 2024; 27:108826. [PMID: 38322997 PMCID: PMC10844046 DOI: 10.1016/j.isci.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Novel solutions are needed to reduce the risk of transmission of extended spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Escherichia coli (ESBL/AmpC E. coli) from livestock to humans. Given that phages are promising biocontrol agents, a collection of 28 phages that infect ESBL/AmpC E. coli were established. Whole genome sequencing showed that all these phages were unique and could be assigned to 15 different genera. Host range analysis showed that 82% of 198 strains, representing the genetic diversity of ESBL/AmpC E. coli, were sensitive to at least one phage. Identifying receptors used for phage binding experimentally as well as in silico predictions, allowed us to combine phages into two different cocktails with broad host range targeting diverse receptors. These phage cocktails efficiently inhibit the growth of ESBL/AmpC E. coli in vitro, thus suggesting the potential of phages as promising biocontrol agents.
Collapse
Affiliation(s)
- Amira R. Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Valeria Bortolaia
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Martine C. Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Dankittipong N, Alderliesten JB, Van den Broek J, Dame-Korevaar MA, Brouwer MSM, Velkers FC, Bossers A, de Vos CJ, Wagenaar JA, Stegeman JA, Fischer EAJ. Comparing the transmission of carbapenemase-producing and extended-spectrum beta-lactamase-producing Escherichia coli between broiler chickens. Prev Vet Med 2023; 219:105998. [PMID: 37647719 DOI: 10.1016/j.prevetmed.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria comparable to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed over 12 pens on the day of hatch (day 0). On day 5, half of the 10 remaining chickens in each pen were orally inoculated with 5·102 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). To evaluate the effect of antibiotic treatment, amoxicillin was given twice daily in drinking water in 6 of the 12 pens from days 2-6. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 - 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or by other differences between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2-6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jesse B Alderliesten
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jan Van den Broek
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - M Anita Dame-Korevaar
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Michael S M Brouwer
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Francisca C Velkers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Alex Bossers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Clazien J de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Cárdenas-Rey I, Bello Gonzalez TDJ, van der Goot J, Ceccarelli D, Bouwhuis G, Schillemans D, Jurburg SD, Veldman KT, de Visser JAGM, Brouwer MSM. Succession in the caecal microbiota of developing broilers colonised by extended-spectrum β-lactamase-producing Escherichia coli. Anim Microbiome 2022; 4:51. [PMID: 35986389 PMCID: PMC9389726 DOI: 10.1186/s42523-022-00199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
Background Broilers are among the most common and dense poultry production systems, where antimicrobials have been used extensively to promote animal health and performance. The continuous usage of antimicrobials has contributed to the appearance of resistant bacteria, such as extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec). Here, we studied the ESBL-Ec prevalence and successional dynamics of the caecal microbiota of developing broilers in a commercial flock during their production life cycle (0–35 days). Broilers were categorised as ESBL-Ec colonised (ESBL-Ec+) or ESBL-Ec non-colonised (ESBL-Ec−) by selective culturing. Using 16S rRNA gene sequencing, we i. compared the richness, evenness and composition of the caecal microbiota of both broilers’ groups and ii. assessed the combined role of age and ESBL-Ec status on the broilers’ caecal microbiota. Results From day two, we observed an increasing linear trend in the proportions of ESBL-Ec throughout the broilers' production life cycle, X2 (1, N = 12) = 28.4, p < 0.001. Over time, the caecal microbiota richness was consistently higher in ESBL-Ec− broilers, but significant differences between both broilers’ groups were found exclusively on day three (Wilcoxon rank-sum test, p = 0.016). Bray–Curtis distance-based RDA (BC-dbRDA) showed no explanatory power of ESBL-Ec status, while age explained 14% of the compositional variation of the caecal microbiota, F (2, 66) = 6.47, p = 0.001. Conclusions This study assessed the role of ESBL-Ec in the successional dynamics of the caecal microbiota in developing broilers and showed that the presence of ESBL-Ec is associated with mild but consistent reductions in alpha diversity and with transient bacterial compositional differences. We also reported the clonal spread of ESBL-Ec and pointed to the farm environment as a likely source for ESBLs. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00199-4.
Collapse
|
6
|
Becker E, Correia-Carreira G, Projahn M, Käsbohrer A. Modeling the Impact of Management Changes on the Infection Dynamics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in the Broiler Production. Microorganisms 2022; 10:981. [PMID: 35630424 PMCID: PMC9144090 DOI: 10.3390/microorganisms10050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Livestock animals, especially poultry, are a known reservoir for extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli). They may enter the pen either via positive day-old chicks or via the environment. We developed a mathematical model to illustrate the entry and dissemination of resistant bacteria in a broiler pen during one fattening period in order to investigate the effectiveness of intervention measures on this infection process. Different management measures, such as varying amounts of litter, a slow-growing breed or lower stocking densities, were tested for their effects on broiler colonization. We also calculated the impact of products that may influence the microbiota in the chicks' digestive tract, such as pre- or probiotics, feed supplements or competitive exclusion products. Our model outcomes show that a contaminated pen or positive chicks at the beginning of the fattening period can infect the entire flock. Increasing the amount of litter and decreasing the stocking density were shown to be effective in our model. Differences in the route of entry were found: if the chicks are already positive, the litter quantity must be increased to at least six times the standard of 1000 g/m2, whereas, if the pen is contaminated on the first day, three times the litter quantity is sufficient. A reduced stocking density of 20 kg/m2 had a significant effect on the incidence of infection only in a previously contaminated pen. Combinations of two or three measures were effective in both scenarios; similarly, feed additives may be beneficial in reducing the growth rate of ESBL-producing E. coli. This model is a valuable tool for evaluating interventions to reduce the transmission and spread of resistant bacteria in broiler houses. However, data are still needed to optimize the model, such as growth rates or survival data of ESBL-producing E. coli in different environments.
Collapse
Affiliation(s)
- Evelyne Becker
- MINT VR-Labs, Berliner Hochschule für Technik, 13353 Berlin, Germany
- Institute of Pharmacy/LPG, Pharmaceutical Biology, Universität Greifswald, 17489 Greifswald, Germany
| | - Guido Correia-Carreira
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Michaela Projahn
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Annemarie Käsbohrer
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
7
|
Dankittipong N, Fischer EAJ, Swanenburg M, Wagenaar JA, Stegeman AJ, de Vos CJ. Quantitative Risk Assessment for the Introduction of Carbapenem-Resistant Enterobacteriaceae (CPE) into Dutch Livestock Farms. Antibiotics (Basel) 2022; 11:281. [PMID: 35203883 PMCID: PMC8868399 DOI: 10.3390/antibiotics11020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Early detection of emerging carbapenem-resistant Enterobacteriaceae (CPE) in food-producing animals is essential to control the spread of CPE. We assessed the risk of CPE introduction from imported livestock, livestock feed, companion animals, hospital patients, and returning travelers into livestock farms in The Netherlands, including (1) broiler, (2) broiler breeder, (3) fattening pig, (4) breeding pig, (5) farrow-to-finish pig, and (6) veal calf farms. The expected annual number of introductions was calculated from the number of farms exposed to each CPE source and the probability that at least one animal in an exposed farm is colonized. The total number of farms with CPE colonization was estimated to be the highest for fattening pig farms, whereas the probability of introduction for an individual farm was the highest for broiler farms. Livestock feed and imported livestock are the most likely sources of CPE introduction into Dutch livestock farms. Sensitivity analysis indicated that the number of fattening pig farms determined the number of high introductions in fattening pigs from feed, and that uncertainty on CPE prevalence impacted the absolute risk estimate for all farm types. The results of this study can be used to inform risk-based surveillance for CPE in livestock farms.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Egil A. J. Fischer
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Manon Swanenburg
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (M.S.); (C.J.d.V.)
| | - Jaap A. Wagenaar
- Department Biomolecular Health Science, Infectious Diseases & Immunology, Utrecht University, Androclusgebouw, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
| | - Arjan J. Stegeman
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Clazien J. de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (M.S.); (C.J.d.V.)
| |
Collapse
|
8
|
Duxbury SJN, Alderliesten JB, Zwart MP, Stegeman A, Fischer EAJ, de Visser JAGM. Chicken gut microbiome members limit the spread of an antimicrobial resistance plasmid in Escherichia coli. Proc Biol Sci 2021; 288:20212027. [PMID: 34727719 PMCID: PMC8564601 DOI: 10.1098/rspb.2021.2027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Plasmid-mediated antimicrobial resistance is a major contributor to the spread of resistance genes within bacterial communities. Successful plasmid spread depends upon a balance between plasmid fitness effects on the host and rates of horizontal transmission. While these key parameters are readily quantified in vitro, the influence of interactions with other microbiome members is largely unknown. Here, we investigated the influence of three genera of lactic acid bacteria (LAB) derived from the chicken gastrointestinal microbiome on the spread of an epidemic narrow-range ESBL resistance plasmid, IncI1 carrying blaCTX-M-1, in mixed cultures of isogenic Escherichia coli strains. Secreted products of LAB decreased E. coli growth rates in a genus-specific manner but did not affect plasmid transfer rates. Importantly, we quantified plasmid transfer rates by controlling for density-dependent mating opportunities. Parametrization of a mathematical model with our in vitro estimates illustrated that small fitness costs of plasmid carriage may tip the balance towards plasmid loss under growth conditions in the gastrointestinal tract. This work shows that microbial interactions can influence plasmid success and provides an experimental-theoretical framework for further study of plasmid transfer in a microbiome context.
Collapse
Affiliation(s)
| | - Jesse B. Alderliesten
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Egil A. J. Fischer
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Plaza-Rodríguez C, Mesa-Varona O, Alt K, Grobbel M, Tenhagen BA, Kaesbohrer A. Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany. Microorganisms 2021; 9:microorganisms9051045. [PMID: 34066213 PMCID: PMC8151568 DOI: 10.3390/microorganisms9051045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Human exposure to bacteria carrying antimicrobial resistance (AMR) genes through the consumption of food of animal origin is a topic which has gained increasing attention in recent years. Bacterial transmission can be enhanced, particularly in situations in which the consumer pays less attention to hygiene practices, and consumer exposure to foodborne resistant bacteria through ready-to-eat foods could be increased. It has been demonstrated that even methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which have low prevalence and concentration in raw chicken meat in Germany, may reach the consumer during barbecue events after failures in hygiene practices. This study aimed to quantify the consumer exposure to extended-spectrum beta-lactamase- (ESBL) or ampicillinase class C (AmpC) beta-lactamase-producing E. coli in Germany through the consumption of chicken meat and bread during household barbecues. The study considered cross-contamination and recontamination processes from raw chicken meat by using a previously-developed probabilistic consumer exposure model. In addition, a comparative analysis of consumer exposure was carried out between ESBL-/AmpC-producing E. coli and MRSA. Our results demonstrated that the probability of ESBL-/AmpC-producing E. coli reaching the consumer was 1.85 × 10-5 with the number of bacteria in the final serving averaging 332. Given the higher prevalence and concentration of ESBL-/AmpC-producing E. coli in raw chicken meat at retail compared to MRSA, comparative exposure assessment showed that the likelihood and extent of exposure were significantly higher for ESBL-/AmpC-producing E. coli than for MRSA. ESBL-/AmpC-producing E. coli was determined to be 7.6 times likelier (p-value < 0.01) than MRSA to reach the consumer, with five times the concentration of bacteria in the final serving (p-value < 0.01).
Collapse
Affiliation(s)
- Carolina Plaza-Rodríguez
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
- Correspondence: ; Tel.: +49-30-18412-24313
| | - Octavio Mesa-Varona
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
| | - Katja Alt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
| | - Annemarie Kaesbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (O.M.-V.); (K.A.); (M.G.); (B.-A.T.); (A.K.)
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
10
|
Montoro-Dasi L, Villagra A, Sevilla-Navarro S, Pérez-Gracia MT, Vega S, Marin C. Commensal Escherichia coli Antimicrobial Resistance and Multidrug-Resistance Dynamics during Broiler Growing Period: Commercial vs. Improved Farm Conditions. Animals (Basel) 2021; 11:ani11041005. [PMID: 33916657 PMCID: PMC8066766 DOI: 10.3390/ani11041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary This experiment was designed to evaluate the differences in antimicrobial and multidrug resistance dynamics in broilers reared under two different farm conditions (commercial vs. improved) during the growing period, using Escherichia coli as sentinel bacterium. Although no antibiotics were applied during rearing for two different management conditions tested, high rates of antimicrobial and multidrug-resistant bacteria were observed throughout rearing, with the percentages of resistant bacteria observed being of particular concern in day-old chicks on arrival day and in chickens at the end of the growing period, just before delivery to the slaughterhouse. Abstract New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, 46022 Valencia, Spain;
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
| | - Arantxa Villagra
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400 Castellón, Spain;
| | - Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
- Correspondence: ; Tel.: +34-657-506-085
| |
Collapse
|
11
|
Christensen H, Bachmeier J, Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol 2021; 50:370-381. [PMID: 33146543 DOI: 10.1080/03079457.2020.1845300] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) infections are associated with major economical losses and decreased animal welfare. In broiler production, APEC infections have traditionally been controlled by antibiotics, resulting in an increased prevalence of antibiotic-resistant E. coli. Concerns have been raised that transfer of antibiotic-resistant APEC via the food chain may result in risks for extra-intestinal infection of humans related to zoonotic transfer and increased difficulties in the treatment of human infections caused APEC-related E. coli types. In this review, the risks associated with APEC are presented based on new knowledge on transmission, virulence and antibiotic resistance of APEC. A major new change in our understanding of APEC is the high degree of genuine vertical transfer of APEC from parents to offspring. A new strategy for controlling APEC, including control of antibiotic-resistant APEC, has to focus on limiting vertical transfer from parents to offspring, and subsequent horizontal transmission within and between flocks and farms, by using all-in-all-out production systems and implementing a high level of biosecurity. Vaccination and the use of competitive exclusion are important tools to be considered. A specific reduction of antibiotic-resistant APEC can be obtained by implementing culling strategies, only allowing the use of antibiotics in cases where animal welfare is threatened. Strategies to reduce APEC, including antibiotic-resistant APEC, need to be implemented in the whole production pyramid, but it has to start at the very top of the production pyramid.
Collapse
Affiliation(s)
- Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
12
|
Robé C, Daehre K, Merle R, Friese A, Guenther S, Roesler U. Impact of different management measures on the colonization of broiler chickens with ESBL- and pAmpC- producing Escherichia coli in an experimental seeder-bird model. PLoS One 2021; 16:e0245224. [PMID: 33411808 PMCID: PMC7790425 DOI: 10.1371/journal.pone.0245224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
The colonization of broilers with extended-spectrum β-lactamase- (ESBL-) and plasmid-mediated AmpC β-lactamase- (pAmpC-) producing Enterobacteriaceae has been extensively studied. However, only limited data on intervention strategies to reduce the colonization throughout the fattening period are available. To investigate practically relevant management measures for their potential to reduce colonization, a recently published seeder-bird colonization model was used. Groups of 90 broilers (breed Ross 308) were housed in pens under conventional conditions (stocking of 39 kg/m2, no enrichment, water and feed ad libitum). Tested measures were investigated in separate trials and included (I) an increased amount of litter in the pen, (II) the reduction of stocking density to 25 kg/m2, and (III) the use of an alternative broiler breed (Rowan x Ranger). One-fifth of ESBL- and pAmpC- negative broilers (n = 18) per group were orally co-inoculated with two E. coli strains on the third day of the trial (seeder). One CTX-M-15-positive E. coli strain (ST410) and one CMY-2 and mcr-1-positive E. coli strain (ST10) were simultaneously administered in a dosage of 102 cfu. Colonization of all seeders and 28 non-inoculated broilers (sentinel) was assessed via cloacal swabs during the trials and a final necropsy at a target weight of two kilograms (= d 36 (control, I-II), d 47 (III)). None of the applied intervention measures reduced the colonization of the broilers with both the ESBL- and the pAmpC- producing E. coli strains. A strain-dependent reduction of colonization for the ESBL- producing E. coli strain of ST410 by 2 log units was apparent by the reduction of stocking density to 25 kg/m2. Consequently, the tested management measures had a negligible effect on the ESBL- and pAmpC- colonization of broilers. Therefore, intervention strategies should focus on the prevention of ESBL- and pAmpC- colonization, rather than an attempt to reduce an already existing colonization.
Collapse
Affiliation(s)
- Caroline Robé
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- * E-mail: ,
| | - Katrin Daehre
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Guenther
- Institute of Pharmacy, Pharmaceutical Biology, Universität Greifswald, Greifswald, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Longitudinal monitoring of multidrug resistance in Escherichia coli on broiler chicken fattening farms in Shandong, China. Poult Sci 2020; 100:100887. [PMID: 33516478 PMCID: PMC7936140 DOI: 10.1016/j.psj.2020.11.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
The extensive use of antibiotics has, in recent years, caused antimicrobial resistance and multidrug resistance in Escherichia coli to gradually develop into a worldwide problem. These resistant E. coli could be transmitted to humans through animal products and animal feces in the environment, thereby creating a problem for bacterial treatment for humans and animals and resulting in a public health issue. Monitoring the resistance of E. coli throughout the broiler fattening period is therefore of great significance for both the poultry industry and public health. In this longitudinal study, samples were taken from 6 conventional broiler fattening farms in Shandong Province, China, at 3 different times within 1 fattening period. The overall isolation rate of E. coli was 53.04% (375/707). Antibiotic resistance was very common in the E. coli isolated from these farms, and differed for different antibiotics, with ampicillin having the highest rate (92.86%) and cefoxitin the lowest (10.12%). Multidrug resistance was as high as 91.07%. More importantly, both the resistance rate of E. coli to the different drugs and the detection rate of drug resistance genes increased over time. The mobile colistin resistance (mcr-1) gene was detected in 24.40% of the strains, and these strains often carried other drug resistance genes, such as those conferring aminoglycoside, β-lactamase, tetracycline, and sulfonamide resistance. Antimicrobial resistance and drug resistance genes in E. coli were least common in the early fattening stage. The individual detection rates of sul1, sul3, aacC4, aphA3, and mcr-1 were significantly lower (P < 0.05) for the early fattening stage than for the middle and late stages. The rational use of antibiotics, in conjunction with the improvement of the breeding environment during the entire broiler fattening cycle, will be helpful in the development of the poultry industry and the protection of public health.
Collapse
|
14
|
Dame-Korevaar A, Kers JG, van der Goot J, Velkers FC, Ceccarelli D, Mevius DJ, Stegeman A, Fischer EAJ. Competitive Exclusion Prevents Colonization and Compartmentalization Reduces Transmission of ESBL-Producing Escherichia coli in Broilers. Front Microbiol 2020; 11:566619. [PMID: 33304325 PMCID: PMC7693455 DOI: 10.3389/fmicb.2020.566619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Extended spectrum beta-lactamase (ESBL)-producing bacteria are resistant to extended-spectrum cephalosporins and are common in broilers. Interventions are needed to reduce the prevalence of ESBL-producing bacteria in the broiler production pyramid. This study investigated two different interventions. The effect of a prolonged supply of competitive exclusion (CE) product and compartmentalization on colonization and transmission, after challenge with a low dose of ESBL-producing Escherichia coli, in broilers kept under semi-field conditions, were examined. One-day-old broilers (Ross 308) (n = 400) were housed in four experimental rooms, subdivided in one seeder (S/C1)-pen and eight contact (C2)-pens. In two rooms, CE product was supplied from day 0 to 7. At day 5, seeder-broilers were inoculated with E. coli strain carrying bla CTX-M- 1 on plasmid IncI1 (CTX-M-1-E. coli). Presence of CTX-M-1-E. coli was determined using cloacal swabs (day 5-21 daily) and cecal samples (day 21). Time until colonization and cecal excretion (log10 CFU/g) were analyzed using survival analysis and linear regression. Transmission coefficients within and between pens were estimated using maximum likelihood. The microbiota composition was assessed by 16S ribosomal RNA gene amplicon sequencing in cecal content of broilers on days 5 and 21. None of the CE broilers was CTX-M-1-E. coli positive. In contrast, in the untreated rooms 187/200 of the broilers were CTX-M-1-E. coli positive at day 21. Broilers in C2-pens were colonized later than seeder-broilers (Time to event Ratio 3.53, 95% CI 3.14 to 3.93). The transmission coefficient between pens was lower than within pens (3.28 × 10-4 day-2, 95% CI 2.41 × 10-4 to 4.32 × 10-4 vs. 6.12 × 10-2 day-2, 95% CI 4.78 × 10-2 to 7.64 × 10-2). The alpha diversity of the cecal microbiota content was higher in CE broilers than in control broilers at days 5 and 21. The supply of a CE product from day 0 to 7 prevented colonization of CTX-M-1-E. coli after challenge at day 5, likely as a result of CE induced effects on the microbiota composition. Furthermore, compartmentalization reduced transmission rate between broilers. Therefore, a combination of compartmentalization and supply of a CE product may be a useful intervention to reduce transmission and prevent colonization of ESBL/pAmpC-producing bacteria in the broiler production pyramid.
Collapse
Affiliation(s)
- Anita Dame-Korevaar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Jannigje G. Kers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Francisca C. Velkers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Dik J. Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Egil A. J. Fischer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Mourand G, Le Devendec L, Delannoy S, Fach P, Keita A, Amelot M, Jaunet H, Dia MEH, Kempf I. Variations of the Escherichia coli population in the digestive tract of broilers. Avian Pathol 2020; 49:678-688. [PMID: 32835506 DOI: 10.1080/03079457.2020.1814201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We explored the between-group and temporal variations in the intestinal Escherichia coli populations of broilers under experimental conditions, taking both antimicrobial resistance and virulence into consideration. Four replicates of 45 commercial chicks were reared in four animal facilities. On their first day of life (Day 0), they were orally inoculated with two extended-spectrum-cephalosporin-resistant (ESCR) E. coli (2.72 log10 CFU of a bla CMY-2- and 2.55 log10 CFU of a bla CTX-M-carrying E. coli). Faecal samples were then collected weekly and caecal samples were obtained from birds sacrificed on Days 21 or 42. The total, ESC-, ciprofloxacin- and gentamicin-resistant E. coli populations were enumerated on MacConkey (MC) and MC-supplemented media, and eight virulence-associated genes (VAGs) (iroN, iutA, iss, ompT, hlyF, vat, frzorf4 , and fyuA) were sought by PCR on isolates obtained on MC agar. The results showed significant between-group differences in the size of the resistant sub-populations and the presence of VAGs. Contrary to bla CTX-M-positive strains, bla CMY-positive strains persisted up to Day 42, but represented only a minor fraction of the total E. coli population. The ESC-, gentamicin- and ciprofloxacin-resistant populations decreased over time. Isolates obtained during the first week contained a mean of 5.1 VAGs. The percentages of some VAG profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. The fluctuations or differences between E. coli isolates according to group, age, and faecal or caecal origin need to be considered when designing experimental protocols and seeking to improve colibacillosis control. RESEARCH HIGHLIGHTS Temporal variations in the intestinal E. coli populations of broilers was studied. The antibiotic-resistant populations decreased over time. Virulence profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. Strains with the highest numbers of virulence genes were present during the first days.
Collapse
Affiliation(s)
- Gwenaëlle Mourand
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Zoopôle les croix, Ploufragan, France
| | - Laëtitia Le Devendec
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Zoopôle les croix, Ploufragan, France
| | - Sabine Delannoy
- ANSES - French Agency for Food, Environmental and Occupational Health & Safety Food Research Laboratory, Platform IdentyPath, Maisons-Alfort, France
| | - Patrick Fach
- ANSES - French Agency for Food, Environmental and Occupational Health & Safety Food Research Laboratory, Platform IdentyPath, Maisons-Alfort, France
| | - Alassane Keita
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Zoopôle les croix, Ploufragan, France
| | - Michel Amelot
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Zoopôle les croix, Ploufragan, France
| | | | | | - Isabelle Kempf
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Zoopôle les croix, Ploufragan, France
| |
Collapse
|