1
|
Wernike K, Beer M. Comparison of bovine viral diarrhea virus detection methods: Results of an international proficiency trial. Vet Microbiol 2024; 290:109985. [PMID: 38219410 DOI: 10.1016/j.vetmic.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Bovine viral diarrhea virus (BVDV), one of the most important infectious cattle diseases globally, is being combated in multiple countries. The main source for virus transmission within herds and especially to unaffected cattle farms are life-long persistently infected (PI), immunotolerant animals. Therefore, the early identification of PI calves is a major pillar of disease control programs. In addition, rapid and reliable virus identification is necessary to confirm the causative agent in acute clinical cases. Here, we initiated an international interlaboratory proficiency trial in order to evaluate BVDV detection methods. Four ear notch samples and four sera were provided to the participating veterinary diagnostic laboratories (n = 40). Two of the ear notches and two sera contained BVDV and two ear notches and one serum were negative for pestiviruses. The remaining serum was positive for the ovine border disease virus (BDV). The sample panel was analyzed by an ERNS-based ELISA for antigen detection, diverse real-time RT-PCR (RT-qPCR) assays and/or virus isolation. Occasionally, additional typing of the virus strains was performed by sequencing or specific antibody staining of the obtained cell culture isolates. While the antigen ELISA allowed reliable BVDV diagnostics, infectious virus could be isolated only in just under half of the attempts (43.33%). RT-qPCR enabled the sensitive detection of pestiviruses, though an impact of the extraction method on the resulting quantification cycle values was observed. In general, subsequent typing of the detected virus strains is required to differentiate BVDV from BDV infections. In conclusion, for BVDV identification in clinical cases or in the context of disease control, RT-qPCR methods or ERNS antigen ELISAs should be preferentially used.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
2
|
Wernike K, Pfaff F, Beer M. "Fading out" - genomic epidemiology of the last persistently infected BVDV cattle in Germany. Front Vet Sci 2024; 10:1339248. [PMID: 38239751 PMCID: PMC10794585 DOI: 10.3389/fvets.2023.1339248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important cattle pathogens worldwide, causing major economic losses and animal welfare issues. Disease eradication programs have been implemented in several countries, including Germany where an obligatory nationwide control program is in force since 2011. As molecular epidemiology has become an essential tool to understand the transmission dynamics and evolution of BVDV, 5' untranslated region (UTR) sequences are generated from viruses present in persistently infected animals since the beginning of the BVDV control program. Here, we report the results of the sequence-based subtyping of BVDV strains found from 2018 through 2022 in calves born in Germany. In 2018, 2019 and 2020, BVDV-1d and-1b were the dominant subtypes and cases were spread throughout the area that was not yet officially declared BVDV-free at that time. In addition, BVDV-1a, -1e, -1f and -1h could rarely be detected. From 2021 onwards, subtype 1d clearly took over the dominance, while the other subtypes could be gradually nearly eliminated from the cattle population. The eradication success not only results in a drastic reduction of cases, but also in a marked reduction of strain diversity. Interestingly, before vaccination has been banned in regions and farms with a disease-free status, two live-vaccine virus strains were repeatedly detected in ear tissue samples of newborn calves (n = 14) whose mothers were immunized during gestation. The field-virus sequences are an important basis for molecular tracing and identification of potential relationships between the last outbreaks in the final phase of the German BVDV eradication program, thereby supporting classic epidemiological investigations. Furthermore, the monitoring of the composition of virus subtypes in the cattle population helps to maintain effective diagnostic methods and control measures and is an early warning system for the introduction of new pestiviruses in the naïve cattle population.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | | | | |
Collapse
|
3
|
Al-Mubarak AIA, Al-Kubati AAG, Skeikh A, Hussen J, Kandeel M, Flemban B, Hemida MG. A longitudinal study of bovine viral diarrhea virus in a semi-closed management dairy cattle herd, 2020-2022. Front Vet Sci 2023; 10:1221883. [PMID: 37781291 PMCID: PMC10538974 DOI: 10.3389/fvets.2023.1221883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bovine viral diarrhea virus (BVDV) brings great economic loss to the cattle industry worldwide. Developing a control/prevention strategy requires the prior assessment of certain epidemiological parameters. To determine the BVD incidence rate and associated risk factors, a dairy cattle herd in the eastern region of Saudi Arabia was monitored between 2020 and 2022. Methods Nasal swabs (n = 190), rectal swabs (n = 190), and sera (n = 190) were collected from 79 cows in this herd. Collected sera and swabs were tested using the commercially available ELISAs for the BVDV antibodies and antigens, respectively. Collected sera were also tested for the presence of BVDV nucleic acids using commercial real-time RT-PCR kits. Results and discussion Our data show BVDV seroprevalence (18.8%, 15%, and 8.2%) in the tested animals in 2020-2022, respectively. None of the collected nasal swabs, rectal swabs, or sera tested positive for the BVDV antigen, whereas 10.1%, 10%, and 18.1% of the tested sera were positive for BVDV nucleic acid in 2020-2022, respectively. The incidence rate was estimated at 0.02446 new cases/year despite the detection of BVDV in seronegative animals on single or two occasions at ≥6-month intervals. Young calves and bulls remained apparently unexposed to BVDV despite their presence with BVDV-infected females, with no significant physical separation. Both seropositivity and nucleic acid detectability showed significant positive and negative correlations, respectively, with reproductive performance. Collectively, the present study provides useful clues about the transmissibility of BVDV in the presence of possibly persistently infected animals. To the best of our knowledge, this is the first longitudinal study of BVDV in the Eastern Region of Saudi Arabia. Further detailed characterization of the circulating BVDVs is encouraged.
Collapse
Affiliation(s)
- Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Abdullah Skeikh
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Baraa Flemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| |
Collapse
|
4
|
Al-Mubarak AIA, Hussen J, Kandeel M, Al-Kubati AAG, Falemban B, Skeikh A, Hemida MG. Risk-associated factors associated with the bovine viral diarrhea virus in dromedary camels, sheep, and goats in abattoir surveillance and semi-closed herd system. Vet World 2022; 15:1924-1931. [PMID: 36313839 PMCID: PMC9615487 DOI: 10.14202/vetworld.2022.1924-1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aim: Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens causing high economic losses in cattle of all ages. Despite the active vaccination campaigns against BVDV, many outbreaks are still detected in various populations of cattle worldwide. Other species of animals such as dromedary camels, sheep, and goats may harbor BVDV infection and cause variable clinical syndromes. Thus, they may act as a source of infection to the cattle population around them. However, little is still known about the roles of these animals in the viral transmission and sustainability of BVDV in the environment. This study aimed to explore if the dromedary camels, sheep, and goats may seroconvert against BVDV and to study some associated risk factors for BVDV in these species of animals. Materials and Methods: We tested 1012 serum samples from dromedary camels, 84 from goats, and 21 from sheep for BVDV antibodies using commercial enzyme-linked immunosorbent assay (ELISA) kits. Meanwhile, we selected 211 serum samples from dromedary camels to be tested for the BVDV antigen using the commercial ELISA kits. Results: Our results show that 49/1117 serum samples were positive for the BVDV antibodies in dromedary camels (46/1012), goats (3/84), and none of the tested sheep samples were positive. However, none of the collected serum samples tested positive for the BVDV antigen. Conclusion: Seroconversion of some dromedary camels, sheep, and goats to the BVDV with no history of vaccination against BVDV strongly suggests the potential roles of these species of animals in the virus transmission cycle. The main limitations of the current study are (1) the lack of samples from other species of animals that lived close by these animals, particularly cattle. (2) lack of follow-up samples from the same animal over a long period. We believe the long-term longitudinal study of BVDV in various species of animals, particularly dromedary camels, goats, and sheep, is one of our future research directions. This will provide more information about the dynamics of BVDV antibodies in these species of animals.
Collapse
Affiliation(s)
- Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Abdullah Skeikh
- Camel Research Center, King Faisal University, P. O. Box 400, Al Hufuf, 31982, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
5
|
Wernike K, Beer M. International proficiency trial for bovine viral diarrhea virus (BVDV) antibody detection: limitations of milk serology. BMC Vet Res 2022; 18:168. [PMID: 35524302 PMCID: PMC9074317 DOI: 10.1186/s12917-022-03265-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Control programs were implemented in several countries against bovine viral diarrhea (BVD), one of the most significant cattle diseases worldwide. Most of the programs rely on serological diagnostics in any phase of the program. For the detection of antibodies against BVD virus (BVDV), neutralization tests as well as a variety of (commercially available) ELISAs are used. Here, test systems applied in various laboratories were evaluated in the context of an international interlaboratory proficiency trial. A panel of standardized samples comprising five sera and five milk samples was sent to veterinary diagnostic laboratories (n=51) and test kit manufacturers (n=3). Results The ring trial sample panel was investigated by nine commercially available antibody ELISAs as well as by neutralization tests against diverse BVDV-1, BVDV-2 and/or border disease virus (BDV) strains. The negative serum and milk sample as well as a serum collected after BVDV-2 infection were mostly correctly tested regardless of the applied test system. A serum sample obtained from an animal immunized with an inactivated BVDV-1 vaccine tested positive by neutralization tests or by total antibody or Erns-based ELISAs, while all applied NS3-based ELISAs gave negative results. A further serum, containing antibodies against the ovine BDV, reacted positive in all applied BVDV ELISAs, a differentiation between anti-BDV and anti-BVDV antibodies was only enabled by parallel application of neutralization tests against BVDV and BDV isolates. For the BVDV antibody-positive milk samples (n=4), which mimicked prevalences of 20% (n=2) or 50% (n=2), considerable differences in the number of positive results were observed, which mainly depended on the ELISA kit and the sample incubation protocols used. These 4 milk samples tested negative in 43.6%, 50.9%, 3.6% and 56.4%, respectively, of all investigations. Overall, negative results occurred more often, when a short sample incubation protocol instead of an over-night protocol was applied. Conclusions While the seronegative samples were correctly evaluated in most cases, there were considerable differences in the number of correct evaluations for the seropositive samples, most notably when pooled milk samples were tested. Hence, thorough validation and careful selection of ELISA tests are necessary, especially when applied during surveillance programs in BVD-free regions.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
6
|
Casey-Bryars M, Tratalos JA, Graham DA, Guelbenzu-Gonzalo MP, Barrett D, O’Grady L, Madden JM, McGrath G, More SJ. Risk factors for detection of bovine viral diarrhoea virus in low-risk herds during the latter stages of Ireland’s eradication programme. Prev Vet Med 2022; 201:105607. [DOI: 10.1016/j.prevetmed.2022.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/13/2022] [Accepted: 02/26/2022] [Indexed: 11/28/2022]
|
7
|
Optimizing Release of Nucleic Acids of African Swine Fever Virus and Influenza A Virus from FTA Cards. Int J Mol Sci 2021; 22:ijms222312915. [PMID: 34884719 PMCID: PMC8657678 DOI: 10.3390/ijms222312915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/29/2023] Open
Abstract
FTA cards and related products simplify the collection, transport, and transient storage of biological sample fluids. Here, we have compared the yield and quality of DNA and RNA released from seven different FTA cards using seven releasing/extraction methods with eleven experimental eluates. For the validation, dilution series of African swine fever virus (ASFV) positive EDTA blood and Influenza A virus (IAV) positive allantoic fluid were used. Based on our data, we conclude that direct PCR amplification without the need for additional nucleic acid extraction and purification could be suitable and more convenient for ASFV DNA release from FTA cards. In contrast, IAV RNA loads can be amplified from FTA card punches if a standard extraction procedure including a lysis step is applied. These differences between the amplifiable viral DNA and RNA after releasing and extraction are not influenced by the type of commercial FTA card or the eleven different nucleic acid releasing procedures used for the comparative analyses. In general, different commercial FTA cards were successfully used for the storage and recovery of the ASFV and IAV genetic material suitable for PCR. Nevertheless, the usage of optimized nucleic acid releasing protocols could improve the recovery of the viral genome of both viruses. Here, the application of Chelex® Resin 100 buffer mixed with 1 × Tris EDTA buffer (TE, pH 8.0) or with TED 10 (TE buffer and Dimethylsulfoxid) delivered the best results and can be used as a universal method for releasing viral DNA and RNA from FTA cards.
Collapse
|
8
|
Golender N, Bumbarov V, Kovtunenko A, David D, Guini-Rubinstein M, Sol A, Beer M, Eldar A, Wernike K. Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015-2019. Viruses 2021; 13:v13112136. [PMID: 34834943 PMCID: PMC8619439 DOI: 10.3390/v13112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
- Correspondence: ; Tel.: +972-3968-8949; Fax: +972-3968-1788
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Marisol Guini-Rubinstein
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| |
Collapse
|
9
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
10
|
Re-Introduction of Bovine Viral Diarrhea Virus in a Disease-Free Region: Impact on the Affected Cattle Herd and Diagnostic Implications. Pathogens 2021; 10:pathogens10030360. [PMID: 33803542 PMCID: PMC8002923 DOI: 10.3390/pathogens10030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious cattle diseases worldwide. The major source of virus transmission is immunotolerant, persistently infected (PI) calves, which makes them the key target of control programs. In the German federal state of Saxony-Anhalt, a very low prevalence was achieved, with more than 99.8% of the cattle herds being free from PI animals since the year 2013. In 2017, BVD virus was detected in a previously disease-free holding (herd size of ~380 cows, their offspring, and fattening bulls). The purchase of two so-called Trojan cows, i.e., dams pregnant with a PI calf, was identified as the source of infection. The births of the PI animals resulted in transient infections of in-contact dams, accompanied by vertical virus transmission to their fetuses within the critical timeframe for the induction of PI calves. Forty-eight days after the birth of the first PI calf, all animals in close contact with the Trojan cows during their parturition period were blood-sampled and serologically examined by a neutralization test and several commercial ELISAs. The resulting seroprevalence strongly depended on the applied test system. The outbreak could be stopped by the immediate elimination of every newborn PI calf and vaccination, and since 2018, no BVD cases have occurred.
Collapse
|
11
|
Abstract
Bovine viral diarrhea virus (BVDV) causes significant economic loss in cattle. Detection of persistently infected (PI) animals is an important control measure, but persistence of maternal antibodies may result in false-negative test results. We assessed the sensitivity and specificity of 2 antigen ELISAs (Idexx BVDV Ag/Serum Plus and BVDV PI X2) and a reverse-transcription real-time PCR (RT-rtPCR; Idexx RealPCR BVDV) assay for detecting PI calves. Ear notch samples were collected from 1,030 calves ~3, 10, 24, and 38 d old (days 3, 10, 24, and 38). All day 38 samples were tested using 2 antigen ELISAs and RT-rtPCR, and any calf that tested positive by any of these tests was blood sampled at ~100 d old (day 100) for antigen and antibody testing by ELISA; samples collected on days 3, 10, and 24 were tested using the antigen ELISAs and PCR. Calves were defined as PI if they were test-positive on day 38 by either ELISA or PCR and were antigen-positive on day 100. Twenty-six calves were PCR BVDV test-positive and one was BVDV PI X2 ELISA-positive at day 38. Five calves were defined as PI, and all tested positive by ELISAs and RT-PCR assay on days 3, 10, and 24. The sensitivity and specificity were 100% for both antigen ELISAs and 96.7% and 100%, respectively, by RT-rtPCR. Test results were not affected by calf age, suggesting that testing for PI calves can be undertaken at any age.
Collapse
|
12
|
Swift and Reliable "Easy Lab" Methods for the Sensitive Molecular Detection of African Swine Fever Virus. Int J Mol Sci 2021; 22:ijms22052307. [PMID: 33669073 PMCID: PMC7956467 DOI: 10.3390/ijms22052307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/19/2023] Open
Abstract
African swine fever (ASF) is a contagious viral hemorrhagic disease of domestic pigs and wild boars. The disease is notifiable to the World Organisation for Animal Health (OIE) and is responsible for high mortality and serious economic losses. PCR and real-time PCR (qPCR) are the OIE-recommended standard methods for the direct detection of African swine fever virus (ASFV) DNA. The aim of our work was the simplification and standardization of the molecular diagnostic workflow in the lab. For validation of this “easy lab” workflow, different sample materials from animal trials were collected and analyzed (EDTA blood, serum, oral swabs, chewing ropes, and tissue samples) to identify the optimal sample material for diagnostics in live animals. Based on our data, the EDTA blood samples or bloody tissue samples represent the best specimens for ASFV detection in the early and late phases of infection. The application of prefilled ready-to-use reagents for nucleic acid extraction or the use of a Tissue Lysis Reagent (TLR) delivers simple and reliable alternatives for the release of the ASFV nucleic acids. For the qPCR detection of ASFV, different published and commercial kits were compared. Here, a lyophilized commercial kit shows the best results mainly based on the increased template input. The good results of the “easy lab” strategy could be confirmed by the ASFV detection in field samples from wild boars collected from the 2020 ASFV outbreak in Germany. Appropriate internal control systems for extraction and PCR are key features of the “easy lab” concept and reduce the risk of false-negative and false-positive results. In addition, the use of easy-to-handle machines and software reduces training efforts and the misinterpretation of results. The PCR diagnostics based on the “easy lab” strategy can realize a high sensitivity and specificity comparable to the standard PCR methods and should be especially usable for labs with limited experiences and resources.
Collapse
|