1
|
Scott I, Lawrence KE, Gee EK. Egg reappearance periods associated with anthelmintic treatments given to horses in winter and summer over two years. Vet Parasitol Reg Stud Reports 2025; 57:101182. [PMID: 39855868 DOI: 10.1016/j.vprsr.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Shortened egg reappearance periods (ERP) have been seen as an early warning of anthelmintic resistance development in cyathostomins in horses. The hypothesis has been that in these instances, efficacy against egg laying adult cyathostomins remains high, but a decline in activity against later larval stages leads to the earlier resumption of egg shedding after treatment. In this study using a single herd of horses we investigated the ERP of a number of commonly used equine anthelmintics and examined whether ERP might show seasonal variation between winter and summer. Four main Faecal egg count reduction tests (FECRT1-4) were conducted respectively in Winter (Jun/Jul) 2019, Summer (Jan/Feb) 2020, Winter 2020 and Summer 2021. The tests examined the efficacy and ERP of ivermectin, moxidectin, abamectin and fenbendazole. Egg counts of two groups of horses were monitored before and for 6-7 weeks after treatment - however long it took for counts to return to at least 10 % of what they had been before treatment. One additional FECRT was also conducted, using a second abamectin-containing product (FECRT5 - Spring 2020). Treatment with ivermectin (FECRT1-4), moxidectin (FECRT 1-2) and the first abamectin product tested (FECRT3) all reduced egg counts by >99 % for 4 weeks after treatment, with ERP of 5-7 weeks and with minimal differences between the 3 treatments. There was a tendency for counts to rise more rapidly in summer, and in the second year of testing as opposed to the first. Both the second abamectin product (FECRT5) and the fenbendazole (FECRT4) were found to be ineffective, reducing egg counts immediately after treatment by 68 and 52 % respectively.
Collapse
Affiliation(s)
- Ian Scott
- Tāwharau Ora - School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand.
| | - Kevin E Lawrence
- Tāwharau Ora - School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand
| | - Erica K Gee
- Tāwharau Ora - School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand
| |
Collapse
|
2
|
Molento MB, Pires LSA, Dall'Anese J, Yoshitani UY, Almeida T. Prevalence and risk factors of gastrointestinal helminths infection in Brazilian horses: A retrospective study of a 12-year (2008-2019) diagnostic data. Res Vet Sci 2024; 173:105272. [PMID: 38718543 DOI: 10.1016/j.rvsc.2024.105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
Understanding gastrointestinal parasite distribution is crucial for effective control programs in horses. This study reports the prevalence of helminth infections in horses and selected risk factors (i.e., breed, age, climate, season) by analyzing 19,276 fecal samples from the Laboratory of Veterinary Clinical Parasitology, in Curitiba, Southern Brazil. The analyses were carried out from 2008 to 2019, coming from 153 stud farms located in 60 municipalities of nine Brazilian states. The parasite prevalence was 73.3%, with 72.1% present in the adult population and 80.6% in young horses. Strongyles were present in 100% horse farms. Strongyles had a prevalence of 72.1% with a mean FEC of 453.53 (+/- 717.6). Parascaris spp. had a prevalence of 5.8% and a FEC of 17.11 (+/- 149.2). The tropical wet/monsoon climate (Am) showed the lowest FEC for strongyles and Parascaris spp. when compared to the other climates. In the logistic regression analysis, young horses exhibited 4.6 times higher odds ratio (OR) (3.9-5.5) of Parascaris spp. and 1.2 (1.1-1.4) times higher OR of strongyles egg shedding when compared to adults (P < 0.001). Summer presented a higher risk for Parascaris spp. and Strongyles eggs when compared to the other seasons (P < 0.001). Mangalarga Marchador, Criollo, and Crossbred breeds were identified with higher OR of Parascaris spp. egg shedding than Thoroughbred. The extensive prevalence of strongyles across ages, seasons, breeds, and climates alerts for the risk of clinical manifestations in equines raised on pastures designing optimal health management and parasite control strategies worldwide.
Collapse
Affiliation(s)
- Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, PR CEP: 80035-050, Brazil.
| | - Luciana S A Pires
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, PR CEP: 80035-050, Brazil
| | - Julia Dall'Anese
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, PR CEP: 80035-050, Brazil
| | - Ursula Y Yoshitani
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, PR CEP: 80035-050, Brazil
| | - Thayany Almeida
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, PR CEP: 80035-050, Brazil
| |
Collapse
|
3
|
Rendle D, Hughes K, Bowen M, Bull K, Cameron I, Furtado T, Peachey L, Sharpe L, Hodgkinson J. BEVA primary care clinical guidelines: Equine parasite control. Equine Vet J 2024; 56:392-423. [PMID: 38169127 DOI: 10.1111/evj.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance. OBJECTIVES To develop evidence-based guidelines utilising a modified GRADE framework. METHODS A panel of veterinary scientists with relevant expertise and experience was convened. Relevant research questions were identified and developed with associated search terms being defined. Evidence in the veterinary literature was evaluated using the GRADE evidence-to-decision framework. Literature searches were performed utilising CAB abstracts and PubMed. Where there was insufficient evidence to answer the research question the panel developed practical guidance based on their collective knowledge and experience. RESULTS Search results are presented, and recommendation or practical guidance were made in response to 37 clinically relevant questions relating to the use of anthelmintics in horses. MAIN LIMITATIONS There was insufficient evidence to answer many of the questions with any degree of certainty and practical guidance frequently had to be based upon extrapolation of relevant information and the panel members' collective experience and opinions. CONCLUSIONS Equine parasite control practices and current recommendations have a weak evidence base. These guidelines highlight changes in equine parasite control that should be considered to reduce the threat of parasite-associated disease and delay the development of further anthelmintic resistance.
Collapse
Affiliation(s)
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Bowen
- Medicine Vet Referrals, Nottinghamshire, UK
| | - Katie Bull
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Tamzin Furtado
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Laura Peachey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
4
|
Abbas G, Ghafar A, McConnell E, Beasley A, Bauquier J, Wilkes EJA, El-Hage C, Carrigan P, Cudmore L, Hurley J, Gauci CG, Beveridge I, Ling E, Jacobson C, Stevenson MA, Nielsen MK, Hughes KJ, Jabbar A. A national survey of anthelmintic resistance in ascarid and strongylid nematodes in Australian Thoroughbred horses. Int J Parasitol Drugs Drug Resist 2024; 24:100517. [PMID: 38064906 PMCID: PMC10757041 DOI: 10.1016/j.ijpddr.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
This study quantified the extent of anthelmintic resistance (AR) in ascarid and strongylid nematodes against commonly used anthelmintics in Australian Thoroughbred horses. Faecal egg count reduction tests (FECRTs, n = 86) and egg reappearance period (ERP) tests were conducted on 22 farms across Australia. Faecal egg counts (FECs) were determined using the modified McMaster technique, and percent faecal egg count reduction (%FECR) was calculated using the Bayesian hierarchical model and hybrid Frequentist/Bayesian analysis method. The results were interpreted using old (published in 1992) and new (2023) research guidelines of the World Association for the Advancement of Veterinary Parasitology (WAAVP). The species composition of strongylid nematodes was detected utilising a DNA-metabarcoding method using pre- and post-treatment samples. Resistance was observed in strongylid nematodes to commonly used single-active and combination anthelmintics, including ivermectin (IVM %FECR range: 82%-92%; 95% lower credible interval (LCI) range: 80%-90%), abamectin (ABM: 73%-92%; 65%-88%), moxidectin (MOX: 89%-91%; 84%-89%), oxfendazole (OFZ: 0%-56%; 0%-31%) and its combination with pyrantel (OFZ + PYR: 0%-82%; 0%-78%). Resistance in Parascaris spp. was observed to IVM (10%-43%; 0%-36%), ABM (0%; 0%) and MOX (0%; 0%). When the new thresholds recommended by the WAAVP were used, AR was detected in six additional FECRTs for strongylids and three more tests for Parascaris spp., introducing resistance to OFZ and OFZ + PYR in the latter. Shortened ERPs (4-6 weeks) of strongylids were observed in 31 FECRTs in which AR was not detected at 2 weeks post-treatment for all the anthelmintics tested. Among cyathostomins, Cylicocyclus nassatus, Cylicostephanus longibursatus and Coronocyclus coronatus were the most prevalent species at 2 weeks post-treatment, whereas the main species appearing at five weeks following treatments with macrocyclic lactones were Cylicocyclus nassatus, Cylicostephanus longibursatus and Cylicocyclus ashworthi. After treatment with OFZ + PYR, the latter three, plus Coronocyclus coronatus and Cyathostomum catinatum, were detected at 5 weeks post-treatment. Overall, the study highlights the prevalence of AR in both ascarids and strongylid nematodes against commonly used anthelmintic products to control worms in Australian horses. The results indicate that ML combination products provided acceptable efficacy at 2 weeks. However, ERP calculations suggest that products work less effectively than previously measured. It is suggested to regularly monitor the efficacy of the anthelmintics and consider changing the worm control practices to better manage worms and AR in Australian horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Elysia Ling
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
5
|
Buono F, Veneziano V, Veronesi F, Molento MB. Horse and donkey parasitology: differences and analogies for a correct diagnostic and management of major helminth infections. Parasitology 2023; 150:1119-1138. [PMID: 37221816 PMCID: PMC10801385 DOI: 10.1017/s0031182023000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
In June 2022, at the XXXII Conference of the Italian Society of Parasitology, the parallels of the main endoparasitic infections of horses and donkeys were discussed. Although these 2 species are genetically different, they can be challenged by a similar range of parasites (i.e. small and large strongyles, and Parascaris spp.). Although equids can demonstrate some level of resilience to parasites, they have quite distinct helminth biodiversity, distribution and intensity among different geographical locations and breeds. Heavily infected donkeys may show fewer clinical signs than horses. Although parasite control is primarily provided to horses, we consider that there may be a risk of drug-resistance parasitic infection through passive infection in donkeys when sharing the same pasture areas. Knowing the possible lack of drug efficacy (<90 or 80%), it is advocated the use of selective treatment for both species based on fecal egg counts. Adult horses should receive treatment when the threshold exceeds 200–500 eggs per gram (EPG) of small strongyles. Moreover, considering that there are no precise indications in donkeys, a value >300 EPG may be a safe recommendation. We have highlighted the main points of the discussion including the dynamics of helminth infections between the 2 species.
Collapse
Affiliation(s)
- Francesco Buono
- Department of Veterinary Medicine and Animal Productions, University of Naples 'Federico II', Naples, Italy
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, University of Naples 'Federico II', Naples, Italy
| | - Fabrizia Veronesi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Carminatti A, Chitolina MB, Ribeiro AB, Forest M, Collet SG, Prestes AM, Camillo G. Occurrence and risk factors associated with gastrointestinal parasitism in horses reared in different systems. Vet Parasitol Reg Stud Reports 2023; 42:100890. [PMID: 37321795 DOI: 10.1016/j.vprsr.2023.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
To facilitate exploration of the immense range of gastrointestinal parasites in horses and the impact of parasitism on equine health, the present study aimed to evaluate the occurrence and risk factors associated with these infections in horses reared in different management systems in the state of Santa Catarina, Brazil. Samples were collected from 208 horses: 91 from extensive, 64 from semi-extensive, and 53 from intensive rearing systems. The identified helminths included those of the Strongylida order (80.29%), Parascaris equorum (3.36%), Oxyuris equi (4.33%), and Anoplocephala spp. (1.92%). By analyzing the coproculture results to differentiate among Strongylida order parasites, species such as Strongylus vulgaris, S. edentatus, S. equinus, Triodontophorus spp., and Trichostrongylus axei, in addition to members of the Cyathostominae subfamily, which include Gyalocephalus capitatus and Poteriostomum spp., were identified. The only positive sample of protozoa was that of Cryptosporidium spp. (13%). Regarding the rearing system, animals in the extensive system had a higher proportion of infected horses and a higher chance of infection than those in the other systems. For the variable co-grazing with cattle, only cyathostomins showed a significant difference with relatively low infection risk in co-grazing. Overall, the present study demonstrated a high occurrence of equine gastrointestinal parasites, especially those of the Strongylida order, with emphasis on small strongylids. In addition, analyzing factors associated with infection showed that management variables are important for controlling parasitism in horses.
Collapse
Affiliation(s)
- Andressa Carminatti
- Universidade do Oeste de Santa Catarina (Unoesc), Xanxerê, SC 89820-000, Brazil
| | | | - Alana Birck Ribeiro
- Universidade do Oeste de Santa Catarina (Unoesc), Xanxerê, SC 89820-000, Brazil
| | - Marciano Forest
- Universidade do Oeste de Santa Catarina (Unoesc), Xanxerê, SC 89820-000, Brazil
| | | | | | - Giovana Camillo
- Universidade do Oeste de Santa Catarina (Unoesc), Xanxerê, SC 89820-000, Brazil
| |
Collapse
|
7
|
Kaplan RM, Denwood MJ, Nielsen MK, Thamsborg SM, Torgerson PR, Gilleard JS, Dobson RJ, Vercruysse J, Levecke B. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Vet Parasitol 2023; 318:109936. [PMID: 37121092 DOI: 10.1016/j.vetpar.2023.109936] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The faecal egg count reduction test (FECRT) remains the method of choice for establishing the efficacy of anthelmintic compounds in the field, including the diagnosis of anthelmintic resistance. We present a guideline for improving the standardization and performance of the FECRT that has four sections. In the first section, we address the major issues relevant to experimental design, choice of faecal egg count (FEC) method, statistical analysis, and interpretation of the FECRT results. In the second section, we make a series of general recommendations that are applicable across all animals addressed in this guideline. In the third section, we provide separate guidance details for cattle, small ruminants (sheep and goats), horses and pigs to address the issues that are specific to the different animal types. Finally, we provide overviews of the specific details required to conduct an FECRT for each of the different host species. To address the issues of statistical power vs. practicality, we also provide two separate options for each animal species; (i) a version designed to detect small changes in efficacy that is intended for use in scientific studies, and (ii) a less resource-intensive version intended for routine use by veterinarians and livestock owners to detect larger changes in efficacy. Compared to the previous FECRT recommendations, four important differences are noted. First, it is now generally recommended to perform the FECRT based on pre- and post-treatment FEC of the same animals (paired study design), rather than on post-treatment FEC of both treated and untreated (control) animals (unpaired study design). Second, instead of requiring a minimum mean FEC (expressed in eggs per gram (EPG)) of the group to be tested, the new requirement is for a minimum total number of eggs to be counted under the microscope (cumulative number of eggs counted before the application of a conversion factor). Third, we provide flexibility in the required size of the treatment group by presenting three separate options that depend on the (expected) number of eggs counted. Finally, these guidelines address all major livestock species, and the thresholds for defining reduced efficacy are adapted and aligned to host species, anthelmintic drug and parasite species. In conclusion, these new guidelines provide improved methodology and standardization of the FECRT for all major livestock species.
Collapse
Affiliation(s)
- Ray M Kaplan
- Pathobiology Department, School of Veterinary Medicine, St. George's University, W.I., Grenada.
| | - Matthew J Denwood
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, KY, USA
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Switzerland
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Robert J Dobson
- School of Veterinary and Life Sciences, Murdoch University, Australia
| | - Jozef Vercruysse
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Denwood MJ, Kaplan RM, McKendrick IJ, Thamsborg SM, Nielsen MK, Levecke B. A statistical framework for calculating prospective sample sizes and classifying efficacy results for faecal egg count reduction tests in ruminants, horses and swine. Vet Parasitol 2023; 314:109867. [PMID: 36621042 DOI: 10.1016/j.vetpar.2022.109867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The faecal egg count reduction test (FECRT) is the primary diagnostic tool used for detecting anthelmintic resistance at the farm level. It is therefore extremely important that the experimental design of a FECRT and the susceptibility classification of the result use standardised and statistically rigorous methods. Several different approaches for improving the analysis of FECRT data have been proposed, but little work has been published on how to address the issue of prospective sample size calculations. Here, we provide a complete and detailed overview of the quantitative issues relevant to a FECRT starting from basic statistical principles. We then present a new approach for determining sample size requirements for the FECRT that is built on a solid statistical framework, and provide a rigorous anthelminthic drug efficacy classification system for use with FECRT in livestock. Our approach uses two separate statistical tests, a one-sided inferiority test for resistance and a one-sided non-inferiority test for susceptibility, and determines a classification of resistant, susceptible or inconclusive based on the combined result. Since this approach is based on two independent one-sided tests, we recommend that a 90 % CI be used in place of the historically used 95 % CI. This maintains the desired Type I error rate of 5 %, and simultaneously reduces the required sample size. We demonstrate the use of this framework to provide sample size calculations that are rooted in the well-understood concept of statistical power. Tailoring to specific host/parasite systems is possible using typical values for expected pre-treatment and post-treatment variability in egg counts as well as within-animal correlation in egg counts. We provide estimates for these parameters for ruminants, horses and swine based on a re-examination of datasets that were available to us from a combination of published data and other sources. An illustrative example is provided to demonstrate the use of the framework, and parameter estimates are presented to estimate the required sample size for a hypothetical FECRT using ivermectin in cattle. The sample size calculation method and classification framework presented here underpin the sample size recommendations provided in the upcoming FECRT WAAVP guidelines for detection of anthelmintic resistance in ruminants, horses, and swine, and have also been made freely available as open-source software via our website (https://www.fecrt.com).
Collapse
Affiliation(s)
- Matthew J Denwood
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Ray M Kaplan
- Pathobiology Department, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | | | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, KY, USA
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|
9
|
Nielsen MK. Anthelmintic resistance in equine nematodes: Current status and emerging trends. Int J Parasitol Drugs Drug Resist 2022; 20:76-88. [PMID: 36342004 PMCID: PMC9630620 DOI: 10.1016/j.ijpddr.2022.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Anthelmintic resistance is reported in equine nematodes with increasing frequency in recent years, and no new anthelmintic classes have been introduced during the past 40 years. This manuscript reviews published literature describing anthelmintic resistance in cyathostomins, Parascaris spp., and Oxyuris equi with special emphasis on larvicidal efficacy against encysted cyathostomin larvae and strongylid egg reappearance periods (ERP). Resistance to benzimidazoles and pyrimidines is highly prevalent in cyathostomin populations around the world, and macrocyclic lactone resistance has been documented in cyathostomins in recent years as well. Two recent studies have documented resistance to the larvicidal regimen of fenbendazole, whereas the larvicidal efficacy of moxidectin is variable, but with no evidence of a reduction from historic levels. In the 1990s, ERP estimates were 8-10 and 12-16 weeks for ivermectin and moxidectin, respectively, while several studies published after year 2000 found ERPs to be 5 weeks for both compounds. This is a clear change in anthelmintic performance, but it remains unclear if this is due to development of anthelmintic resistance or selection for other biological traits leading to a quicker resumption of strongylid egg shedding following anthelmintic treatment. Macrocyclic lactone resistance is common in Parascaris spp. around the world, but recent reports suggests that resistance to the two other classes should be monitored as well. Finally, O. equi has been reported resistant to ivermectin and moxidectin in countries representing four continents. In conclusion, multi-drug resistance is becoming the norm in managed cyathostomin populations around the world, and a similar pattern may be emerging in Parascaris spp. More work is required to understand the mechanisms behind the shortened ERPs, and researchers and veterinarians around the world are encouraged to routinely monitor anthelmintic efficacy against equine nematodes.
Collapse
Affiliation(s)
- M K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, USA.
| |
Collapse
|
10
|
Molecular detection of Strongyloides sp. in Australian Thoroughbred foals. Parasit Vectors 2021; 14:444. [PMID: 34479608 PMCID: PMC8414860 DOI: 10.1186/s13071-021-04966-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022] Open
Abstract
Background Strongyloides westeri is found in the small intestine of young horses, mainly in foals up to about 16 weeks of age. The main source of infection for foals is through transmammary transmission, and foals can develop acute diarrhoea, weakness, dermatitis and respiratory signs. The epidemiology of S. westeri in Australia is largely unknown. Further, molecular techniques have never been employed for detection of S. westeri in horses. This pilot study aimed to assess the utility of a molecular phylogenetic method for the detection of S. westeri in the faeces of foals. Methods Faecal samples were collected from a foal of less than 2 months of age, and eggs of Strongyloides sp. were detected using the modified McMaster technique. DNA was extracted from purified eggs, and a partial fragment of the small subunit of the nuclear ribosomal DNA (18S) was characterised using polymerase chain reaction, DNA sequencing and phylogenetic methods. Results Microscopic examination of faeces revealed small ellipsoidal eggs typical of Strongyloides sp. The 18S sequence generated by PCR in this study revealed 98.4% identity with that of a reference sequence of S. westeri available from GenBank. Phylogenetic analyses revealed a polyphyletic clustering of S. westeri sequences. Conclusion This is the first study reporting the detection of DNA of Strongyloides sp. in faeces of a foal using a molecular phylogenetic approach targeting the variable region of 18S rDNA. It is anticipated that this study will allow future molecular epidemiological studies on S. westeri in horses. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04966-1.
Collapse
|
11
|
Mayinda GDK, Serreau D, Gesbert A, Reigner F, Sutra JF, Lespine A, Sallé G. Ivermectin treatment in lactating mares results in suboptimal ivermectin exposure in their suckling foals. Vet Parasitol 2021; 296:109511. [PMID: 34237517 DOI: 10.1016/j.vetpar.2021.109511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The management of equine strongyles has become problematic over the last decade because of an increased prevalence of drug-resistant isolates worldwide. Therapeutic options are therefore limited, leaving macrocyclic lactones as the most often effective drug class. However, their lipophilic properties result in a long-lasting elimination that could favour drug resistance selection. As a result, ivermectin treatment in lactating mares could promote suboptimal exposure of their foal parasites to ivermectin, thereby selecting for more resistant worms. To test for this putative transfer, we selected two groups of six foal-mare pairs, one group of mares receiving ivermectin and the other being left untreated. We compared faecal egg count trajectories in foals from the two groups and quantified plasma ivermectin concentrations in ivermectin treated mares and their foals during seven days. Our results showed limited but sustained plasmatic exposure of foals associated with non-significant faecal egg count reduction (P = 0.69). This suggests that ivermectin treatment in lactating mares results in suboptimal exposure to the drug in their foal.
Collapse
Affiliation(s)
| | - Delphine Serreau
- NRAE, Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France
| | - Amandine Gesbert
- INRAE, UE1297 Physiologie Animale de l'Orfrasière, F-37380, Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE1297 Physiologie Animale de l'Orfrasière, F-37380, Nouzilly, France
| | - Jean-François Sutra
- INRAE, Ecole Nationale Vétérinaire de Toulouse, UMR1436 INTHERES, F-31076, Toulouse, France
| | - Anne Lespine
- INRAE, Ecole Nationale Vétérinaire de Toulouse, UMR1436 INTHERES, F-31076, Toulouse, France
| | - Guillaume Sallé
- NRAE, Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.
| |
Collapse
|
12
|
Martin F, Svansson V, Eydal M, Oddsdóttir C, Ernback M, Persson I, Tydén E. First Report of Resistance to Ivermectin in Parascaris univalens in Iceland. J Parasitol 2021; 107:16-22. [PMID: 33498083 DOI: 10.1645/20-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Horses in Iceland have been isolated for more than 1,000 yr but still harbor a similar range of gastrointestinal parasites as do horses across the world. The long isolation of the horses and their parasites presumably means that no resistance genes have been introduced into the Parascaris spp. population. It is therefore of particular interest to investigate the efficacy of ivermectin on Parascaris spp. infecting Icelandic foals. Potential treatment failure of ivermectin in Iceland will add substantial new information on how resistance can arise independently. This study aimed to determine the efficacy of subcutaneous injection of ivermectin for the treatment of Parascaris spp. infection in foals and to identify the Parascaris species present in the west and north of Iceland. A fecal egg count reduction (FECR) test (FECRT) was performed on 50 foals from 8 farms, including an untreated control group of 6 foals, from September to November 2019. The foals were between 3 and 5 mo of age at the start of the study and had not previously been treated with anthelmintic drugs. Each foal was treated subcutaneously with off-label use of Ivomec® injection 10 mg/ml or Noromectin® 1% at a dose of 0.2 mg/kg. The FECR for each farm was calculated in 2 ways, by the eggCounts package in R and by the Presidente formula (FECRT). Both calculation methods resulted in efficacy levels between 0% and 80.78%, indicating ivermectin resistance on all farms. We also confirmed, by karyotyping, that the species of equine ascarid present in the west and north of Iceland is Parascaris univalens. This study provides evidence for treatment failure of ivermectin against P. univalens infection in foals. Since Icelandic horses have been isolated on the island for more than 1,000 yr, this implies that resistance alleles have developed independently in the Icelandic Parascaris population. The actual clinical impact of ivermectin resistance is unknown but another drug of choice should be considered to treat Parascaris infection in foals in Iceland.
Collapse
Affiliation(s)
- Frida Martin
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Box 7036, 750 07 Uppsala, Sweden
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Matthías Eydal
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Charlotta Oddsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Maja Ernback
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Box 7036, 750 07 Uppsala, Sweden
| | - Isa Persson
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Box 7036, 750 07 Uppsala, Sweden
| | - Eva Tydén
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Box 7036, 750 07 Uppsala, Sweden
| |
Collapse
|
13
|
Nielsen MK, Gee EK, Hansen A, Waghorn T, Bell J, Leathwick DM. Monitoring equine ascarid and cyathostomin parasites: Evaluating health parameters under different treatment regimens. Equine Vet J 2020; 53:902-910. [PMID: 33119179 DOI: 10.1111/evj.13374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Strongylid and ascarid parasites are omnipresent in equine stud farms, and ever-increasing levels of anthelmintic resistance are challenging the industry with finding more sustainable and yet effective parasite control programs. OBJECTIVES To evaluate egg count levels, bodyweight and equine health under defined parasite control protocols in foals and mares at two Standardbred and two Thoroughbred stud farms. STUDY DESIGN Longitudinal randomised field trial. METHODS A total of 93 foals were enrolled and split into two treatment groups, and 99 mares were enrolled and assigned to three treatment groups. All horses underwent a health examination, and episodes of colic or diarrhoea were recorded at each faecal collection date. Bodyweights were assessed using a weight tape, and mares were body condition scored. Group A foals (FA) were dewormed at 2 and 5 months of age with a fenbendazole/ivermectin/praziquantel product, while group B foals (FB) were dewormed on a monthly basis, alternating between the above-mentioned product and an oxfendazole/pyrantel embonate product. Group A mares (MA) were dewormed twice with fenbendazole/ivermectin/praziquantel, group B mares (MB) were dewormed with the same product, when egg counts exceeded 300 strongylid eggs per gram, and group C mares (MC) were dewormed every 2 months, alternating between the two products. Health data were collected monthly for 6 months (foals) and bimonthly for 13 months (mares). Data were analysed with mixed linear models and interpreted at the α = 0.05 significance level. RESULTS There were no significant bodyweight differences between foal groups, but MA mares were significantly lighter than the other two groups. Very few health incidents were recorded. Foals in group FA had significantly higher ascarid and strongylid egg counts, whereas no significant differences were observed between mare groups. MAIN LIMITATIONS Study duration limited to one season. CONCLUSIONS Anthelmintic treatment intensity was lowered from the traditional intensive regimes without measurable negative health consequences for mares and foals.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Erica K Gee
- Massey University, School of Veterinary Science, Palmerston North, New Zealand
| | - Alyse Hansen
- Massey University, School of Veterinary Science, Palmerston North, New Zealand
| | - Tania Waghorn
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Julie Bell
- Equivets NZ, Southern Rangitikei Veterinary Services Ltd, Bulls, New Zealand
| | - Dave M Leathwick
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
14
|
Scott KA, Qureshi MH, Cox PB, Marshall CM, Bellaire BC, Wilcox M, Stuart BAR, Njardarson JT. A Structural Analysis of the FDA Green Book-Approved Veterinary Drugs and Roles in Human Medicine. J Med Chem 2020; 63:15449-15482. [PMID: 33125236 DOI: 10.1021/acs.jmedchem.0c01502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The FDA Green Book is a list of all drug products that have been approved by the FDA for use in veterinary medicine. The Green Book, as published, lacks structural information corresponding to approved drugs. To address this gap, we have compiled the structural data for all FDA Green Book drugs approved through the end of 2019. Herein we discuss the relevance of this data set to human drugs in the context of structural classes and physicochemical properties. Analysis reveals that physicochemical properties are highly optimized and consistent with a high probability of favorable drug metabolism and pharmacokinetic properties, including good oral bioavailability for most compounds. We provide a detailed analysis of this data set organized on the basis of structure and function. Slightly over half (51%) of vet drugs are also approved in human medicine. Combination drugs are biologics are also discussed.
Collapse
Affiliation(s)
- Kevin A Scott
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - M Haziq Qureshi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Drug Discovery Science and Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Bailey C Bellaire
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael Wilcox
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Bradey A R Stuart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Studzińska MB, Sallé G, Roczeń-Karczmarz M, Szczepaniak K, Demkowska-Kutrzepa M, Tomczuk K. A survey of ivermectin resistance in Parascaris species infected foals in south-eastern Poland. Acta Vet Scand 2020; 62:28. [PMID: 32503589 PMCID: PMC7275302 DOI: 10.1186/s13028-020-00526-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/29/2020] [Indexed: 11/10/2022] Open
Abstract
Parascaris spp. are major gastro-intestinal nematodes that infect foals and can lead to respiratory symptoms, poor growth, and in some cases obstruction of the small intestine and death. Ivermectin resistance has been reported for Parascaris spp. in many countries. In Poland, the knowledge of the level of resistance against ivermectin in Parascaris spp. is limited. The aim of this study was to examine the efficacy of ivermectin against Parascaris spp. in foals from south-eastern Poland. Foals (n = 225 = reared in 7 stud farms) were treated orally with ivermectin paste. Faecal samples were collected from the rectum of each foal or from the environment straight after defaecation on 1 day prior and 2 weeks after deworming. A faecal egg count (FEC) was performed using the McMaster method with a minimum detection limit of 50 eggs/g. FEC reduction (FECR) was calculated using the Faecal Egg Count Reduction Test. The statistical analysis was limited to foals excreting more than 150 eggs/g before treatment and to stud farms with at least 6 foals excreting at or above this level. Confidence intervals were determined by 1000 bootstraps at farm level and the contribution of sex and age to FECR was quantified using a generalized equation estimation procedure. Parascaris spp. eggs were found in 40% of the foals. Following ivermectin treatment, Parascaris spp. eggs were identified in 28.4% of the foals. The mean estimated FECR ranged from 44% to 97% and average efficacy was 49.3%. FECR was more pronounced in older foals (P-values = 0. 003). The FECR was more pronounced in males than in females (P value = 0.028). This study is the first to indicate a reduced efficacy of ivermectin against Parascaris spp. in foals in Poland.
Collapse
|
16
|
Risk factors for equine intestinal parasite infections and reduced efficacy of pyrantel embonate against Parascaris sp. Vet Parasitol 2019; 273:52-59. [PMID: 31442894 DOI: 10.1016/j.vetpar.2019.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
Gastrointestinal parasites, Parascaris sp. and strongyles, are common in young horses worldwide and control of these parasites is challenged by increasing anthelmintic resistance. Our aim was to identify risk factors for these infections as well as to assess the efficacy of fenbendazole (dose 7.5 mg/kg) and pyrantel embonate (dose 19 mg/kg) against Parascaris sp. We also evaluated association between owner observed symptoms and patent infections with these parasites. Fecal samples were collected from 367 young horses in Finland and a questionnaire study was conducted. Fecal egg counts were performed by Mini-FLOTAC® method. Univariable logistic regression models using patent infection status (Yes/No), separately for Parascaris sp. and strongyle infections as an outcome were run initially to screen potential risk factors collected by the questionnaire. After the initial screening, multiple logistic regression models were constructed and run to account for correlated data structure, risk factors and potential confounders simultaneously. Two significant risk factors for a patent Parascaris sp. infection were found: breeding farm size (p = 0.028) and frequency of horse movements (p = 0.010). Horses originating from large breeding farms were more likely (OR = 2.47, 95% confidence interval (CI) 1.10-5.51) to shed Parascaris sp. eggs upon relocation to training stables compared to horses originating from small breeding farms. Horses living in farms with frequent horse movements to other premises had higher odds (OR = 3.56, 95% CI: 1.35-9.39) of a patent Parascaris sp. infection compared to farms with less frequent horse movements. Risk factors for patent strongyle infection included age (p < 0.001) and season (p = 0.017). Horses were less likely (OR = 0.27, 95% CI: 0.10 - 0.66) to shed strongylid eggs during the spring compared to the winter. Horses excreting over 200 ascarid eggs per gram were included in the anthelmintic efficacy trial. A mean FECR less than 90% was interpreted as presence of anthelmintic resistance. The mean FECR was 98.5% (95% CI: 95.8-100) and 68.0% (95% CI: 52.7-83.3) in the fenbendazole (n = 31) and pyrantel (n = 26) treatment groups, respectively. In conclusion, we identified two new risk factors for patent Parascaris sp. infection; breeding farm size and frequency of horse movements. Reduced efficacy of pyrantel against Parascaris sp. was observed for the second time in Europe. A relatively high Parascaris sp. prevalence in yearlings (34%) and two-year-olds (20%) was observed, which has not been reported earlier. An association between symptoms and a patent Parascaris sp. infection was observed in foals.
Collapse
|