1
|
Minarovits J, Niller HH. Truncated oncoproteins of retroviruses and hepatitis B virus: A lesson in contrasts. INFECTION GENETICS AND EVOLUTION 2019; 73:342-357. [DOI: 10.1016/j.meegid.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
2
|
Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015; 479-480:672-86. [PMID: 25759099 PMCID: PMC4424072 DOI: 10.1016/j.virol.2015.02.031] [Citation(s) in RCA: 566] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Human hepatitis B virus (HBV) is the prototype of a family of small DNA viruses that productively infect hepatocytes, the major cell of the liver, and replicate by reverse transcription of a terminally redundant viral RNA, the pregenome. Upon infection, the circular, partially double-stranded virion DNA is converted in the nucleus to a covalently closed circular DNA (cccDNA) that assembles into a minichromosome, the template for viral mRNA synthesis. Infection of hepatocytes is non-cytopathic. Infection of the liver may be either transient (<6 months) or chronic and lifelong, depending on the ability of the host immune response to clear the infection. Chronic infections can cause immune-mediated liver damage progressing to cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of carcinogenesis are unclear. Antiviral therapies with nucleoside analog inhibitors of viral DNA synthesis delay sequelae, but cannot cure HBV infections due to the persistence of cccDNA in hepatocytes.
Collapse
|
3
|
Abstract
Australian antigen, the envelope protein of hepatitis B virus (HBV), was discovered in 1967 as a prevalent serum antigen in hepatitis B patients. Early electron microscopy (EM) studies showed that this antigen was present in 22-nm particles in patient sera, which were believed to be incomplete virus. Complete virus, much less abundant than the 22-nm particles, was finally visualized in 1970. HBV was soon found to infect chimpanzees, gorillas, orangutans, gibbon apes, and, more recently, tree shrews (Tupaia belangeri) and cynomolgus macaques (Macaca fascicularis). This restricted host range placed limits on the kinds of studies that might be performed to better understand the biology and molecular biology of HBV and to develop antiviral therapies to treat chronic infections. About 10 years after the discovery of HBV, this problem was bypassed with the discovery of viruses related to HBV in woodchucks, ground squirrels, and ducks. Although unlikely animal models, their use revealed the key steps in hepadnavirus replication and in the host response to infection, including the fact that the viral nuclear episome is the ultimate target for immune clearance of transient infections and antiviral therapy of chronic infections. Studies with these and other animal models have also suggested interesting clues into the link between chronic HBV infection and hepatocellular carcinoma.
Collapse
|
4
|
Suh A, Weber CC, Kehlmaier C, Braun EL, Green RE, Fritz U, Ray DA, Ellegren H. Early mesozoic coexistence of amniotes and hepadnaviridae. PLoS Genet 2014; 10:e1004559. [PMID: 25501991 PMCID: PMC4263362 DOI: 10.1371/journal.pgen.1004559] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. Viruses are not known to leave physical fossil traces, which makes our understanding of their evolutionary prehistory crucially dependent on the detection of endogenous viruses. Ancient endogenous viruses, also known as paleoviruses, are relics of viral genomes or fragments thereof that once infiltrated their host's germline and then remained as molecular “fossils” within the host genome. The massive genome sequencing of recent years has unearthed vast numbers of paleoviruses from various animal genomes, including the first endogenous hepatitis B viruses (eHBVs) in bird genomes. We screened genomes of land vertebrates (amniotes) for the presence of paleoviruses and identified ancient eHBVs in the recently sequenced genomes of crocodilians, snakes, and turtles. We report an eHBV that is >207 million years old, making it the oldest endogenous virus currently known. Furthermore, our results provide direct evidence that the Hepadnaviridae virus family infected birds, crocodilians and turtles during the Mesozoic Era, and suggest a long-lasting coexistence of these viruses and their amniote hosts at least since the Early Mesozoic. We challenge previous views on the origin of the oncogenic X gene and provide an evolutionary explanation as to why only mammalian hepatitis B infection leads to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Claudia C. Weber
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - Christian Kehlmaier
- Museum of Zoology, Senckenberg Research Institute and Natural History Museum, Dresden, Germany
| | - Edward L. Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Research Institute and Natural History Museum, Dresden, Germany
| | - David A. Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Hans Ellegren
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Reaiche-Miller GY, Thorpe M, Low HC, Qiao Q, Scougall CA, Mason WS, Litwin S, Jilbert AR. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver. Virology 2013; 446:357-64. [PMID: 24074600 DOI: 10.1016/j.virol.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023]
Abstract
Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10(5)-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis.
Collapse
Affiliation(s)
- Georget Y Reaiche-Miller
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nucleic acid polymers inhibit duck hepatitis B virus infection in vitro. Antimicrob Agents Chemother 2013; 57:5291-8. [PMID: 23939902 DOI: 10.1128/aac.01003-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleic acid polymers (NAPs) utilize the sequence-independent properties of phosphorothioate oligonucleotides (PS-ONs) to target protein interactions involved in viral replication. NAPs are broadly active against a diverse range of enveloped viruses that use type I entry mechanisms. The antiviral activity of NAPs against hepatitis B virus (HBV) infection was assessed in vitro in duck hepatitis B virus (DHBV)-infected primary duck hepatocytes (PDH). NAPs efficiently entered PDH in the absence of any transfection agent and displayed antiviral activity at concentrations of 0.01 to 10 μM, measured by their ability to prevent the intracellular accumulation of DHBV surface antigen, which was independent of their nucleotide sequence and was specifically dependent on phosphorothioation. Higher levels of antiviral activity were observed with NAPs 40 nucleotides in length or longer. The fully degenerate NAP (REP 2006) was active during DHBV infection or when added 12 h after infection. In contrast, an acidic-pH-sensitive NAP (REP 2031) that was broadly active against other viruses displayed antiviral activity when present during DHBV infection but no activity when added 12 h after infection, suggesting that NAPs exert their postentry effect in an acidic environment unique to DHBV infection. Both REP 2006 and REP 2031 displayed negligible cytotoxicity in PDH at concentrations of up to 10 μM, as assessed using an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] cytotoxicity assay. The antiviral activity of NAPs against DHBV in vitro was strictly dependent on their amphipathic character, suggesting that NAPs interact with amphipathic target(s) that are important for DHBV entry and postentry mechanisms required for infection.
Collapse
|
7
|
Wang Y, Li Y, Yang C, Hui L, Han Q, Ma L, Wang Q, Yang G, Liu Z. Development and application of a universal Taqman real-time PCR for quantitation of duck hepatitis B virus DNA. J Virol Methods 2013; 191:41-7. [PMID: 23557670 DOI: 10.1016/j.jviromet.2013.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/08/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022]
Abstract
To develop a quantitative assay for universal detection of duck hepatitis B virus (DHBV) DNA, a Taqman real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) assay was developed using primers and probes based on genomic sequences located at nucleotide 241-414 of the DHBV Core region which possesses the highest homology among the 44 DHBV genomes available in Genbank. The DHBV Core gene cloned in pGEM-T was used to generate DHBV DNA standard. The assay had a lowest detection limit of 10(3) copies/ml and a good linear standard curve (Y=-3.989X+49.086, r(2)=0.9993) over a wide range of input DHBV DNA (10(3) to 10(10) copies/ml). The standard deviation of intra- and inter-assay was 0.01-0.06 and 0.05-0.16, respectively, and the coefficient of variation was 1.3-1.8%. The specificity of the assay was validated using duck hepatitis virus type 1, hepatitis B virus, and E. coli DNA. Comparison of ABI 7300 and Bio-Rad iQ5 PCR instruments yielded highly consistent results. The assay showed a positive rate of 63.8% (51/80) DHBV DNA in peripheral blood and liver tissue from ducks from Xi'an, China. The FQ-PCR developed is highly sensitive, specific, reproducible and versatile, and may be used to universally detect DHBV DNA of different DHBV strains.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Laboratory Medicine, First Affiliated Hospital, School of medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Piasecki T, Kurenbach B, Chrząstek K, Bednarek K, Kraberger S, Martin DP, Varsani A. Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot). Arch Virol 2011; 157:585-90. [DOI: 10.1007/s00705-011-1197-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023]
|
9
|
Fujise K, Tatsuzawa K, Kono M, Hoshina S, Tsubota A, Niiya M, Namiki Y, Tada N, Tajiri H. A mutation of the start codon in the X region of hepatitis B virus DNA in a patient with non-B, non-C chronic hepatitis. World J Hepatol 2011; 3:56-60. [PMID: 21423595 PMCID: PMC3060996 DOI: 10.4254/wjh.v3.i2.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/14/2010] [Accepted: 11/21/2010] [Indexed: 02/06/2023] Open
Abstract
There are cases of hepatitis involving occult hepatitis B virus (HBV) infection in which, even though the HB surface antigen (HBsAg) is negative, HBV-DNA is detected by a polymerase chain reaction (PCR). We conducted a sequence analysis of the entire HBV region in a case of non-B non-C chronic hepatitis in a 46-year-old female. A diagnosis of non-B non-C chronic hepatitis was made. Although HBV markers, such as HBs antibody (anti-HBs), anti-HBc, HBeAg and anti-HBe, were negative, HBV-DNA was positive. Nested PCR was performed to amplify the precore region of HBV-DNA and all remaining regions by long nested PCR. Sequence analysis of the two obtained bands was conducted by direct sequencing. Compared with the control strains, the ATG (Methionine) start codon in the X region had mutated to GTG (Valine). It is assumed that a mutation at the start codon in the X region may be the reason why HBV markers are negative in some cases of hepatitis that involve occult HBV infection.
Collapse
Affiliation(s)
- Kiyotaka Fujise
- Kiyotaka Fujise, Keiko Tatsuzawa, Akihito Tsubota, Minoru Niiya, Hisao Tajiri, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kashiwa Hospital, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lizzano RA, Yang B, Clippinger AJ, Bouchard MJ. The C-terminal region of the hepatitis B virus X protein is essential for its stability and function. Virus Res 2010; 155:231-9. [PMID: 20969903 DOI: 10.1016/j.virusres.2010.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023]
Abstract
More than 350 million people worldwide are chronically infected with the human hepatitis B virus (HBV). Chronic HBV infections are associated with the development of hepatocellular carcinoma. While the mechanism of HBV-associated carcinoma remains undefined, it is thought to involve a combination of a continuous inflammatory response to HBV-infected hepatocytes and activities of HBV proteins such as the HBV X protein (HBx). HBx stimulates HBV replication; however, the mechanism by which HBx stimulates HBV replication remains incompletely understood. Studies performed with the woodchuck hepatitis virus (WHV) in woodchucks demonstrated that a C-terminally truncated mutant of the WHV X protein could not stimulate WHV replication. However, whether the C-terminus of HBx is important for HBx-stimulation of HBV replication is unclear. We have constructed C-terminal truncation mutants of HBx and have demonstrated that the C-terminus of HBx impacts HBx stability, HBx activation of transcription, and HBx stimulation of HBV replication. These observations highlight the impact of the HBx C-terminus on HBx activities and the importance of directly analyzing HBx expression and functions in HBV-associated tumors that contain chromosomal integrants of HBV with truncations of the HBx gene.
Collapse
Affiliation(s)
- Rebecca A Lizzano
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | | | | | | |
Collapse
|
11
|
Feng F, Teoh CQ, Qiao Q, Boyle D, Jilbert AR. The development of persistent duck hepatitis B virus infection can be prevented using antiviral therapy combined with DNA or recombinant fowlpoxvirus vaccines. Vaccine 2010; 28:7436-43. [PMID: 20833122 DOI: 10.1016/j.vaccine.2010.08.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
We recently reported the development of a successful post-exposure combination antiviral and "prime-boost" vaccination strategy using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection. The current study aimed to simplify the vaccination strategy and to test the post-exposure efficacy of combination therapy with the Bristol-Myers Squibb antiviral drug, entecavir (ETV) and either a single dose of DHBV DNA vaccines on day 0 post-infection (p.i.) or a single dose of recombinant fowlpoxvirus (rFPV-DHBV) vaccines on day 7 p.i. Whilst untreated control ducks infected with an equal dose of DHBV all developed persistent and wide spread DHBV infection of the liver, ducks treated with ETV combined with either the DHBV DNA vaccines on day 0 p.i. or the rFPV-DHBV vaccines on day 7 p.i. had no detectable DHBV-infected hepatocytes by day 14 p.i. and were protected from the development of persistent DHBV infection.
Collapse
Affiliation(s)
- Feng Feng
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
12
|
Tsuge M, Hiraga N, Akiyama R, Tanaka S, Matsushita M, Mitsui F, Abe H, Kitamura S, Hatakeyama T, Kimura T, Miki D, Mori N, Imamura M, Takahashi S, Hayes CN, Chayama K. HBx protein is indispensable for development of viraemia in human hepatocyte chimeric mice. J Gen Virol 2010; 91:1854-64. [PMID: 20219897 DOI: 10.1099/vir.0.019224-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-structural X protein, HBx, of hepatitis B virus (HBV) is assumed to play an important role in HBV replication. Woodchuck hepatitis virus X protein is indispensable for virus replication, but the duck hepatitis B virus X protein is not. In this study, we investigated whether the HBx protein is indispensable for HBV replication in vivo using human hepatocyte chimeric mice. HBx-deficient (HBx-def) HBV was generated in HepG2 cells by transfection with an overlength HBV genome. Human hepatocyte chimeric mice were infected with HBx-def HBV with or without hepatic HBx expression by hydrodynamic injection of HBx expression plasmids. Serum virus levels and HBV sequences were determined with mice sera. The generated HBx-def HBV peaked in the sucrose density gradient at points equivalent to the generated HBV wild type and the virus in a patient's serum. HBx-def HBV-injected mice developed measurable viraemia only in continuously HBx-expressed liver. HBV DNA in the mouse serum increased up to 9 log(10) copies ml(-1) and the viraemia persisted for more than 2 months. Strikingly, all revertant viruses had nucleotide substitutions that enabled the virus to produce the HBx protein. It was concluded that the HBx protein is indispensable for HBV replication and could be a target for antiviral therapy.
Collapse
Affiliation(s)
- Masataka Tsuge
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pre-P is a secreted glycoprotein encoded as an N-terminal extension of the duck hepatitis B virus polymerase gene. J Virol 2008; 83:1368-78. [PMID: 19004940 DOI: 10.1128/jvi.01263-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The duck hepatitis B virus (DHBV) pregenomic RNA is a bicistronic mRNA encoding the core and polymerase proteins. Thirteen AUGs (C2 to C14) and 10 stop codons (S1 to S10) are located between the C1 AUG for the core protein and the P1 AUG that initiates polymerase translation. We previously found that the translation of the DHBV polymerase is initiated by ribosomal shunting. Here, we assessed the biosynthetic events after shunting. Translation of the polymerase open reading frame was found to initiate at the C13, C14, and P1 AUGs. Initiation at the C13 AUG occurred through ribosomal shunting because translation from this codon was cap dependent but was insensitive to blocking ribosomal scanning internally in the message. C13 and C14 are in frame with P1, and translation from these upstream start codons led to the production of larger isoforms of P. We named these isoforms "pre-P" by analogy to the pre-C and pre-S regions of the core and surface antigen open reading frames. Pre-P was produced in DHBV16 and AusDHBV-infected duck liver and was predicted to exist in 80% of avian hepadnavirus strains. Pre-P was not encapsidated into DHBV core particles, and the viable strain DHBV3 cannot make pre-P, so it is not essential for viral replication. Surprisingly, we found that pre-P is an N-linked glycoprotein that is secreted into the medium of cultured cells. These data indicate that DHBV produces an additional protein that has not been previously reported. Identifying the role of pre-P may improve our understanding of the biology of DHBV infection.
Collapse
|
14
|
Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol 2008; 82:6798-811. [PMID: 18448529 PMCID: PMC2446973 DOI: 10.1128/jvi.00154-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022] Open
Abstract
Over 350 million people are chronically infected with hepatitis B virus (HBV), and a significant number of chronically infected individuals develop primary liver cancer. HBV encodes seven viral proteins, including the nonstructural X (HBx) protein. The results of studies with immortalized or transformed cells and with HBx-transgenic mice demonstrated that HBx can interact with mitochondria. However, no studies with normal hepatocytes have characterized the precise mitochondrial localization of HBx or the effect of HBx on mitochondrial physiology. We have used cultured primary rat hepatocytes as a model system to characterize the mitochondrial localization of HBx and the effect of HBx expression on mitochondrial physiology. We now show that a fraction of HBx colocalizes with density-gradient-purified mitochondria and associates with the outer mitochondrial membrane. We also demonstrate that HBx regulates mitochondrial membrane potential in hepatocytes and that this function of HBx varies depending on the status of NF-kappaB activity. In primary rat hepatocytes, HBx activation of NF-kappaB prevented mitochondrial membrane depolarization; however, when NF-kappaB activity was inhibited, HBx induced membrane depolarization through modulation of the mitochondrial permeability transition pore. Collectively, these results define potential pathways through which HBx may act in order to modulate mitochondrial physiology, thereby altering many cellular activities and ultimately contributing to the development of HBV-associated liver cancer.
Collapse
Affiliation(s)
- Amy J Clippinger
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
15
|
Miller DS, Boyle D, Feng F, Reaiche GY, Kotlarski I, Colonno R, Jilbert AR. Antiviral therapy with entecavir combined with post-exposure "prime-boost" vaccination eliminates duck hepatitis B virus-infected hepatocytes and prevents the development of persistent infection. Virology 2008; 373:329-41. [PMID: 18206204 DOI: 10.1016/j.virol.2007.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/26/2007] [Accepted: 11/27/2007] [Indexed: 12/21/2022]
Abstract
Short-term antiviral therapy with the nucleoside analogue entecavir (ETV), given at an early stage of duck hepatitis B virus (DHBV) infection, restricts virus spread and leads to clearance of DHBV-infected hepatocytes in approximately 50% of ETV-treated ducks, whereas widespread and persistent DHBV infection develops in 100% of untreated ducks. To increase the treatment response rate, ETV treatment was combined in the current study with a post-exposure "prime-boost" vaccination protocol. Four groups of 14-day-old ducks were inoculated intravenously with a dose of DHBV previously shown to induce persistent DHBV infection. One hour post-infection (p.i.), ducks were primed with DNA vaccines that expressed DHBV core (DHBc) and surface (pre-S/S and S) antigens (Groups A, B) or the DNA vector alone (Groups C, D). ETV (Groups A, C) or water (Groups B, D) was simultaneously administered by gavage and continued for 14 days. Ducks were boosted 7 days p.i. with recombinant fowlpoxvirus (rFPV) strains also expressing DHBc and pre-S/S antigens (Groups A, B) or the FPV-M3 vector (Groups C, D). DHBV-infected hepatocytes were observed in the liver of all ducks at day 4 p.i. with reduced numbers in the ETV-treated ducks. Ducks treated with ETV plus the control vectors showed restricted spread of DHBV infection during ETV treatment, but in 60% of cases, infection became widespread after ETV was stopped. In contrast, at 14 and 67 days p.i., 100% of ducks treated with ETV and "prime-boost" vaccination had no detectable DHBV-infected hepatocytes and had cleared the DHBV infection. These findings suggest that ETV treatment combined with post-exposure "prime-boost" vaccination induced immune responses that eliminated DHBV-infected hepatocytes and prevented the development of persistent DHBV infection.
Collapse
Affiliation(s)
- D S Miller
- School of Molecular and Biomedical Science, University of Adelaide, SA 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Hepatitis B viruses are small enveloped DNA viruses referred to as Hepadnaviridae that cause transient or persistent (chronic) infections of the liver. This family is divided into two genera, orthohepadnavirus and avihepadnavirus, which infect mammals or birds as natural hosts, respectively. They possess a narrow host range determined by the initial steps of viral attachment and entry. Hepatitis B virus is the focus of biomedical research owing to its medical significance. Approximately 2 billion people have serological evidence of hepatitis B, and of these approximately 350 million people have chronic infections (World Health Organisation, Fact Sheet WHO/204, October 2000). Depending on viral and host factors, the outcomes of infection with hepatitis B virus vary between acute hepatitis, mild or severe chronic hepatitis or cirrhosis. Chronic infections are associated with an increased risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hans-Jürgen Netter
- Monash University, Department of Microbiology, Clayton Campus, Victoria 3800, Australia
| | - Shau-Feng Chang
- Industrial Technology Research Institute, Biomedical Engineering Laboratories, 300 Hsinchu, Taiwan
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Funk A, Mhamdi M, Will H, Sirma H. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism. World J Gastroenterol 2007; 13:91-103. [PMID: 17206758 PMCID: PMC4065881 DOI: 10.3748/wjg.v13.i1.91] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human hepatitis B virus (HBV) and the duck hepatitis B virus (DHBV) share several fundamental features. Both viruses have a partially double-stranded DNA genome that is replicated via a RNA intermediate and the coding open reading frames (ORFs) overlap extensively. In addition, the genomic and structural organization, as well as replication and biological characteristics, are very similar in both viruses. Most of the key features of hepadnaviral infection were first discovered in the DHBV model system and subsequently confirmed for HBV. There are, however, several differences between human HBV and DHBV. This review will focus on the molecular and cellular biology, evolution, and host adaptation of the avian hepatitis B viruses with particular emphasis on DHBV as a model system.
Collapse
Affiliation(s)
- Anneke Funk
- Department of General Virology, Heinrich-Pette-Institut fur experimentelle Virologie und Immunologie an der Universitat Hamburg, PO Box 201652, Hamburg 20206, Germany
| | | | | | | |
Collapse
|
18
|
Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. J Virol 2006; 80:4406-14. [PMID: 16611900 PMCID: PMC1472019 DOI: 10.1128/jvi.80.9.4406-4414.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is a multifunctional regulator of cellular signal transduction and transcription pathways and has a critical role in HBV replication. Much of the cytoplasmic signal transduction activity associated with HBx expression and its stimulation of viral replication is attributable to HBx-induced activation of calcium signaling pathways involving Pyk2 and Src tyrosine kinases. To further characterize upstream signal transduction pathways that are required for HBx activity, including activation of Src and mitogen-activated protein kinase (MAPK) cascades, we determined whether focal adhesion kinase (FAK), a known regulator of Src family kinases and the other member of the Pyk2/FAK kinase family, is activated by HBx. We report that HBx activates FAK and that FAK activation is important for multiple HBx functions. Dominant inhibiting forms of FAK blocked HBx activation of Src kinases and downstream signal transduction, HBx stimulation of NF-kappaB and AP-1-dependent transcription, and HBV DNA replication. We also demonstrate that HBx-induced activation of FAK is dependent on cellular calcium signaling, which is modulated by HBx. Moreover, prolonged expression of HBx increases both FAK activity and its level of expression. FAK activation may play a role in cellular transformation and cancer progression. HBx stimulation of FAK activity and abundance may also be relevant as a potential cofactor in HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
19
|
Litwin S, Toll E, Jilbert AR, Mason WS. The competing roles of virus replication and hepatocyte death rates in the emergence of drug-resistant mutants: theoretical considerations. J Clin Virol 2006; 34 Suppl 1:S96-S107. [PMID: 16461233 DOI: 10.1016/s1386-6532(05)80018-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lamivudine therapy of individuals chronically infected with hepatitis B virus (HBV) may eventually fail due to the emergence of drug-resistant mutants. Nonetheless, the durability of the response generally exceeds 6-12 months. This durability appeared surprising in view of published evidence that the replication rate of drug-resistant mutants might be at least 10% of the replication rate of uninhibited wild-type virus. In this case, it might be expected that pre-existing mutants would rapidly spread to any uninfected hepatocytes that arose during therapy. To gain insights into why therapy is at least transiently successful in many patients, we constructed a computational model of the infected liver to account for the rates of replication of wild-type and drug-resistant mutant viruses, rates of death of infected and uninfected hepatocytes, rates of spontaneous mutation to drug resistance, opportunity for polymerase trans-complementation, and the survival or loss of covalently closed circular DNA (cccDNA) during cell division. The analyses suggest that either drug-resistant mutants have much lower replication rates than suspected, or that spread of virus to uninfected hepatocytes that arise in the chronically infected liver is much slower than during de novo infections.
Collapse
Affiliation(s)
- Samuel Litwin
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
20
|
Miller DS, Kotlarski I, Jilbert AR. DNA vaccines expressing the duck hepatitis B virus surface proteins lead to reduced numbers of infected hepatocytes and protect ducks against the development of chronic infection in a virus dose-dependent manner. Virology 2006; 351:159-69. [PMID: 16624364 DOI: 10.1016/j.virol.2006.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/01/2022]
Abstract
We tested the efficacy of DNA vaccines expressing the duck hepatitis B virus (DHBV) pre-surface (pre-S/S) and surface (S) proteins in modifying the outcome of infection in 14-day-old ducks. In two experiments, Pekin Aylesbury ducks were vaccinated on days 4 and 14 of age with plasmid DNA vaccines expressing either the DHBV pre-S/S or S proteins, or the control plasmid vector, pcDNA1.1Amp. All ducks were then challenged intravenously on day 14 of age with 5 x 10(7) or 5 x 10(8) DHBV genomes. Levels of initial DHBV infection were assessed using liver biopsy tissue collected at day 4 post-challenge (p.c.) followed and immunostained for DHBV surface antigen to determine the percentage of infected hepatocytes. All vector vaccinated ducks challenged with 5 x 10(7) and 5 x 10(8) DHBV genomes had an average of 3.21% and 20.1% of DHBV-positive hepatocytes respectively at day 4 p.c. and 16 out of 16 ducks developed chronic DHBV infection. In contrast, pre-S/S and S vaccinated ducks challenged with 5 x 10(7) DHBV genomes had reduced levels of initial infection with an average of 1.38% and 1.93% of DHBV-positive hepatocytes at day 4 p.c. respectively and 10 of 18 ducks were protected against chronic infection. The pre-S/S and the S DNA vaccinated ducks challenged with 5 x 10(8) DHBV genomes had an average of 31.5% and 9.2% of DHBV-positive hepatocytes on day 4 p.c. respectively and only 4 of the 18 vaccinated ducks were protected against chronic infection. There was no statistically significant difference in the efficacy of the DHBV pre-S/S or S DNA vaccines. In conclusion, vaccination of young ducks with DNA vaccines expressing the DHBV pre-S/S and S proteins induced rapid immune responses that reduced the extent of initial DHBV infection in the liver and prevented the development of chronic infection in a virus dose-dependent manner.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Ducks/immunology
- Ducks/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B, Chronic/prevention & control
- Hepatocytes/virology
- Humans
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Darren S Miller
- Hepatitis Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
21
|
Cao F, Tavis JE. Suppression of mRNA accumulation by the duck hepatitis B virus reverse transcriptase. Virology 2006; 350:475-83. [PMID: 16563457 DOI: 10.1016/j.virol.2006.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 01/12/2023]
Abstract
Hepadnaviruses establish chronic liver infections, but the mechanisms of persistence and immune evasion are poorly understood. We previously found that the duck hepatitis B virus (DHBV) and hepatitis B virus reverse transcriptases (P protein) unexpectedly accumulate in the cytoplasm where they could affect function(s) beyond viral DNA synthesis, such as gene expression. Therefore, we measured effects of DHBV P on gene expression from reporter constructs and the viral genome. P reduced reporter expression at the mRNA level to approximately 30-40%, independent of reporter tested. Accumulation of the viral pregenomic RNA from its native promoter was suppressed three-to four-fold by P, and accumulation of the capsid protein and intracellular core particles was similarly suppressed because the pregenomic RNA encodes the capsid protein. Therefore, suppression of the pregenomic RNA by DHBV P creates a negative feedback loop to limit viral antigen accumulation and replication, possibly contributing to maintenance of chronic infection.
Collapse
Affiliation(s)
- Feng Cao
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | |
Collapse
|
22
|
Miller DS, Halpern M, Kotlarski I, Jilbert AR. Vaccination of ducks with a whole-cell vaccine expressing duck hepatitis B virus core antigen elicits antiviral immune responses that enable rapid resolution of de novo infection. Virology 2006; 348:297-308. [PMID: 16469347 DOI: 10.1016/j.virol.2005.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/12/2005] [Accepted: 12/22/2005] [Indexed: 01/12/2023]
Abstract
As a first step in developing immuno-therapeutic vaccines for patients with chronic hepatitis B virus infection, we examined the ability of a whole-cell vaccine, expressing the duck hepatitis B virus (DHBV) core antigen (DHBcAg), to target infected cells leading to the resolution of de novo DHBV infections. Three separate experiments were performed. In each experiment, ducks were vaccinated at 7 and 14 days of age with primary duck embryonic fibroblasts (PDEF) that had been transfected 48 h earlier with plasmid DNA expressing DHBcAg with and without the addition of anti-DHBcAg (anti-DHBc) antibodies. Control ducks were injected with either 0.7% NaCl or non-transfected PDEF. The ducks were then challenged at 18 days of age by intravenous inoculation with DHBV (5 x 10(8) viral genome equivalents). Liver biopsies obtained on day 4 post-challenge demonstrated that vaccination did not prevent infection of the liver as similar numbers of infected hepatocytes were detected in all vaccinated and control ducks. However, analysis of liver tissue obtained 9 or more days post-challenge revealed that 9 out of 11 of the PDEF-DHBcAg vaccinated ducks and 8 out of 11 ducks vaccinated with PDEF-DHBcAg plus anti-DHBc antibodies had rapidly resolved the DHBV infection with clearance of infected cells. In contrast, 10 out of 11 of the control unvaccinated ducks developed chronic DHBV infection. In conclusion, vaccination of ducks with a whole-cell PDEF vaccine expressing DHBcAg elicited immune responses that induced a rapid resolution of DHBV infection. The results establish that chronic infection can be prevented via the vaccine-mediated induction of a core-antigen-specific immune response.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Base Sequence
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Ducks/immunology
- Ducks/virology
- Fibroblasts/immunology
- Fibroblasts/virology
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Humans
- Plasmids/genetics
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Transfection
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Hepatitis Vaccines/genetics
- Viral Hepatitis Vaccines/immunology
Collapse
Affiliation(s)
- Darren S Miller
- School of Molecular and Biomedical Science, The University of Adelaide, Australia.
| | | | | | | |
Collapse
|
23
|
Le Mire MF, Miller DS, Foster WK, Burrell CJ, Jilbert AR. Covalently closed circular DNA is the predominant form of duck hepatitis B virus DNA that persists following transient infection. J Virol 2005; 79:12242-52. [PMID: 16160150 PMCID: PMC1211519 DOI: 10.1128/jvi.79.19.12242-12252.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.
Collapse
MESH Headings
- Adrenal Glands/virology
- Animals
- DNA, Circular/analysis
- DNA, Circular/isolation & purification
- DNA, Viral/analysis
- DNA, Viral/isolation & purification
- Ducks
- Genome, Viral
- Heart/virology
- Hepadnaviridae Infections/virology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/physiology
- Hepatitis, Viral, Animal/virology
- Kidney/virology
- Leukocytes, Mononuclear/virology
- Liver/virology
- Polymerase Chain Reaction
- Spleen/virology
Collapse
Affiliation(s)
- Marc F Le Mire
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | | | |
Collapse
|
24
|
Foster WK, Miller DS, Scougall CA, Kotlarski I, Colonno RJ, Jilbert AR. Effect of antiviral treatment with entecavir on age- and dose-related outcomes of duck hepatitis B virus infection. J Virol 2005; 79:5819-32. [PMID: 15827196 PMCID: PMC1082753 DOI: 10.1128/jvi.79.9.5819-5832.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Entecavir (ETV), a potent inhibitor of the hepadnaviral polymerases, prevented the development of persistent infection when administered in the early stages of duck hepatitis B virus (DHBV) infection. In a preliminary experiment, ETV treatment commenced 24 h before infection showed no significant advantage over simultaneous ETV treatment and infection. In two further experiments 14-day-old ducks were inoculated with DHBV-positive serum containing 10(4), 10(6), 10(8), or 5 x 10(8) viral genomes (vge) and were treated orally with 1.0 mg/kg of body weight/day of ETV for 14 or 49 days. A relationship between virus dose and infection outcome was seen: non-ETV-treated ducks inoculated with 10(4) vge had transient infection, while ducks inoculated with higher doses developed persistent infection. ETV treatment for 49 days did not prevent initial infection of the liver but restricted the spread of infection more than approximately 1,000-fold, a difference which persisted throughout treatment and for up to 49 days after withdrawal. Ultimately, three of seven ETV-treated ducks resolved their DHBV infection, while the remaining ducks developed viremia and persistent infection after a lag period of at least 63 days. ETV treatment for 14 days also restricted the spread of infection, leading to marked and sustained reductions in the number of DHBV-positive hepatocytes in 7 out of 10 ducks. In conclusion, short-term suppression with ETV provides opportunity for the immune response to successfully control DHBV infection. Since DHBV infection of ducks provides a good model system for HBV infection in humans, it seems likely that ETV may be useful in postexposure therapy for HBV infection aimed at preventing the development of persistent infection.
Collapse
Affiliation(s)
- Wendy K Foster
- Hepatitis Virus Research Laboratory, Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Rd., Box 14 Rundle Mall, Adelaide, SA 5000, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Guo H, Mason WS, Aldrich CE, Saputelli JR, Miller DS, Jilbert AR, Newbold JE. Identification and characterization of avihepadnaviruses isolated from exotic anseriformes maintained in captivity. J Virol 2005; 79:2729-42. [PMID: 15708992 PMCID: PMC548436 DOI: 10.1128/jvi.79.5.2729-2742.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Five new hepadnaviruses were cloned from exotic ducks and geese, including the Chiloe wigeon, mandarin duck, puna teal, Orinoco sheldgoose, and ashy-headed sheldgoose. Sequence comparisons revealed that all but the mandarin duck viruses were closely related to existing isolates of duck hepatitis B virus (DHBV), while mandarin duck virus clones were closely related to Ross goose hepatitis B virus. Nonetheless, the S protein, core protein, and functional domains of the Pol protein were highly conserved in all of the new isolates. The Chiloe wigeon and puna teal hepatitis B viruses, the two new isolates most closely related to DHBV, also lacked an AUG start codon at the beginning of their X open reading frame (ORF). But as previously reported for the heron, Ross goose, and stork hepatitis B viruses, an AUG codon was found near the beginning of the X ORF of the mandarin duck, Orinoco, and ashy-headed sheldgoose viruses. In all of the new isolates, the X ORF ended with a stop codon at the same position. All of the cloned viruses replicated when transfected into the LMH line of chicken hepatoma cells. Significant differences between the new isolates and between these and previously reported isolates were detected in the pre-S domain of the viral envelope protein, which is believed to determine viral host range. Despite this, all of the new isolates were infectious for primary cultures of Pekin duck hepatocytes, and infectivity in young Pekin ducks was demonstrated for all but the ashy-headed sheldgoose isolate.
Collapse
Affiliation(s)
- Haitao Guo
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 2005; 63:1-70. [PMID: 15530560 DOI: 10.1016/s0065-3527(04)63001-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
27
|
Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 2004; 78:13122-31. [PMID: 15542664 PMCID: PMC525004 DOI: 10.1128/jvi.78.23.13122-13131.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The initiation of reverse transcription and nucleocapsid assembly in hepatitis B virus (HBV) depends on the specific recognition of an RNA signal (the packaging signal, epsilon) on the pregenomic RNA (pgRNA) by the viral reverse transcriptase (RT). RT-epsilon interaction in the duck hepatitis B virus (DHBV) was recently shown to require the molecular chaperone complex, the heat shock protein 90 (Hsp90). However, the requirement for RT-epsilon interaction in the human HBV has remained unknown due to the inability to obtain a purified RT protein active in specific epsilon binding. We now report that Hsp90 is also required for HBV RT-epsilon interaction. Inhibition of Hsp90 led to diminished HBV pgRNA packaging into nucleocapsids in cells, which depends on RT-epsilon interaction. Furthermore, using truncated HBV RT proteins purified from bacteria and five purified Hsp90 chaperone factors, we have developed an in vitro RT-epsilon binding assay. Our results demonstrate that Hsp90, in a dynamic process that was dependent on ATP hydrolysis, facilitated RT-epsilon interaction in HBV, as in DHBV. Specific epsilon binding required sequences from both the amino-terminal terminal protein and the carboxy-terminal RT domain. Only the cognate HBV epsilon, but not the DHBV epsilon, could bind the HBV RT proteins. Furthermore, the internal bulge, but not the apical loop, of epsilon was required for RT binding. The establishment of a defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT-epsilon interaction and chaperone activation.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Microbiology and Immunology-H107, The Pennsylvania State University, 500 University Dr., Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|