1
|
Mittermüller D, Otto L, Kilian AL, Schnormeier AK, Littwitz-Salomon E, Hasenberg A, Dittmer U, Gunzer M. PD-1 knockout on cytotoxic primary murine CD8 + T cells improves their motility in retrovirus infected mice. Front Immunol 2024; 15:1338218. [PMID: 38742109 PMCID: PMC11089113 DOI: 10.3389/fimmu.2024.1338218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.
Collapse
Affiliation(s)
- Daniela Mittermüller
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annika Loredana Kilian
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Schnormeier
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| |
Collapse
|
2
|
Steinbach P, Pastille E, Kaumanns L, Adamczyk A, Sutter K, Hansen W, Dittmer U, Buer J, Westendorf AM, Knuschke T. Influenza virus infection enhances tumour-specific CD8+ T-cell immunity, facilitating tumour control. PLoS Pathog 2024; 20:e1011982. [PMID: 38271469 PMCID: PMC10846710 DOI: 10.1371/journal.ppat.1011982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/06/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Influenza A virus (IAV) can cause severe respiratory infection leading to significant global morbidity and mortality through seasonal epidemics. Likewise, the constantly increasing number of cancer diseases is a growing problem. Nevertheless, the understanding of the mutual interactions of the immune responses between cancer and infection is still very vague. Therefore, it is important to understand the immunological cross talk between cancer and IAV infection. In several preclinical mouse models of cancer, including melanoma and colorectal cancer, we observed that IAV infection in the lung significantly decreased the tumour burden. Concomitantly, tumour-specific CD8+ T-cells are strongly activated upon infection, both in the tumour tissue and in the lung. CD8+ T-cell depletion during infection reverses the reduced tumour growth. Interestingly, IAV infection orchestrated the migration of tumour-specific CD8+ T-cells from the tumour into the infected lung. Blocking the migration of CD8+ T-cells prevented the anti-tumoural effect. Thus, our findings show that viral respiratory infection has significant impact on the anti-tumour CD8+ T-cell response, which will significantly improve our understanding of the immunological cross talk between cancer and infection.
Collapse
Affiliation(s)
- Philine Steinbach
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lara Kaumanns
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Mittermüller D, Otto L, Long Z, Kraus A, Beer A, Hasenberg A, Zelinskyy G, Westmeier J, Hasenkrug KJ, Dittmer U, Gunzer M. Regulatory T cells suppress the motility of cytotoxic T cells in Friend retrovirus-infected mice. JCI Insight 2023; 8:e167482. [PMID: 37427590 PMCID: PMC10371334 DOI: 10.1172/jci.insight.167482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daniela Mittermüller
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zoë Long
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kim J Hasenkrug
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Ulf Dittmer
- Institute for Virology and
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institute for Analytical Sciences ISAS-e.V., Dortmund, Germany
| |
Collapse
|
4
|
Song S, Lin Z, Zhao C, Wen J, Chen J, Xie S, Qi H, Wang J, Su X. Vagal-mAChR4 signaling promotes Friend virus complex (FV)-induced acute erythroleukemia. Virol Sin 2023:S1995-820X(23)00053-6. [PMID: 37172825 DOI: 10.1016/j.virs.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Erythroleukemia belongs to acute myeloid leukemia (AML) type 6 (M6), and treatment remains difficult due to the poor prognosis of the disease. Friend virus (FV) is a complex of two viruses: Friend murine leukemia virus (F-MuLV) strain along with a defective spleen focus forming virus (SFFV), which can induce acute erythroleukemia in mice. We have previously reported that activation of vagal α7 nicotinic acetylcholine receptor (nAChR) signaling promotes HIV-1 transcription. Whether vagal muscarinic signaling mediates FV-induced erythroleukemia and the underlying mechanisms remain unclear. In this study, sham and vagotomized mice were intraperitoneally injected with FV. FV infection caused anemia in sham mice, and vagotomy reversed this change. FV infection increased erythroblasts ProE, EryA, and EryB cells in the spleen, and these changes were blocked by vagotomy. In bone marrow, FV infection reduced EryC cells in sham mice, an effect that was counteracted by vagotomy. FV infection increased choline acetyltransferase (ChAT) expression in splenic CD4+ and CD8+ T cells, and this change was reversed by vagotomy. Furthermore, the increase of EryA and EryB cells in spleen of FV-infected wild-type mice was reversed after deletion of ChAT in CD4+ T cells. In bone marrow, FV infection reduced EryB and EryC cells in sham mice, whereas lack of ChAT in CD4+ T cells did not affect this change. Activation of muscarinic acetylcholine receptor 4 (mAChR4) by clozapine N-oxide (CNO) significantly increased EryB in the spleen but decreased the EryC cell population in the bone marrow of FV-infected mice. Thus, vagal-mAChR4 signaling in the spleen and bone marrow synergistically promotes the pathogenesis of acute erythroleukemia. We uncover an unrecognized mechanism of neuromodulation in erythroleukemia.
Collapse
Affiliation(s)
- Shuting Song
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Wen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huaxin Qi
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200031, China.
| |
Collapse
|
5
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Shimon-Hophy M, Avtalion RR. Influence of chronic stress on the mechanism of the cytotoxic system in common carp (Cyprinus carpio). Immunology 2021; 164:211-222. [PMID: 33930181 PMCID: PMC8442244 DOI: 10.1111/imm.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture conditions expose fish to internal and environmental stressors that increase their susceptibility to morbidity and mortality. The brain accumulates stress signals and processes them according to the intensity, frequency duration and type of stress, recruiting several brain functions to activate the autonomic or limbic system. Triggering the autonomic system causes the rapid release of catecholamines, such as adrenaline and noradrenaline, into circulation from chromaffin cells in the head kidney. Catecholamines trigger blood cells to release proinflammatory and regulatory cytokines to cope with acute stress. Activation of the limbic axis stimulates the dorsolateral and dorsomedial pallium to process emotions, memory, behaviour and the activation of preoptic nucleus‐pituitary gland‐interrenal cells in the head kidney, releasing glucocorticoids, such as cortisol to the bloodstream. Glucocorticoids cause downregulation of various immune system functions depending on the duration, intensity and type of chronic stress. As stress persists, most immune functions, with the exception of cytotoxic functions, overcome these effects and return to homeostasis. The deterioration of cytotoxic functions during chronic stress appears to be responsible for increased morbidity and mortality.
Collapse
Affiliation(s)
- Mazal Shimon-Hophy
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ramy R Avtalion
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
7
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
8
|
David P, Megger DA, Kaiser T, Werner T, Liu J, Chen L, Sitek B, Dittmer U, Zelinskyy G. The PD-1/PD-L1 Pathway Affects the Expansion and Function of Cytotoxic CD8 + T Cells During an Acute Retroviral Infection. Front Immunol 2019; 10:54. [PMID: 30804928 PMCID: PMC6370637 DOI: 10.3389/fimmu.2019.00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. The checkpoint receptor PD-1 suppresses the functionality of virus-specific CD8+ T cells during chronic infection. However, the role of the PD-L1/PD-1 pathway during the acute phase of infections has not been well characterized. In the current study the effects of PD-1 or PD-L1 deficiency on the CD8+ T cell response against Friend retroviral (FV) infection of knockout mice was analyzed during acute infection. We observed an enhanced proliferation, functional maturation, and reduced apoptosis of effector CD8+ T cells in the absence of PD-1 or PD-L1. The knockout of PD-L1 had a stronger effect on the functionality of CD8+ T cells than that of PD-1. Augmented CTL responses were associated with an improved control of FV replication. The strong phenotype of FV-infected PD-L1 knockout mice was independent of the interaction with CD80 as an additional receptor for PD-L1. Furthermore, we performed a detailed analysis of the production of different granzymes in virus-specific CD8+ T cells and observed that especially the simultaneous production of multiple granzymes in individual T cells (multifunctionality) was under the control of the PD-1/PD-L1 pathway. The findings from this study allow for a better understanding of the development of antiviral cytotoxic immunity during acute viral infections.
Collapse
Affiliation(s)
- Paul David
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Tamara Kaiser
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Abstract
Evaluation of cell-mediated immunity (CMI) is a significant component in any assessment designed to predict the full range of potential immunotoxic risk underlying health risks. Among measures of CMI, the cytotoxic T-lymphocyte (CTL) response is recognized as perhaps the most relevant functional measure that reflects cell-mediated acquired immune defense against viral infections and cancer. The CTL response against T-dependent antigens requires the cooperation of at least three different major categories of immune cells. These include professional antigen-presenting cells (e.g., dendritic cells), CD4+ T helper lymphocytes, and CD8+ T effector lymphocytes. It is also among the few functional responses dependent on and, hence, capable of evaluating effective antigen presentation via both class I and class II molecules of the major histocompatibility complex (MHC). For this reason, the CTL assay is an excellent candidate for evaluation of potential immunotoxicity. This chapter provides an example of a mouse CTL assay against influenza virus that has been utilized for this purpose.
Collapse
|
10
|
Immunodominance of Adenovirus-Derived CD8 + T Cell Epitopes Interferes with the Induction of Transgene-Specific Immunity in Adenovirus-Based Immunization. J Virol 2017; 91:JVI.01184-17. [PMID: 28768877 DOI: 10.1128/jvi.01184-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
Adenovirus (Ad)-based immunization is a popular approach in vaccine development, and Ad-based vectors are renowned for their potential to induce strong CD8+ T cell responses to the encoded transgene. Surprisingly, we previously found in the mouse Friend retrovirus (FV) model that Ad-based immunization did not induce CD8+ T cell responses to the FV Leader-Gag-derived immunodominant epitope GagL85-93 We show now that induction of GagL85-93-specific CD8+ T cells was highly effective when leader-Gag was delivered by plasmid DNA immunization, implying a role for Ad-derived epitopes in mediating unresponsiveness. By immunizing with DNA constructs encoding strings of GagL85-93 and the two Ad-derived epitopes DNA-binding protein418-426 (DBP418-426) and hexon486-494, we confirmed that Ad epitopes prevent induction of GagL85-93-specific CD8+ T cells. Interestingly, while DBP418-426 did not interfere with GagL85-93-specific CD8+ T cell induction, the H-2Dd-restricted hexon486-494 suppressed the CD8+ T cell response to the H-2Db-restricted GagL85-93 strongly in H-2b/d mice but not in H-2b/b mice. This finding indicates that competition occurs at the level of responding CD8+ T cells, and we could indeed demonstrate that coimmunization with an interleukin 2 (IL-2)-encoding plasmid restored GagL85-93-specific CD8+ T cell responses to epitope strings in the presence of hexon486-494 IL-2 codelivery did not restore GagL85-93 responsiveness in Ad-based immunization, however, likely due to the presence of further epitopes in the Ad vector. Our findings show that seemingly immunodominant transgene epitopes can be dominated by Ad-derived epitopes. These findings underline the importance of thorough characterization of vaccine vectors, and modifications of vectors or immunogens may be required to prevent impaired transgene-specific immune responses.IMPORTANCE Ad-based vectors are widely used in experimental preclinical and clinical immunization studies against numerous infectious agents, such as human immunodeficiency virus, Ebola virus, Plasmodium falciparum, or Mycobacterium tuberculosis Preexisting immunity to Ad-based vectors is widely recognized as a hindrance to the widespread use of Ad-based vectors for immunizations in humans; however, our data show that an immune response to Ad-derived T cell epitopes can also result in loss or impairment of transgene-specific immune responses in prenaive vaccinees due to immune competition. Our results highlight that seemingly immunodominant epitopes may be affected by dominance of vector-derived epitopes, and modifications of the vector design or the immunogens employed in immunization may lead to more effective vaccines.
Collapse
|
11
|
Malyshkina A, Littwitz-Salomon E, Sutter K, Zelinskyy G, Windmann S, Schimmer S, Paschen A, Streeck H, Hasenkrug KJ, Dittmer U. Fas Ligand-mediated cytotoxicity of CD4+ T cells during chronic retrovirus infection. Sci Rep 2017; 7:7785. [PMID: 28798348 PMCID: PMC5552859 DOI: 10.1038/s41598-017-08578-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
CD4+ helper T cells and cytotoxic CD8+ T cells are key players for adaptive immune responses against acute infections with retroviruses. Similar to textbook knowledge the most important function of CD4+ T cells during an acute retrovirus infection seems to be their helper function for other immune cells. Whereas there was no direct anti-viral activity of CD4+ T cells during acute Friend Virus (FV) infection, they were absolutely required for the control of chronic infection. During chronic FV infection a population of activated FV-specific CD4+ T cells did not express cytotoxic molecules, but Fas Ligand that can induce Fas-induced apoptosis in target cells. Using an MHC II-restricted in vivo CTL assay we demonstrated that FV-specific CD4+ T cells indeed mediated cytotoxic effects against FV epitope peptide loaded targets. CD4 + CTL killing was also detected in FV-infected granzyme B knockout mice confirming that the exocytosis pathway was not involved. However, killing could be blocked by antibodies against FasL, which identified the Fas/FasL pathway as critical cytotoxic mechanism during chronic FV infection. Interestingly, targeting the co-stimulatory receptor CD137 with an agonistic antibody enhanced CD4+ T cell cytotoxicity. This immunotherapy may be an interesting new approach for the treatment of chronic viral infections.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Dietze KK, Dittmer U, Koudaimi DK, Schimmer S, Reitz M, Breloer M, Hartmann W. Filariae-Retrovirus Co-infection in Mice is Associated with Suppressed Virus-Specific IgG Immune Response and Higher Viral Loads. PLoS Negl Trop Dis 2016; 10:e0005170. [PMID: 27923052 PMCID: PMC5140070 DOI: 10.1371/journal.pntd.0005170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Worldwide more than 2 billion people are infected with helminths, predominantly in developing countries. Co-infections with viruses such as human immunodeficiency virus (HIV) are common due to the geographical overlap of these pathogens. Helminth and viral infections induce antagonistic cytokine responses in their hosts. Helminths shift the immune system to a type 2-dominated immune response, while viral infections skew the cytokine response towards a type 1 immune response. Moreover, chronic helminth infections are often associated with a generalized suppression of the immune system leading to prolonged parasite survival, and also to a reduced defence against unrelated pathogens. To test whether helminths affect the outcome of a viral infection we set up a filarial/retrovirus co-infection model in C57BL/6 mice. Although Friend virus (FV) infection altered the L. sigmodontis-specific immunoglobulin response towards a type I associated IgG2 isotype in co-infected mice, control of L. sigmodontis infection was not affected by a FV-superinfection. However, reciprocal control of FV infection was clearly impaired by concurrent L. sigmodontis infection. Spleen weight as an indicator of pathology and viral loads in spleen, lymph nodes (LN) and bone marrow (BM) were increased in L. sigmodontis/FV-co-infected mice compared to only FV-infected mice. Numbers of FV-specific CD8+ T cells as well as cytokine production by CD4+ and CD8+ cells were alike in co-infected and FV-infected mice. Increased viral loads in co-infected mice were associated with reduced titres of neutralising FV-specific IgG2b and IgG2c antibodies. In summary our findings suggest that helminth infection interfered with the control of retroviral infection by dampening the virus-specific neutralising antibody response. The coincidental infection of a host with two different pathogens is widespread in low-income countries. Regions where helminth infections are endemic strongly overlap with areas where the incidence of viral infections such as HIV is high. HIV is a major public health issue causing more than 1 million deaths per year. To analyse the impact of a pre-existing helminth infection on a viral infection we established a helminth/retrovirus co-infection mouse model. Mice that were first infected with Litomosoides sigmodontis and subsequently with a murine retrovirus showed a more severe course of virus infection, i.e. exaggerated splenomegaly and higher viral loads. Since different lymphocytes such as B and T cells contribute to viral control we analysed the cellular and humoral immune response. While T cell responses were similar in co-infected and virus-infected mice, we observed reduced titres of virus-specific antibodies in co-infected mice. Our results suggest that helminth infection interfered with viral control by dampening the virus-specific antibody response. The viral infection itself altered the humoral immune response against L. sigmodontis without changing the worm burden. In summary, our data highlight the importance of deworming programs or vaccines against helminths in developing countries where the incidence of helminth/HIV co-infections is high.
Collapse
Affiliation(s)
- Kirsten Katrin Dietze
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Karim Koudaimi
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Reitz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection. Viral Immunol 2015; 28:309-24. [DOI: 10.1089/vim.2015.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
15
|
Reply to "CD8+ T cells are essential for controlling acute friend virus infection in C57BL/6 mice". J Virol 2014; 88:5202-3. [PMID: 24707026 DOI: 10.1128/jvi.00343-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. Combining regulatory T cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic retroviral loads. PLoS Pathog 2013; 9:e1003798. [PMID: 24339778 PMCID: PMC3855586 DOI: 10.1371/journal.ppat.1003798] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023] Open
Abstract
Chronic infections with human viruses, such as HIV and HCV, or mouse viruses, such as LCMV or Friend Virus (FV), result in functional exhaustion of CD8+ T cells. Two main mechanisms have been described that mediate this exhaustion: expression of inhibitory receptors on CD8+ T cells and expansion of regulatory T cells (Tregs) that suppress CD8+ T cell activity. Several studies show that blockage of one of these pathways results in reactivation of CD8+ T cells and partial reduction in chronic viral loads. Using blocking antibodies against PD-1 ligand and Tim-3 and transgenic mice in which Tregs can be selectively ablated, we compared these two treatment strategies and combined them for the first time in a model of chronic retrovirus infection. Blocking inhibitory receptors was more efficient than transient depletion of Tregs in reactivating exhausted CD8+ T cells and reducing viral set points. However, a combination therapy was superior to any single treatment and further augmented CD8+ T cell responses and resulted in a sustained reduction in chronic viral loads. These results demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising strategy to treat chronic infectious diseases. A loss of function, the so-called ‘exhaustion’ of CD8+ T cells, is a hallmark of many chronic infections. The T cell exhaustion is mediated by two main mechanisms, the expression of inhibitory receptors on CD8+ T cells and virus-induced expansion of regulatory T cells (Tregs), which suppress CD8+ T cell activity. Several mouse studies revealed a reactivation of CD8+ T cells and reduction in chronic viral loads after blockage of one of these pathways. These results initiated a number of clinical studies mainly with cancer patients, in which blocking antibodies were used to interfere with inhibitory receptor signaling or drugs that deplete Tregs. For the first time we combined the two therapeutic approaches by using transgenic mice in which Tregs can be selectively ablated and injection of blocking antibodies in a chronic retroviral infection. The results indicate that the combination therapy was superior to any single treatment in further augmenting CD8+ T cell responses and reducing chronic viral loads. Our findings demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising new strategy to treat chronic infectious diseases.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
|
18
|
CD4+ T cells develop antiretroviral cytotoxic activity in the absence of regulatory T cells and CD8+ T cells. J Virol 2013; 87:6306-13. [PMID: 23536666 DOI: 10.1128/jvi.00432-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conventional CD4(+) T cells play an important role in viral immunity. In most virus infections, they provide essential help for antiviral B and T cell responses. In chronic infections, including HIV infection, an expansion of regulatory T cells (Tregs) has been demonstrated, which can suppress virus-specific CD4(+) T cell responses in vitro. However, the suppressive activity of Tregs on effector CD4(+) T cells in retroviral infection is less well documented in vivo. We took advantage of a transgenic mouse in which Tregs can be selectively depleted to determine the influence of such cells on retrovirus-specific CD4(+) T cell responses during an ongoing infection. Mice were infected with Friend retrovirus (FV), and Tregs were depleted during the acute phase of the infection. In nondepleted mice, activated CD4(+) T cells produced Th1-type cytokines but did not exhibit any antiviral cytotoxicity as determined in a major histocompatibility complex (MHC) class II-restricted in vivo cytotoxic T lymphocyte (CTL) assay. Depletion of Tregs significantly increased the numbers of virus-specific CD4(+) T cells and improved their cytokine production, whereas it induced only very little CD4(+) T cell cytotoxicity. However, after dual depletion of Tregs and CD8(+) T cells, conventional CD4(+) T cells developed significant cytotoxic activity against FV epitope-labeled target cells in vivo and contributed to the control of virus replication. Thus, both Tregs and CD8(+) T cells influence the cytotoxic activity of conventional CD4(+) T cells during an acute retroviral infection.
Collapse
|
19
|
Nayak SK, Nakanishi T. Direct antibacterial activity of CD8+/CD4+ T-cells in ginbuna crucian carp, Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2013; 34:136-141. [PMID: 23089524 DOI: 10.1016/j.fsi.2012.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Cytotoxic T cells (CTLs) constitute an important component of the specific effector mechanism in killing against microbial-infected or transformed cells. In addition to these activities, recent studies in mammals have suggested that CTLs can exhibit direct antimicrobial activity. Therefore, the present investigation was conducted to find out the microbicidal activity of CD8α(+) T cells of ginbuna crucian carp, Carassius auratus langsdorfii. The CD8α(+) T cells from immunised ginbuna exhibited the antibacterial activity against both facultative intracellular bacteria and extracellular bacteria. The maximum reduction of viable count of pathogens was recorded with effector (sensitized) cells and target (bacteria) ratio of 10:1 co-incubated for a period of 1-2 h at 26 °C when effector cells were derived from ginbuna 7 days after one booster dose at 15th day of primary sensitization/immunisation. Sensitized CD8α(+) T cells are found to kill 92.1 and 98.9% of Lactococcus garvieae and Edwardsiella tarda, respectively. No significant difference in the bacterial killing activity could be recorded against facultative intracellular bacteria and extracellular bacteria. The specificity study indicated the non-specific killing of bacteria. CD8α(+) T cells from E. tarda immunised ginbuna exhibited 40% of non-specific killing activity against L. garvieae and those from L. garvieae immunised ginbuna showed 42.7% of non-specific killing activity against E. tarda. Furthermore, CD4(+) T cells also killed 88% and 95.7% of L. garvieae and E. tarda, respectively. In addition to T cell subsets, surface IgM(+) cells also killed both types of pathogens. Therefore, the present study demonstrated the direct antibacterial activity of CD8α(+), CD4(+) T-cells and surface IgM(+) cells in fish.
Collapse
Affiliation(s)
- Sukanta K Nayak
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga-751002, Bhubaneswar, Odisha, India.
| | | |
Collapse
|
20
|
Gibbert K, Joedicke JJ, Meryk A, Trilling M, Francois S, Duppach J, Kraft A, Lang KS, Dittmer U. Interferon-alpha subtype 11 activates NK cells and enables control of retroviral infection. PLoS Pathog 2012; 8:e1002868. [PMID: 22912583 PMCID: PMC3415439 DOI: 10.1371/journal.ppat.1002868] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/05/2012] [Indexed: 12/17/2022] Open
Abstract
The innate immune response mediated by cells such as natural killer (NK) cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN) family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV) significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11. The innate immune response mediated by cells such as natural killer (NK) cells can contribute to immunity against viral infections. NK cells can kill virus-infected cells and thus inhibit virus replication and spread during acute infection. However, in infections with retroviruses, like HIV, these cells are not sufficient to prevent pathology. Here, we describe a new strategy to augment natural killer cell responses during virus infections by using a subtype of the type I interferon family as antiviral drug. This therapy strongly activated NK cells and enabled them to control retrovirus as well as herpes virus infections in mice. The new approach might have great potential for the treatment of many infectious and tumor diseases in which natural killer cells play a significant role in immunity.
Collapse
Affiliation(s)
- Kathrin Gibbert
- Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunol Lett 2012; 144:7-15. [DOI: 10.1016/j.imlet.2012.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/23/2012] [Indexed: 01/22/2023]
|
22
|
Salti SM, Hammelev EM, Grewal JL, Reddy ST, Zemple SJ, Grossman WJ, Grayson MH, Verbsky JW. Granzyme B regulates antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:6301-9. [PMID: 22084442 DOI: 10.4049/jimmunol.1100891] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTLs and NK cells use the perforin/granzyme cytotoxic pathway to kill virally infected cells and tumors. Human regulatory T cells also express functional granzymes and perforin and can induce autologous target cell death in vitro. Perforin-deficient mice die of excessive immune responses after viral challenges, implicating a potential role for this pathway in immune regulation. To further investigate the role of granzyme B in immune regulation in response to viral infections, we characterized the immune response in wild-type, granzyme B-deficient, and perforin-deficient mice infected with Sendai virus. Interestingly, granzyme B-deficient mice, and to a lesser extent perforin-deficient mice, exhibited a significant increase in the number of Ag-specific CD8(+) T cells in the lungs and draining lymph nodes of virally infected animals. This increase was not the result of failure in viral clearance because viral titers in granzyme B-deficient mice were similar to wild-type mice and significantly less than perforin-deficient mice. Regulatory T cells from WT mice expressed high levels of granzyme B in response to infection, and depletion of regulatory T cells from these mice resulted in an increase in the number of Ag-specific CD8(+) T cells, similar to that observed in granzyme B-deficient mice. Furthermore, granzyme B-deficient regulatory T cells displayed defective suppression of CD8(+) T cell proliferation in vitro. Taken together, these results suggest a role for granzyme B in the regulatory T cell compartment in immune regulation to viral infections.
Collapse
Affiliation(s)
- Suzan M Salti
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nair S, Bayer W, Ploquin MJY, Kassiotis G, Hasenkrug KJ, Dittmer U. Distinct roles of CD4+ T cell subpopulations in retroviral immunity: lessons from the Friend virus mouse model. Retrovirology 2011; 8:76. [PMID: 21943070 PMCID: PMC3193819 DOI: 10.1186/1742-4690-8-76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022] Open
Abstract
It is well established that CD4+ T cells play an important role in immunity to infections with retroviruses such as HIV. However, in recent years CD4+ T cells have been subdivided into several distinct populations that are differentially regulated and perform widely varying functions. Thus, it is important to delineate the separate roles of these subsets, which range from direct antiviral activities to potent immunosuppression. In this review, we discuss contributions from the major CD4+ T cell subpopulations to retroviral immunity. Fundamental concepts obtained from studies on numerous viral infections are presented along with a more detailed analysis of studies on murine Friend virus. The relevance of these studies to HIV immunology and immunotherapy is reviewed.
Collapse
Affiliation(s)
- Savita Nair
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Abstract
Evaluation of cell-mediated immunity (CMI) is a significant component in any assessment designed to predict the full range of potential immunotoxic risk underlying health risks. Among measures of CMI, the cytotoxic T Lymphocyte (CTL) response is recognized as perhaps the most relevant functional measure that reflects cell-mediated acquired immune defense against viral infections and cancer. The CTL response against T-dependent antigens requires the cooperation of at least three different major categories of immune cells. These include professional antigen presenting cells (e.g., dendritic cells), CD4(+) T helper lymphocytes, and CD8(+) T effector lymphocytes. It is also among the few functional responses dependent on and, hence, capable of evaluating effective antigen presentation via both class I and class II molecules of the major histocompatibility complex (MHC). For this reason the CTL assay is an excellent candidate for evaluation of potential immunotoxicity. This chapter provides an example of a mouse CTL assay against influenza virus that has been utilized for this purpose.
Collapse
|
26
|
He JS, Gong DE, Ostergaard HL. Stored Fas Ligand, a Mediator of Rapid CTL-Mediated Killing, Has a Lower Threshold for Response Than Degranulation or Newly Synthesized Fas Ligand. THE JOURNAL OF IMMUNOLOGY 2009; 184:555-63. [DOI: 10.4049/jimmunol.0902465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Nair SR, Zelinskyy G, Schimmer S, Gerlach N, Kassiotis G, Dittmer U. Mechanisms of control of acute Friend virus infection by CD4+ T helper cells and their functional impairment by regulatory T cells. J Gen Virol 2009; 91:440-51. [DOI: 10.1099/vir.0.015834-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Effects of acute and chronic murine norovirus infections on immune responses and recovery from Friend retrovirus infection. J Virol 2009; 83:13037-41. [PMID: 19812147 DOI: 10.1128/jvi.01445-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine norovirus (MNV) is a highly infectious but generally nonpathogenic agent that is commonly found in research mouse colonies in both North America and Europe. In the present study, the effects of acute and chronic infections with MNV on immune responses and recovery from concurrent Friend virus (FV) infections were investigated. No significant differences in T-cell or NK-cell responses, FV-neutralizing antibody responses, or long-term recovery from FV infection were observed. We conclude that concurrent MNV infections had no major impacts on FV infections.
Collapse
|
29
|
The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood 2009; 114:3199-207. [PMID: 19671923 DOI: 10.1182/blood-2009-03-208736] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic CD8(+) T cells control acute viremia in many viral infections. However, most viruses that establish chronic infections evade destruction by CD8(+) T cells, and regulatory T cells (Treg) are thought to be involved in this immune evasion. We have infected transgenic mice, in which Treg can be selectively depleted, with Friend retrovirus (FV) to investigate the influence of Treg on pathogen-specific CD8(+) T-cell responses in vivo. We observed that Treg expansion during acute infection was locally defined to organs with high viral loads and massive activation of virus-specific effector CD8(+) T cells. Experimental ablation of Treg resulted in a significant increase of peak cytotoxic CD8(+) T-cell responses against FV. In addition, it prevented the development of functional exhaustion of CD8(+) T cells and significantly reduced FV loads in lymphatic organs. Surprisingly, despite the massive virus-specific CD8(+) T-cell response after temporary Treg depletion, no evidence of immunopathology was found. These results demonstrate the important role of Treg in controlling acute retrovirus-specific CD8(+) T-cell responses, and suggest that temporary manipulation of Treg might be a possible therapeutic approach in chronic infectious diseases.
Collapse
|
30
|
Rutkowski MR, Ho O, Green WR. Defining the mechanism(s) of protection by cytolytic CD8 T cells against a cryptic epitope derived from a retroviral alternative reading frame. Virology 2009; 390:228-38. [PMID: 19539970 DOI: 10.1016/j.virol.2009.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/18/2022]
Abstract
The biological significance of protective CD8 T-cell-mediated responses against non-traditional alternative reading frame epitopes remains relatively unknown. Cytolytic CD8 T cells (CTL) specific for a non-traditional cryptic MHC class I epitope, SYNTGRFPPL, are critically involved in the protection of mice during infection with the LP-BM5 murine retrovirus. The goal of this study was to determine the functional properties of the protective SYNTGRFPPL-specific CTL during LP-BM5 infection of susceptible BALB/c CD8(-/-) mice. Direct infection experiments and adoptive transfer of CD8 T cells derived from perforin (pfp)(-/-), IFN gamma(-/-), FasL(-/-) and, as a positive control, wild-type BALB/c mice, were utilized to assess the effector mechanisms responsible for protection. Our results indicate that SYNTGRFPPL-specific effector CTL preferentially utilize perforin-mediated cytolysis to provide protection against LP-BM5-induced pathogenesis, whereas CTL production of IFN gamma is not required. Our results also suggest a minimal contribution of FasL/Fas-mediated lysis during the effector response. Collectively, these results provide insight into effector mechanisms utilized by protective CTL directed against non-traditional cryptic epitopes during disease protection.
Collapse
Affiliation(s)
- Melanie R Rutkowski
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH, USA
| | | | | |
Collapse
|
31
|
Robertson SJ, Messer RJ, Carmody AB, Mittler RS, Burlak C, Hasenkrug KJ. CD137 costimulation of CD8+ T cells confers resistance to suppression by virus-induced regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5267-74. [PMID: 18390707 DOI: 10.4049/jimmunol.180.8.5267] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic viral infections cause high levels of morbidity and mortality worldwide, making the development of effective therapies a high priority for improving human health. We have used mice infected with Friend virus as a model to study immunotherapeutic approaches to the cure of chronic retroviral infections. In chronic Friend virus infections CD4(+) T regulatory (Treg) cells suppress CD8(+) T cell effector functions critical for virus clearance. In this study, we demonstrate that immunotherapy with a combination of agonistic anti-CD137 Ab and virus-specific, TCR-transgenic CD8(+) T cells produced greater than 99% reductions of virus levels within 2 wk. In vitro studies indicated that the CD137-specific Ab rendered the CD8(+) T cells resistant to Treg cell-mediated suppression with no direct effect on the suppressive function of the Treg cells. By 2 weeks after transfer, the adoptively transferred CD8(+) T cells were lost, likely due to activation-induced cell death. The highly focused immunological pressure placed on the virus by the single specificity CD8(+) T cells led to the appearance of escape variants, indicating that broader epitope specificity will be required for long-term virus control. However, the results demonstrate a potent strategy to potentiate the function of CD8(+) T cells in the context of immunosuppressive Treg cells.
Collapse
Affiliation(s)
- Shelly J Robertson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zelinskyy G, Balkow S, Schimmer S, Werner T, Simon MM, Dittmer U. The level of friend retrovirus replication determines the cytolytic pathway of CD8+ T-cell-mediated pathogen control. J Virol 2007; 81:11881-90. [PMID: 17728236 PMCID: PMC2168789 DOI: 10.1128/jvi.01554-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T cells (CTL) play a central role in the control of viral infections. Their antiviral activity can be mediated by at least two cytotoxic pathways, namely, the granule exocytosis pathway, involving perforin and granzymes, and the Fas-FasL pathway. However, the viral factor(s) that influences the selection of one or the other pathway for pathogen control is elusive. Here we investigate the role of viral replication levels in the induction and activation of CTL, including their effector potential, during acute Friend murine leukemia virus (F-MuLV) infection. F-MuLV inoculation results in a low-level infection of adult C57BL/6 mice that is enhanced about 500-fold upon coinfection with the spleen focus-forming virus (SFFV). Both the low- and high-level F-MuLV infections generated CD8+ effector T cells that were essential for the control of viral replication. However, the low-level infection induced CD8+ T cells expressing solely FasL but not the cytotoxic molecules granzymes A and B, whereas the high-level infection resulted in induction of CD8+ effector T cells secreting molecules of the granule exocytosis pathway. By using knockout mouse strains deficient in one or the other cytotoxic pathway, we found that low-level viral replication was controlled by CTL that expressed FasL but control of high-level viral replication required perforin and granzymes. Additional studies, in which F-MuLV replication was enhanced experimentally in the absence of SFFV coinfection, supported the notion that only the replication level of F-MuLV was the critical factor that determined the differential expression of cytotoxic molecules by CD8+ T cells and the pathway of CTL cytotoxicity.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institut für Virologie, des Universitätsklinikums Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kraft ARM, Krux F, Schimmer S, Ohlen C, Greenberg PD, Dittmer U. CpG oligodeoxynucleotides allow for effective adoptive T-cell therapy in chronic retroviral infection. Blood 2007; 109:2982-4. [PMID: 17148590 DOI: 10.1182/blood-2006-06-022178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adoptive T-cell therapy in cancer or chronic viral infections is often impeded by the development of functional impairment of the transferred cells. To overcome this therapeutic limitation we combined adoptive transfer of naive, virus-specific CD8+ T cells with immunostimulative CpG oligodeoxynucleotides (ODNs) in mice chronically infected with the Friend retrovirus. The CpG-ODN co-injection prevented the T cells from developing functional defects in IFNgamma and granzyme production and degranulation of cytotoxic molecules. Thus, the transferred T cells were able to reduce chronic viral loads when combined with CpG-ODNs. This strategy provides a new approach for developing successful adoptive T-cell therapy against chronic infections.
Collapse
Affiliation(s)
- Anke R M Kraft
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Andrade F, Fellows E, Jenne DE, Rosen A, Young CSH. Granzyme H destroys the function of critical adenoviral proteins required for viral DNA replication and granzyme B inhibition. EMBO J 2007; 26:2148-57. [PMID: 17363894 PMCID: PMC1852776 DOI: 10.1038/sj.emboj.7601650] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/22/2007] [Indexed: 11/08/2022] Open
Abstract
Granzymes are key components of the immune response that play important roles in eliminating host cells infected by intracellular pathogens. Several granzymes are potent inducers of cell death. However, whether granzymes use additional mechanisms to exert their antipathogen activity remains elusive. Here, we show that in adenovirus-infected cells in which granzyme B (gzmB) and downstream apoptosis pathways are inhibited, granzyme H (gzmH), an orphan granzyme without known function, directly cleaves the adenovirus DNA-binding protein (DBP), a viral component absolutely required for viral DNA replication. We directly addressed the functional consequences of the cleavage of the DBP by gzmH through the generation of a virus that encodes a gzmH-resistant DBP. This virus demonstrated that gzmH directly induces an important decay in viral DNA replication. Interestingly, gzmH also cleaves the adenovirus 100K assembly protein, a major inhibitor of gzmB, and relieves gzmB inhibition. These results provide the first evidence that granzymes can mediate antiviral activity through direct cleavage of viral substrates, and further suggest that different granzymes have synergistic functions to outflank viral defenses that block host antiviral activities.
Collapse
Affiliation(s)
- Felipe Andrade
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| | | | | | | | | |
Collapse
|
35
|
Zelinskyy G, Kraft ARM, Schimmer S, Arndt T, Dittmer U. Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infection. Eur J Immunol 2006; 36:2658-70. [PMID: 16981182 DOI: 10.1002/eji.200636059] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytolytic CD8+ T cells are critical for the control of acute Friend virus (FV) infection yet they fail to completely eliminate the virus during chronic infection because they are functionally impaired by regulatory T cells (Treg). We performed a kinetic analysis of T cell responses during FV infection to determine when dysfunction of CD8+ T cells and suppressive activity of CD4+ regulatory T cells develops. At 1 week post infection, virus-specific CD8+ T cells with effector phenotype and cytolytic potential expanded. Peak expansion was found at 12 days post infection, correlating with peak viral loads. After 2 weeks when viral loads dropped, numbers of activated CD8+ T cells started to decline. However, a population of virus-specific CD8+ T cells with effector phenotype was still detectable subsequently, but these cells had lost their ability to produce granzymes and to degranulate cytotoxic molecules. Contemporaneous with the development of CD8+ T cell dysfunction, different CD4+ T cell populations expressing cell surface markers for Treg and the Treg-associated transcription factor Foxp3 expanded. Transfer as well as depletion experiments indicated that regulatory CD4+ cells developed during the second week of FV infection and subsequently suppressed CD8+ T cell functions, which was associated with impaired virus clearance.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institut fuer Virologie des Universitaetsklinikums Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
36
|
Robertson SJ, Messer RJ, Carmody AB, Hasenkrug KJ. In vitro suppression of CD8+ T cell function by Friend virus-induced regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3342-9. [PMID: 16517701 DOI: 10.4049/jimmunol.176.6.3342] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory T cell (Treg)-mediated suppression of CD8+ T cells has been implicated in the establishment and maintenance of chronic viral infections, but little is known about the mechanism of suppression. In this study an in vitro assay was developed to investigate the suppression of CD8+ T cells by Friend retrovirus (FV)-induced Tregs. CD4+CD25+ T cells isolated from mice chronically infected with the FV suppressed the development of effector function in naive CD8+ T cells without affecting their ability to proliferate or up-regulate activation markers. In vitro restimulation was not required for suppression by FV-induced Tregs, correlating with their high activation state in vivo. Suppression was mediated by direct T cell-T cell interactions and occurred in the absence of APCs. Furthermore, suppression occurred irrespective of the TCR specificity of the CD8+ T cells. Most interestingly, FV-induced Tregs were able to suppress the function of CD8+ effector T cells that had been physiologically activated during acute FV infection. The ability to suppress the effector function of activated CTLs is likely a requisite role for Tregs in limiting immunopathology by CD8+ T cells during antiviral immune responses. Such activity may also have adverse consequences by allowing viruses to establish and maintain chronic infections if suppression of antiviral immune responses occurs before virus eradication.
Collapse
Affiliation(s)
- Shelly J Robertson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. Fourth Street, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
37
|
Gerlach N, Schimmer S, Weiss S, Kalinke U, Dittmer U. Effects of type I interferons on Friend retrovirus infection. J Virol 2006; 80:3438-44. [PMID: 16537611 PMCID: PMC1440373 DOI: 10.1128/jvi.80.7.3438-3444.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 01/17/2006] [Indexed: 01/09/2023] Open
Abstract
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.
Collapse
Affiliation(s)
- Nicole Gerlach
- Institut für Virologie des Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
38
|
Zelinskyy G, Robertson SJ, Schimmer S, Messer RJ, Hasenkrug KJ, Dittmer U. CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J Virol 2005; 79:10619-26. [PMID: 16051854 PMCID: PMC1182617 DOI: 10.1128/jvi.79.16.10619-10626.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Virus-specific CD8+ T cells are critical for the control of acute Friend virus (FV) infections, but are rendered impotent by CD4+ regulatory T cells during the chronic phase of infection. The current study examines this CD8+ T-cell dysfunction by analyzing the production and release of cytolytic molecules by CD8+ T cells. CD8+ T cells with an activated phenotype (CD43+) from acutely infected mice produced all three key components of lytic granules: perforin, granzyme A, and granzyme B. Furthermore, they displayed evidence of recent degranulation and in vivo cytotoxicity. In contrast, activated CD8+ T cells from chronically infected mice were deficient in cytolytic molecules and showed little evidence of recent degranulation and poor in vivo cytotoxicity. Evidence from tetramer-positive CD8+ T cells with known virus specificity confirmed the findings from the activated subset of CD8+ T cells. Interestingly, perforin and granzyme A mRNA levels were not significantly reduced during chronic infection, indicating control at a posttranscriptional level. Granzyme B deficiency was associated with a significant decrease in mRNA levels, but posttranscriptional control also appeared to contribute to deficiency. These results demonstrate a broad impairment of cytotoxic CD8+ T-cell effector function during chronic retroviral infection and explain the inability of virus-specific CD8+ T cells to eliminate persistent virus.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institut fuer Virologie, Universitaetsklinikum Essen, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|