1
|
Ajbani SP, Velhal SM, Kadam RB, Patel VV, Lundstrom K, Bandivdekar AH. Immunogenicity of virus-like Semliki Forest virus replicon particles expressing Indian HIV-1C gag, env and polRT genes. Immunol Lett 2017; 190:221-232. [PMID: 28851629 DOI: 10.1016/j.imlet.2017.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
Abstract
Development of a vaccine targeting human immunodeficiency virus-1 subtype C (HIV-1C) is an important public health priority in regions with a high prevalence of the clade C virus. The present study demonstrates the immunogenicity of recombinant Semliki Forest virus (SFV)-based virus-like replicon particles (VRPs) expressing Indian HIV-1C env/gag/polRT genes. Immunization of mice with recombinant VRPs in a homologous prime-boost protocol, either individually or in combination, elicited significant antigen-specific IFN-γ T cell responses as detected by the ELISPOT assay. Additionally, Gag-specific TNF-α secreting CD8+ and CD4+ T cells and Env-specific IL-2 secreting T cells were also elicited by mice immunized with Gag and Env constructs, respectively, as estimated by intracellular cytokine staining assay. Moreover, an HIV Pol-specific TNF-α response was elicited in mice immunized with a combination of the three VRP constructs. Furthermore, HIV-1C Gag and Env-specific binding antibodies were elicited as verified by gp120 ELISA and p24 Gag ELISA, respectively. The immunogenicity of VRPs was found to be higher as compared to that of RNA replicons and VRPs may therefore be promising preventive and therapeutic candidate vaccines for the control and management of HIV/AIDS.
Collapse
Affiliation(s)
- Seema P Ajbani
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai 400012, India; Department of Zoology, Smt. C. H. M. College, University of Mumbai, Ulhasnagar 421003, India.
| | - Shilpa M Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai 400012, India.
| | - Ravindra B Kadam
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai 400012, India.
| | - Vainav V Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai 400012, India.
| | | | - Atmaram H Bandivdekar
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai 400012, India.
| |
Collapse
|
2
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
3
|
Knudsen ML, Johansson DX, Kostic L, Nordström EKL, Tegerstedt K, Pasetto A, Applequist SE, Ljungberg K, Sirard JC, Liljeström P. The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon. PLoS One 2013; 8:e65964. [PMID: 23785460 PMCID: PMC3681802 DOI: 10.1371/journal.pone.0065964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
Ligands of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN) response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC) gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response.
Collapse
Affiliation(s)
- Maria L Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Näslund TI, Kostic L, Nordström EK, Chen M, Liljeström P. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virol J 2011; 8:36. [PMID: 21261958 PMCID: PMC3038947 DOI: 10.1186/1743-422x-8-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP) or as DNA (DREP). It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. Results We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN), induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. Conclusions We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.
Collapse
Affiliation(s)
- Tanja I Näslund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels Väg 16, 17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
5
|
Walczak M, de Mare A, Riezebos-Brilman A, Regts J, Hoogeboom BN, Visser JT, Fiedler M, Jansen-Dürr P, van der Zee AGJ, Nijman HW, Wilschut J, Daemen T. Heterologous Prime-Boost Immunizations with a Virosomal and an Alphavirus Replicon Vaccine. Mol Pharm 2010; 8:65-77. [DOI: 10.1021/mp1002043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mateusz Walczak
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan de Mare
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joke Regts
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Baukje-Nynke Hoogeboom
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen T. Visser
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc Fiedler
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pidder Jansen-Dürr
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans W. Nijman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 2010; 5. [PMID: 20844763 PMCID: PMC2937034 DOI: 10.1371/journal.pone.0012670] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/16/2010] [Indexed: 02/06/2023] Open
Abstract
Background Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. Methodology/Principal Findings VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. Conclusions/Significance This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.
Collapse
|
7
|
Lambeck AJ, Nijman HW, Hoogeboom BN, Regts J, de Mare A, Wilschut J, Daemen T. Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens. Vaccine 2010; 28:4275-82. [DOI: 10.1016/j.vaccine.2010.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/31/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
8
|
Human immunodeficiency virus type 1 env trimer immunization of macaques and impact of priming with viral vector or stabilized core protein. J Virol 2008; 83:540-51. [PMID: 19004960 DOI: 10.1128/jvi.01102-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4(+) T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env.
Collapse
|
9
|
Abstract
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Collapse
|
10
|
de Mare A, Lambeck AJA, Regts J, van Dam GM, Nijman HW, Snippe H, Wilschut J, Daemen T. Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition. Gene Ther 2007; 15:393-403. [PMID: 18004406 DOI: 10.1038/sj.gt.3303060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaccination with recombinant viral vectors may be impeded by preexisting vector-specific immunity or by vector-specific immunity induced during the priming immunization. It is assumed that virus-neutralizing antibodies represent the principal effector mechanism of vector-specific immunity, while killing of infected cells by vector-specific cytotoxic T lymphocytes (CTLs) has also been suggested. Using recombinant Semliki Forest virus (rSFV) expressing E6E7 antigen from human papillomavirus, we demonstrate that secondary immune responses against E6E7 are neither affected by vector-specific antibodies nor by CTL-mediated killing of infected cells. Instead, the presence of the antigen during the prime immunization appeared to be the main determinant for the boosting efficacy. After priming with rSFVeE6,7, a homologous booster stimulated the primed E6E7-specific CTL response and induced long-lasting memory. Passively transferred SFV-neutralizing antibodies did not inhibit E6E7-specific CTL responses, although transgene expression was strongly reduced under these conditions. Conversely, in mice primed with irrelevant rSFV, induction of E6E7-specific CTLs was inhibited presumably due to vector-specific responses induced by the priming immunization. When during the priming with irrelevant rSFV, E7-protein was co-administered, the inhibitory effect of vector-specific immunity was abolished. These results suggest that, apart from vector-specific antibodies or killing of infected cells, T-cell competition may be involved in determining the efficacy of viral vector-based prime-boost immunization regimens.
Collapse
Affiliation(s)
- A de Mare
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Parker SD, Rottinghaus ST, Zajac AJ, Yue L, Hunter E, Whitley RJ, Parker JN. HIV-1(89.6) Gag expressed from a replication competent HSV-1 vector elicits persistent cellular immune responses in mice. Vaccine 2007; 25:6764-73. [PMID: 17706843 PMCID: PMC2084203 DOI: 10.1016/j.vaccine.2007.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 01/11/2023]
Abstract
We have constructed a replication competent, gamma(1)34.5-deleted herpes simplex virus type-1 (HSV-1) vector (J200) that expresses the gag gene from human immunodeficiency virus type-1, primary isolate 89.6 (HIV-1(89.6)), as a candidate vaccine for HIV-1. J200 replicates in vitro, resulting in abundant Gag protein production and accumulation in the extracellular media. Immunization of Balb/c mice with a single intraperitoneal injection of J200 elicited strong Gag-specific CD8 responses, as measured by intracellular IFN-gamma staining and flow cytometry analysis. Responses were highest between 6 weeks and 4 months, but persisted at 9 months post-immunization, the last time-point evaluated. These data highlight the potential utility of neuroattenuated, replication competent HSV-1 vectors for delivery of HIV-1 immunogens.
Collapse
Affiliation(s)
- Scott D. Parker
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott T. Rottinghaus
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allan J. Zajac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Richard J. Whitley
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jacqueline N. Parker
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
- Corresponding author: Jacqueline N. Parker, Ph.D., Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, CHB 118B, 1600 6 Avenue South, Birmingham, AL 35233, Phone: 205-996-7881, FAX: 205-975-6549, E-mail:
| |
Collapse
|
12
|
Näslund TI, Uyttenhove C, Nordström EKL, Colau D, Warnier G, Jondal M, Van den Eynde BJ, Liljeström P. Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. THE JOURNAL OF IMMUNOLOGY 2007; 178:6761-9. [PMID: 17513723 DOI: 10.4049/jimmunol.178.11.6761] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor-specific Ags are potential target molecules in the therapeutic treatment of cancer. One way to elicit potent immune responses against these Ags is to use recombinant viruses, which activate both the innate and the adaptive arms of the immune system. In this study, we have compared Semliki Forest virus (SFV), adenovirus, and ALVAC (poxvirus) vectors for their capacity to induce CD8(+) T cell responses against the P1A tumor Ag and to elicit protection against subsequent challenge injection of P1A-expressing P815 tumor cells in DBA/2 mice. Both homologous and heterologous prime-boost regimens were studied. In most cases, both higher CD8(+) T cell responses and better tumor protections were observed in mice immunized with heterologous prime-boost regimens, suggesting that the combination of different viral vectors is beneficial for the induction of an effective immune response. However, homologous immunization with SFV provided potent tumor protection despite a rather moderate primary CD8(+) T cell response as compared with mice immunized with recombinant adenovirus. SFV-immunized mice showed a rapid and more extensive expansion of P1A-specific CD8(+) T cells in the tumor-draining lymph node after tumor challenge and had a higher frequency of CD62L(+) P1A-specific T cells in the blood, spleen, and lymph nodes as compared with adenoimmunized mice. Our results indicate that not only the magnitude but in particular the quality of the CD8(+) T cell response correlates with tumor protection.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Canarypox virus/genetics
- Canarypox virus/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- Immunization, Secondary
- Immunologic Memory/genetics
- Leukemia L1210/immunology
- Leukemia L1210/mortality
- Leukemia L1210/prevention & control
- Mastocytoma/immunology
- Mastocytoma/mortality
- Mastocytoma/prevention & control
- Mice
- Mice, Inbred DBA
- Mice, Mutant Strains
- Semliki forest virus/genetics
- Semliki forest virus/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Tanja I Näslund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gómez CE, Nájera JL, Jiménez V, Bieler K, Wild J, Kostic L, Heidari S, Chen M, Frachette MJ, Pantaleo G, Wolf H, Liljeström P, Wagner R, Esteban M. Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 2006; 25:1969-92. [PMID: 17224219 DOI: 10.1016/j.vaccine.2006.11.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/06/2006] [Accepted: 11/23/2006] [Indexed: 11/20/2022]
Abstract
Recombinants based on the attenuated vaccinia virus strains MVA and NYVAC are considered candidate vectors against different human diseases. In this study we have generated and characterized in BALB/c and in transgenic HHD mice the immunogenicity of two attenuated poxvirus vectors expressing in a single locus (TK) the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef (GPN) polyprotein of clade C (referred as MVA-C and NYVAC-C). In HHD mice primed with either MVA-C or NYVAC-C, or primed with DNA-C and boosted with the poxvirus vectors, the splenic T cell responses against clade C peptides spanning gp120/GPN was broad and mainly directed against Gag-1, Env-1 and Env-2 peptide pools. In BALB/c mice immunized with the homologous or the heterologous combination of poxvirus vectors or with Semliki forest virus (SFV) vectors expressing gp120/GPN, the immune response was also broad but the most immunogenic peptides were Env-1, GPN-1 and GPN-2. Differences in the magnitude of the cellular immune responses were observed between the poxvirus vectors depending on the protocol used. The specific cellular immune response triggered by the poxvirus vectors was Th1 type. The cellular response against the vectors was higher for NYVAC than for MVA in both HHD and BALB/c mice, but differences in viral antigen recognition between the vectors was observed in sera from the poxvirus-immunized animals. These results demonstrate the immunogenic potential of MVA-C and NYVAC-C as novel vaccine candidates against clade C of HIV-1.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Base Sequence
- Codon/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Animal
- Molecular Sequence Data
- Semliki forest virus
- Spleen/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
- Viral Vaccines
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hidmark AS, Nordström EKL, Dosenovic P, Forsell MNE, Liljeström P, Karlsson Hedestam GB. Humoral responses against coimmunized protein antigen but not against alphavirus-encoded antigens require alpha/beta interferon signaling. J Virol 2006; 80:7100-10. [PMID: 16809315 PMCID: PMC1489049 DOI: 10.1128/jvi.02579-05] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses typically elicit potent adaptive immune responses, and live-virus-based vaccines are among the most efficient human vaccines known. The mechanisms by which viruses stimulate adaptive immune responses are not fully understood, but activation of innate immune signaling pathways in the early phase of the infection may be of importance. In addition to stimulating immune responses to viral antigens expressed in infected cells, viruses can also provide adjuvant signals to coimmunized protein antigens. Using recombinant Semliki Forest virus (rSFV)-based vaccines, we show that rSFV potently enhanced antibody responses against coimmunized protein antigens in the absence of other exogenously added adjuvants. Elicitation of antibody responses against both virus-encoded antigens and coimmunized protein antigens was independent of the signaling via Toll-like receptors (TLRs) previously implicated in antiviral responses. In contrast, the adjuvant effect of rSFV on coimmunized protein was completely abolished in mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor (IFN-AR1), demonstrating that IFN-alpha/beta signaling was critical for mediating this effect. Antibody responses directed against virus-encoded antigens were intact in IFN-AR1(-/-) mice, suggesting that other signals are sufficient to drive immune responses against virally encoded antigens. These data provide a basis for the adjuvant effect of rSFV and show that different signals are required to stimulate antibody responses to virally encoded antigens and to antigens administered as purified protein vaccines, together with viral particles.
Collapse
Affiliation(s)
- Asa S Hidmark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Li S, Locke E, Bruder J, Clarke D, Doolan DL, Havenga MJE, Hill AVS, Liljestrom P, Monath TP, Naim HY, Ockenhouse C, Tang DCC, Van Kampen KR, Viret JF, Zavala F, Dubovsky F. Viral vectors for malaria vaccine development. Vaccine 2006; 25:2567-74. [PMID: 16914237 PMCID: PMC7131149 DOI: 10.1016/j.vaccine.2006.07.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/23/2006] [Accepted: 07/23/2006] [Indexed: 01/08/2023]
Abstract
A workshop on viral vectors for malaria vaccine development, organized by the PATH Malaria Vaccine Initiative, was held in Bethesda, MD on October 20, 2005. Recent advancements in viral-vectored malaria vaccine development and emerging vector technologies were presented and discussed. Classic viral vectors such as poxvirus, adenovirus and alphavirus vectors have been successfully used to deliver malaria antigens. Some of the vaccine candidates have demonstrated their potential in inducing malaria-specific immunity in animal models and human trials. In addition, emerging viral-vector technologies, such as measles virus (MV), vesicular stomatitis virus (VSV) and yellow fever (YF) virus, may also be useful for malaria vaccine development. Studies in animal models suggest that each viral vector is unique in its ability to induce humoral and/or cellular immune responses. Those studies have also revealed that optimization of Plasmodium genes for mammalian expression is an important aspect of vaccine design. Codon-optimization, surface-trafficking, de-glycosylation and removal of toxic domains can lead to improved immunogenicity. Understanding the vector's ability to induce an immune response and the expression of malaria antigens in mammalian cells will be critical in designing the next generation of viral-vectored malaria vaccines.
Collapse
|