1
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021; 17:e1009788. [PMID: 34310650 PMCID: PMC8341709 DOI: 10.1371/journal.ppat.1009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/β receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ogawa
- Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Kawai
- Management Department of Biosafety and Laboratory Animal, Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|
4
|
Li C, Di D, Huang H, Wang X, Xia Q, Ma X, Liu K, Li B, Shao D, Qiu Y, Li Z, Wei J, Ma Z. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon α/β induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype I over genotype III in ducklings. PLoS Pathog 2020; 16:e1008773. [PMID: 32881988 PMCID: PMC7494076 DOI: 10.1371/journal.ppat.1008773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/16/2020] [Accepted: 07/01/2020] [Indexed: 01/27/2023] Open
Abstract
Japanese encephalitis virus (JEV) genotype I (GI) replicates more efficiently than genotype III (GIII) in birds, and this difference is considered to be one of the reasons for the JEV genotype shift. In this study, we utilized duck embryo fibroblasts and domestic ducklings as in vitro and in vivo models of a JEV amplifying avian host to identify the viral determinants of the differing replication efficiency between the GI and GIII strains in birds. GI strains induced significantly lower levels of interferon (IFN)-α and β production than GIII strains, an effect orrelated with the enhanced replication efficiency of GI strains over GIII strains. By using a series of chimeric viruses with exchange of viral structural and non-structural (NS) proteins, we identified NS5 as the viral determinant of the differences in IFN-α and β induction and replication efficiency between the GI and III strains. NS5 inhibited IFN-α and β production induced by poly(I:C) stimulation and harbored 11 amino acid variations, of which the NS5-V372A and NS5-H386Y variations were identified to co-contribute to the differences in IFN-α and β induction and replication efficiency between the strains. The NS5-V372A and NS5-H386Y variations resulted in alterations in the number of hydrogen bonds formed with neighboring residues, which were associated with the different ability of the GI and GIII strains to inhibit IFN-α and β production. Our findings indicated that the NS5-V372A and NS5-H386Y variations enabled GI strains to inhibit IFN-α and β production more efficiently than GIII strains for antagonism of the IFN-I mediated antiviral response, thereby leading to the replication and host adaption advantages of GI strains over GIII strains in birds. These findings provide new insight into the molecular basis of the JEV genotype shift. The Japanese encephalitis virus (JEV) transmission cycle is maintained by mosquitoes and amplification hosts (pigs and birds). In areas without large pig populations, birds play a major role in the maintenance of the JEV transmission cycle. The shift in the dominant JEV genotype from genotype III (GIII) to genotype I (GI) is occurring in most countries in Asia. GI strains replicates more efficiently than GIII strains in birds, and this difference has been considered one of the reasons for the JEV genotype shift. By using a series of chimeric viruses with exchange of viral structural and non-structural (NS) proteins, we demonstrated that NS5 is the viral determinant of the differences in replication efficiencies between the GI and III strains in birds. Furthermore, the NS5-V372A and NS5-H386Y variations were identified to co-contribute to the differences in type I interferon (IFN-I) induction and replication efficiency between the strains. Our findings suggested that the NS5-V372A and NS5-H386Y variations enable GI strains to inhibit IFN-I production more efficiently than GIII strains, thus resulting in antagonism of the IFN-I mediated antiviral response and consequently conferring a replication and host adaption advantage to GI strains over GIII strains in birds. These findings provide new insight into the molecular basis of the JEV genotype shift.
Collapse
Affiliation(s)
- Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Hui Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Qiqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
- * E-mail: (JW); (ZM)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
- * E-mail: (JW); (ZM)
| |
Collapse
|
5
|
Colmant AMG, Bielefeldt-Ohmann H, Vet LJ, O’Brien CA, Bowen RA, Hartwig AE, Davis S, Piyasena TBH, Habarugira G, Harrison JJ, Hobson-Peters J, Hall RA. NS4/5 mutations enhance flavivirus Bamaga virus infectivity and pathogenicity in vitro and in vivo. PLoS Negl Trop Dis 2020; 14:e0008166. [PMID: 32203536 PMCID: PMC7089401 DOI: 10.1371/journal.pntd.0008166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/23/2020] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus.
Collapse
Affiliation(s)
- Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J. Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Airn E. Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Davis
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, NT, Australia
| | - Thisun B. H. Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gervais Habarugira
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| |
Collapse
|
6
|
Duggal NK, McDonald EM, Weger-Lucarelli J, Hawks SA, Ritter JM, Romo H, Ebel GD, Brault AC. Mutations present in a low-passage Zika virus isolate result in attenuated pathogenesis in mice. Virology 2019; 530:19-26. [PMID: 30763872 DOI: 10.1016/j.virol.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Zika virus (ZIKV) infection can result in neurological disorders including Congenital Zika Syndrome in infants exposed to the virus in utero. Pregnant women can be infected by mosquito bite as well as by sexual transmission from infected men. Herein, the variants of ZIKV within the male reproductive tract and ejaculates were assessed in inoculated mice. We identified two non-synonymous variants at positions E-V330L and NS1-W98G. These variants were also present in the passage three PRVABC59 isolate and infectious clone relative to the patient serum PRVABC59 sequence. In subsequent studies, ZIKV E-330L was less pathogenic in mice than ZIKV E-330V as evident by increased average survival times. In Vero cells, ZIKV E-330L/NS1-98G outcompeted ZIKV E-330V/NS1-98W within 3 passages. These results suggest that the E-330L/NS1-98G variants are attenuating in mice and were enriched during cell culture passaging. Cell culture propagation of ZIKV could significantly affect animal model development and vaccine efficacy studies.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Erin M McDonald
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hannah Romo
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| |
Collapse
|
7
|
A Single Mutation at Position 156 in the Envelope Protein of Tembusu Virus Is Responsible for Virus Tissue Tropism and Transmissibility in Ducks. J Virol 2018; 92:JVI.00427-18. [PMID: 29899104 DOI: 10.1128/jvi.00427-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 01/20/2023] Open
Abstract
Duck Tembusu virus (TMUV), like other mosquito-borne flaviviruses, such as Japanese encephalitis virus, West Nile virus, and Bagaza virus, is able to transmit vector-independently. To date, why these flaviviruses can be transmitted without mosquito vectors remains poorly understood. To explore the key molecular basis of flavivirus transmissibility, we compared virus replication and transmissibility of an early and a recent TMUV in ducks. The recent TMUV strain FX2010 replicated systemically and transmitted efficiently in ducks, while the replication of early strain MM1775 was limited and did not transmit among ducks. The TMUV envelope protein and its domain I were responsible for tissue tropism and transmissibility. The mutation S156P in the domain I resulted in disruption of N-linked glycosylation at amino acid 154 of the E protein and changed the conformation of "150 loop" of the E protein, which reduced virus replication in lungs and abrogated transmission in ducks. These data indicate that the 156S in the envelope protein is critical for TMUV tissue tropism and transmissibility in ducks in the absence of mosquitos. Our findings provide novel insights on understanding TMUV transmission among ducks.IMPORTANCE Tembusu virus, similar to other mosquito-borne flaviviruses such as WNV, JEV, and BAGV, can be transmitted without the presence of mosquito vectors. We demonstrate that the envelope protein of TMUV and its amino acid (S) at position 156 is responsible for tissue tropism and transmission in ducks. The mutation S156P results in disruption of N-linked glycosylation at amino acid 154 of the E protein and changes the conformation of "150 loop" of the E protein, which induces limited virus replication in lungs and abrogates transmission between ducks. Our findings provide new knowledge about TMUV transmission among ducks.
Collapse
|
8
|
The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:115-129. [PMID: 29845529 DOI: 10.1007/978-981-10-8727-1_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses from the Flavivirus family are the causative agents of dengue fever, Zika, Japanese encephalitis, West Nile encephalitis or Yellow fever and constitute major or emerging public health problems. A better understanding of the flavivirus replication cycle is likely to offer new opportunities for the design of antiviral therapies to treat severe conditions provoked by these viruses, but it should also help reveal fundamental biological mechanisms of the host cell. During virus replication, RNA synthesis is mediated by a dynamic and membrane-bound multi-protein assembly, named the replication complex (RC). The RC is composed of both viral and host-cell proteins that assemble within vesicles composed of the endoplasmic reticulum membrane, near the nucleus. At the heart of the flavivirus RC lies NS4B, a viral integral membrane protein that plays a role in virulence and in down-regulating the innate immune response. NS4B binds to the NS2B-NS3 protease-helicase, which itself interacts with the NS5 methyl-transferase polymerase. We present an overview of recent structural and functional data that augment our understanding of how viral RNA is replicated by dengue virus. We focus on structural data that illuminate the various roles played by proteins NS2B-NS3, NS4B and NS5. By participating in viral RNA cap methylation, the NS5 methyltransferase enables the virus to escape the host cell innate immune response. We present the molecular basis for this activity. We summarize what we know about the network of interactions established by NS2B-NS3, NS4B and NS5 (their "interactome"). This leads to a working model that is captured in the form of a rather naïve "cartoon", which we hope will be refined towards an atomic model in the near future.
Collapse
|
9
|
Kaiser JA, Wang T, Barrett AD. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol 2017; 12:283-295. [PMID: 28919920 DOI: 10.2217/fvl-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV), a neurotropic mosquito-borne flavivirus, has become endemic in the USA and parts of Europe since 1999. There is no licensed WNV vaccine for humans. Considering the robust immunity from immunization with live, attenuated vaccines, a live WNV vaccine is an ideal platform for disease control. Animal and mosquito studies have identified a number of candidate attenuating mutations, including the structural proteins premembrane/membrane and envelope, and the nonstructural proteins NS1, NS2A, NS3, NS4A, NS4B and NS5, and the 3' UTR. Many of the mutations that have been examined attenuate WNV using different mechanisms, thus providing a greater understanding of WNV virulence while also identifying specific mutations as candidates to include in a WNV live vaccine.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan Dt Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Abstract
The propagation and titration of viruses are key virological techniques. Unlike other flaviviruses, such as the dengue viruses, West Nile virus (WNV) grows and plaques very efficiently on Vero cells, usually inducing strong cytopathic effect (CPE) and forming clear plaques. Here, we outline the steps for propagating WNV from culture supernatant stocks and homogenized organ/mosquito samples, as well as for determining virus titers in samples by serial-dilution plaque assay using neutral red or crystal violet stains.
Collapse
|
11
|
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for recurrent outbreaks of meningitis and encephalitis. Several studies analyzing the interactions of this pathogen with the autophagic pathway have reported opposite results with evidence for and against the upregulation of autophagy in infected cells. In this regard, we have recently reported that minimal genetic changes (single amino acid substitutions) in nonstructural proteins of WNV can modify the ability of the virus to induce autophagic features such as LC3 modification and aggregation in infected cells. We think that these results could help explain some of the previously reported discrepancies. These findings could also aid in deciphering the interactions of this pathogen with the autophagic pathway at the molecular level aimed to develop feasible antiviral strategies to combat this pathogen, and other related flaviviruses.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- a Department of Virology and Microbiology; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) ; Madrid , Spain
| | | | | |
Collapse
|
12
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
13
|
Wang J, Liu W, Meng G, Zhao K, Gu J, Chen P, Cao R. Isolation and genome characterization of a novel duck Tembusu virus with a 74 nucleotide insertion in the 3' non-translated region. Avian Pathol 2015; 44:92-102. [PMID: 25582834 DOI: 10.1080/03079457.2015.1006167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During investigations into the outbreak of duck Tembusu virus (DTMUV) infection in 2011 in China, a DTMUV strain (DTMUV-AH2011) was isolated from the affected ducks. The length of the genome of the DTMUV-AH2011 strain was found to be 11,064 nucleotides and to possess 10,278 nucleotides of one open reading frame (ORF), flanked by 94 nucleotides of the 5' non-translated region (NTR) and 692 nucleotides of the 3' NTR. In comparison with five fully sequenced TMUV genomes, the genome of DTMUV-AH2011 had a 74 nucleotide insertion in the 3' NTR. Comparison of the DTMUV-AH2011 fully deduced amino acid sequences with those of other Tembusu virus strains reported recently in China showed they had a highly conserved polyprotein precursor, sharing 98.9% amino acid identities, at least. The overall divergences of amino acid substitutions were randomly distributed among viral proteins except for the protein NS4B, the protein NS4B was unchanged. Knowledge of the biological characters of DTMUV and the potential role of the insertion in the 3' NTR in RNA replication will be useful for further studies of the mechanisms of virus replication and pathogenesis.
Collapse
Affiliation(s)
- Jingman Wang
- a Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 2015; 25:205-23. [PMID: 25828437 PMCID: PMC4864441 DOI: 10.1002/rmv.1835] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Dengue virus and other flaviviruses such as the yellow fever, West Nile, and Japanese encephalitis viruses are emerging vector-borne human pathogens that affect annually more than 100 million individuals and that may cause debilitating and potentially fatal hemorrhagic and encephalitic diseases. Currently, there are no specific antiviral drugs for the treatment of flavivirus-associated disease. A better understanding of the flavivirus-host interactions during the different events of the flaviviral life cycle may be essential when developing novel antiviral strategies. The flaviviral non-structural protein 4b (NS4b) appears to play an important role in flaviviral replication by facilitating the formation of the viral replication complexes and in counteracting innate immune responses such as the following: (i) type I IFN signaling; (ii) RNA interference; (iii) formation of stress granules; and (iv) the unfolded protein response. Intriguingly, NS4b has recently been shown to constitute an excellent target for the selective inhibition of flavivirus replication. We here review the current knowledge on NS4b.
Collapse
Affiliation(s)
- Joanna Zmurko
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| | - Kai Dallmeier
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| |
Collapse
|
15
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xie G, Luo H, Tian B, Mann B, Bao X, McBride J, Tesh R, Barrett AD, Wang T. A West Nile virus NS4B-P38G mutant strain induces cell intrinsic innate cytokine responses in human monocytic and macrophage cells. Vaccine 2015; 33:869-78. [PMID: 25562791 DOI: 10.1016/j.vaccine.2014.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that an attenuated West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant induces stronger innate and adaptive immune responses than wild-type WNV in mice, which has important applications to vaccine development. To investigate the mechanism of immunogenicity, we characterized WNV NS4B-P38G mutant infection in two human cell lines-THP-1 cells and THP-1 macrophages. Although the NS4B-P38G mutant produced more viral RNA than the parental WNV NY99 in both cell types, there was no detectable infectious virus in the supernatant of either cell type. Nonetheless, the attenuated mutant boosted higher innate cytokine responses than virulent parental WNV NY99 in these cells. The NS4B-P38G mutant infection of THP-1 cells led to more diverse and robust innate cytokine responses than that seen in THP-1 macrophages, which were mediated by toll-like receptor (TLR)7 and retinoic acid-inducible gene 1(RIG-I) signaling pathways. Overall, these results suggest that a defective viral life cycle during NS4B-P38G mutant infection in human monocytic and macrophage cells leads to more potent cell intrinsic innate cytokine responses.
Collapse
Affiliation(s)
- Guorui Xie
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brian Mann
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jere McBride
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Robert Tesh
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Alan D Barrett
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tian Wang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA.
| |
Collapse
|
17
|
Fernández IV, Okamoto N, Ito A, Fukuda M, Someya A, Nishino Y, Sasaki N, Maeda A. Development of a novel protocol for generating flavivirus reporter particles. J Virol Methods 2014; 208:96-101. [PMID: 25116200 DOI: 10.1016/j.jviromet.2014.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Infection with West Nile virus (WNV), a mosquito-borne flavivirus, is a growing public and animal health concern worldwide. Prevention, diagnosis and treatment strategies for the infection are urgently required. Recently, viral reverse genetic systems have been developed and applied to clinical WNV virology. We developed a protocol for generating reporter virus particles (RVPs) of WNV with the aim of overcoming two major problems associated with conventional protocols, the difficulty in generating RVPs due to the specific skills required for handling RNAs, and the potential for environmental contamination by antibiotic-resistant genes encoded within the genome RNA of the RVPs. By using the proposed protocol, cells were established in which the RVP genome RNA is replicated constitutively and does not encode any antibiotic-resistant genes, and used as the cell supply for RVP genome RNA. Generation of the WNV RVPs requires only the simple transfection of the expression vectors for the viral structural proteins into the cells. Therefore, no RNA handling is required in this protocol. The WNV RVP yield obtained using this protocol was similar that obtained using the conventional protocol. According to these results, the newly developed protocol appears to be a good alternative for the generation of WNV RVPs, particularly for clinical applications.
Collapse
Affiliation(s)
- Igor Velado Fernández
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Natsumi Okamoto
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Aki Ito
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Miki Fukuda
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan; Laboratory of Bacteriology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Azusa Someya
- Laboratory of Bacteriology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Yosii Nishino
- Laboratory of Virology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Nobuya Sasaki
- Laboratory of Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Experimental Animal Science, Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine and Animal Science, 35-1 Higashi 23 Bancho, Towada, Aomori 034-8626, Japan
| | - Akihiko Maeda
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan.
| |
Collapse
|
18
|
Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014; 6:2796-825. [PMID: 25046180 PMCID: PMC4113794 DOI: 10.3390/v6072796] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concepts of blood-brain barrier (BBB) disruption and retrograde axonal transport, respectively. However, an over‑representation of in vitro studies without adequate in vivo validation continues to obscure our understanding of the mechanism(s). Furthermore, WNV infection in the current rodent models does not generate a similar viremia and character of CNS infection, as seen in the common target hosts, humans and horses. These differences ultimately question the applicability of rodent models for pathogenesis investigations. Finally, the role of several barriers against CNS insults, such as the blood-cerebrospinal fluid (CSF), the CSF-brain and the blood-spinal cord barriers, remain largely unexplored, highlighting the infancy of this field. In this review, a systematic and critical appraisal of the current evidence relevant to the possible mechanism(s) of WNV neuroinvasion is conducted.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
19
|
Experimental infections of wild birds with West Nile virus. Viruses 2014; 6:752-81. [PMID: 24531334 PMCID: PMC3939481 DOI: 10.3390/v6020752] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023] Open
Abstract
Avian models of West Nile virus (WNV) disease have become pivotal in the study of infection pathogenesis and transmission, despite the intrinsic constraints that represents this type of experimental research that needs to be conducted in biosecurity level 3 (BSL3) facilities. This review summarizes the main achievements of WNV experimental research carried out in wild birds, highlighting advantages and limitations of this model. Viral and host factors that determine the infection outcome are analyzed in detail, as well as recent discoveries about avian immunity, viral transmission, and persistence achieved through experimental research. Studies of laboratory infections in the natural host will help to understand variations in susceptibility and reservoir competence among bird species, as well as in the epidemiological patterns found in different affected areas.
Collapse
|
20
|
Development of a live attenuated vaccine candidate against duck Tembusu viral disease. Virology 2014; 450-451:233-42. [PMID: 24503086 DOI: 10.1016/j.virol.2013.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 01/13/2023]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that is causing massive economic loss in the Chinese duck industry. To obtain a live vaccine candidate against the disease, the DTMUV isolate FX2010 was passaged serially in chicken embryo fibroblasts (CEFs). Characterization of FX2010-180P revealed that it was unable to replicate efficiently in chicken embryonated eggs, nor intranasally infect mice or shelducks at high doses of 5.5log10 tissue culture infectious doses (TCID50). FX2010-180P did not induce clinical symptoms, or pathological lesions in ducks at a dose of 5.5log10TCID50. The attenuation of FX2010-180P was due to 19 amino acid changes and 15 synonymous mutations. Importantly, FX2010-180P elicited good immune responses in ducks inoculated at low doses (3.5log10TCID50) and provided complete protection against challenge with a virulent strain. These results indicate that FX2010-180P is a promising candidate live vaccine for prevention of duck Tembusu viral disease.
Collapse
|
21
|
Lim SP, Shi PY. West Nile virus drug discovery. Viruses 2013; 5:2977-3006. [PMID: 24300672 PMCID: PMC3967157 DOI: 10.3390/v5122977] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023] Open
Abstract
The outbreak of West Nile virus (WNV) in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos 05-01, Singapore 138670, Singapore.
| | | |
Collapse
|
22
|
Increased early RNA replication by chimeric West Nile virus W956IC leads to IPS-1-mediated activation of NF-κB and insufficient virus-mediated counteraction of the resulting canonical type I interferon signaling. J Virol 2013; 87:7952-65. [PMID: 23678179 DOI: 10.1128/jvi.02842-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although infections with "natural" West Nile virus (WNV) and the chimeric W956IC WNV infectious clone virus produce comparable peak virus yields in type I interferon (IFN) response-deficient BHK cells, W956IC infection produces higher levels of "unprotected" viral RNA at early times after infection. Analysis of infections with these two viruses in IFN-competent cells showed that W956IC activated NF-κB, induced higher levels of IFN-β, and produced lower virus yields than WNV strain Eg101. IPS-1 was required for both increased induction of IFN-β and decreased yields of W956IC. In Eg101-infected cells, phospho-STAT1/STAT2 nuclear translocation was blocked at all times analyzed, while some phospho-STAT1/STAT2 nuclear translocation was still detected at 8 h after infection in W956IC-infected mouse embryonic fibroblasts (MEFs), and early viral protein levels were lower in these cells. A set of additional chimeras was made by replacing various W956IC gene regions with the Eg101 equivalents. As reported previously, for three of these chimeras, the low early RNA phenotype of Eg101 was restored in BHK cells. Analysis of infections with two of these chimeric viruses in MEFs detected lower early viral RNA levels, higher early viral protein levels, lower early IFN-β levels, and higher virus yields similar to those seen after Eg101 infection. The data suggest that replicase protein interactions directly or indirectly regulate genome switching between replication and translation at early times in favor of translation to minimize NF-κB activation and IFN induction by decreasing the amount of unprotected viral RNA, to produce sufficient viral protein to block canonical type I IFN signaling, and to efficiently remodel cell membranes for exponential genome amplification.
Collapse
|
23
|
The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. J Virol 2013; 87:7367-81. [PMID: 23616652 DOI: 10.1128/jvi.00632-13] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the antiviral mechanism of action of AZD0530 and dasatinib, two pharmacological inhibitors of host kinases, that also inhibit dengue virus (DV) infection. Using Northern blot and reporter replicon assays, we demonstrated that both small molecules inhibit the DV2 infectious cycle at the step of steady-state RNA replication. In order to identify the cellular target of AZD0530 and dasatinib mediating this anti-DV2 activity, we examined the effects of RNA interference (RNAi)-mediated depletion of the major kinases known to be inhibited by these small molecules. We determined that Fyn kinase, a target of both AZD0530 and dasatinib, is involved in DV2 RNA replication and is probably a major mediator of the anti-DV activity of these compounds. Furthermore, serial passaging of DV2 in the presence of dasatinib led to the identification of a mutation in the transmembrane domain 3 of the NS4B protein that overcomes the inhibition of RNA replication by AZD0530, dasatinib, and Fyn RNAi. Although we observed that dasatinib also inhibits DV2 particle assembly and/or secretion, this activity does not appear to be mediated by Src-family kinases. Together, our results suggest that AZD0530 and dasatinib inhibit DV at the step of viral RNA replication and demonstrate a critical role for Fyn kinase in this viral process. The antiviral activity of these compounds in vitro makes them useful pharmacological tools to validate Fyn or other host kinases as anti-DV targets in vivo.
Collapse
|
24
|
Van Slyke GA, Jia Y, Whiteman MC, Wicker JA, Barrett ADT, Kramer LD. Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in Culex tarsalis mosquitoes. J Gen Virol 2013; 94:1069-1072. [PMID: 23303828 DOI: 10.1099/vir.0.049833-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous mutational analyses of naturally occurring West Nile virus (WNV) strains and engineered mutant WNV strains have identified locations in the viral genome that can have profound phenotypic effect on viral infectivity, temperature sensitivity and neuroinvasiveness. We chose six mutant WNV strains to evaluate for vector competence in the natural WNV vector Culex tarsalis, two of which contain multiple ablations of glycosylation sites in the envelope and NS1 proteins; three of which contain mutations in the NS4B protein and an attenuated natural bird isolate (Bird 1153) harbouring an NS4B mutation. Despite vertebrate attenuation, all NS4B mutant viruses displayed enhanced vector competence by Cx. tarsalis. Non-glycosylated mutant viruses displayed decreased vector competence in Cx. tarsalis mosquitoes, particularly when all three NS1 glycosylation sites were abolished. These results indicate the importance of both the NS4B protein and NS1 glycosylation in the transmission of WNV by a significant mosquito vector.
Collapse
Affiliation(s)
- Greta A Van Slyke
- The Arbovirus Laboratories, Wadsworth Center, New York State Dept. of Health, NY 12159, USA
| | - Yongqing Jia
- The Arbovirus Laboratories, Wadsworth Center, New York State Dept. of Health, NY 12159, USA
| | - Melissa C Whiteman
- Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston TX 77555-0436, USA
| | - Jason A Wicker
- Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston TX 77555-0436, USA
| | - Alan D T Barrett
- Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston TX 77555-0436, USA
| | - Laura D Kramer
- School of Public Health, State University of New York, NY 12205, USA
- The Arbovirus Laboratories, Wadsworth Center, New York State Dept. of Health, NY 12159, USA
| |
Collapse
|
25
|
Bahuon C, Desprès P, Pardigon N, Panthier JJ, Cordonnier N, Lowenski S, Richardson J, Zientara S, Lecollinet S. IS-98-ST1 West Nile virus derived from an infectious cDNA clone retains neuroinvasiveness and neurovirulence properties of the original virus. PLoS One 2012; 7:e47666. [PMID: 23110088 PMCID: PMC3479121 DOI: 10.1371/journal.pone.0047666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 01/25/2023] Open
Abstract
Infectious clones of West Nile virus (WNV) have previously been generated and used to decipher the role of viral proteins in WNV virulence. The majority of molecular clones obtained to date have been derived from North American, Australian, or African isolates. Here, we describe the construction of an infectious cDNA clone of a Mediterranean WNV strain, IS-98-ST1. We characterized the biological properties of the recovered recombinant virus in cell culture and in mice. The growth kinetics of recombinant and parental WNV were similar in Vero cells. Moreover, the phenotype of recombinant and parental WNV was indistinguishable as regards viremia, viral load in the brain, and mortality in susceptible and resistant mice. Finally, the pathobiology of the infectious clone was examined in embryonated chicken eggs. The capacity of different WNV strains to replicate in embryonated chicken eggs closely paralleled their ability to replicate in mice, suggesting that inoculation of embryonated chicken eggs could provide a practical in vivo model for the study of WNV pathogenesis. In conclusion, the IS-98-ST1 infectious clone will allow assessment of the impact of selected mutations and novel genomic changes appearing in emerging European strains pathogenicity and endemic or epidemic potential. This will be invaluable in the context of an increasing number of outbreaks and enhanced severity of infections in the Mediterranean basin and Eastern Europe.
Collapse
Affiliation(s)
- Céline Bahuon
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J Virol 2012; 86:7360-71. [PMID: 22553322 DOI: 10.1128/jvi.00157-12] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavivirus NS1 is a nonstructural glycoprotein that is expressed on the cell surface and secreted into the extracellular space. Despite its transit through the secretory pathway, NS1 is an essential gene linked to early viral RNA replication. How this occurs has remained a mystery given the disparate localization of NS1 and the viral RNA replication complex, as the latter is present on the cytosolic face of the endoplasmic reticulum (ER). We recently identified an N-terminal di-amino acid motif in NS1 that modulates protein targeting and affected viral replication. Exchange of two amino acids at positions 10 and 11 from dengue virus (DENV) into West Nile virus (WNV) NS1 (RQ10NK) changed its relative surface expression and secretion and attenuated infectivity. However, the phenotype of WNV containing NS1 RQ10NK was unstable, as within two passages heterogeneous plaque variants were observed. Here, using a mutant WNV encoding the NS1 RQ10NK mutation, we identified a suppressor mutation (F86C) in NS4B, a virally encoded transmembrane protein with loops on both the luminal and cytoplasmic sides of the ER membrane. Introduction of NS4B F86C specifically rescued RNA replication of mutant WNV but did not affect the wild-type virus. Mass spectrometry and coimmunoprecipitation studies established a novel physical interaction between NS1 and NS4B, suggesting a mechanism for how luminal NS1 conveys signals to the cytoplasm to regulate RNA replication.
Collapse
|
27
|
Mutational analysis of the West Nile virus NS4B protein. Virology 2012; 426:22-33. [PMID: 22314017 DOI: 10.1016/j.virol.2011.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/30/2011] [Accepted: 11/23/2011] [Indexed: 01/29/2023]
Abstract
West Nile virus NS4B is a small hydrophobic nonstructural protein approximately 27 kDa in size whose function is poorly understood. Amino acid substitutions were introduced into the NS4B protein primarily targeting two distinct regions; the N-terminal domain (residues 35 through 60) and the central hydrophobic domain (residues 95 through 120). Only the NS4B P38G substitution was associated with both temperature-sensitive and small-plaque phenotypes. Importantly, this mutation was found to attenuate neuroinvasiveness greater than 10,000,000-fold and lower viremia titers compared to the wild-type NY99 virus in a mouse model. Full genome sequencing of the NS4B P38G mutant virus revealed two unexpected mutations at NS4B T116I and NS3 N480H (P38G/T116I/N480H), however, neither mutation alone was temperature sensitive or attenuated in mice. Following incubation of P38G/T116I/N480H at 41°C, five mutants encoding compensatory substitutions in the NS4B protein exhibited a reduction in the temperature-sensitive phenotype and reversion to a virulent phenotype in the mouse model.
Collapse
|
28
|
Nonconsensus West Nile virus genomes arising during mosquito infection suppress pathogenesis and modulate virus fitness in vivo. J Virol 2011; 85:12605-13. [PMID: 21937657 DOI: 10.1128/jvi.05637-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is similar to other RNA viruses in that it forms genetically complex populations within hosts. The virus is maintained in nature in mosquitoes and birds, with each host type exerting distinct influences on virus populations. We previously observed that prolonged replication in mosquitoes led to increases in WNV genetic diversity and diminished pathogenesis in mice without remarkable changes to the consensus genome sequence. We therefore sought to evaluate the relationships between individual and group phenotypes in WNV and to discover novel viral determinants of pathogenesis in mice and fitness in mosquitoes and birds. Individual plaque size variants were isolated from a genetically complex population, and mutations conferring a small-plaque and mouse-attenuated phenotype were localized to the RNA helicase domain of the NS3 protein by reverse genetics. The mutation, an Asp deletion, did not alter type I interferon production in the host but rendered mutant viruses more susceptible to interferon compared to wild type (WT) WNV. Finally, we used an in vivo fitness assay in Culex quinquefasciatus mosquitoes and chickens to determine whether the mutation in NS3 influenced fitness. The fitness of the NS3 mutant was dramatically lower in chickens and moderately lower in mosquitoes, indicating that RNA helicase is a major fitness determinant of WNV and that the effect on fitness is host specific. Overall, this work highlights the complex relationships that exist between individual and group phenotypes in RNA viruses and identifies RNA helicase as an attenuation and fitness determinant in WNV.
Collapse
|
29
|
Papa A, Bakonyi T, Xanthopoulou K, Vázquez A, Tenorio A, Nowotny N. Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis 2011; 17:920-2. [PMID: 21529413 PMCID: PMC3321789 DOI: 10.3201/eid1705.101759] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a complete genome analysis of a West Nile virus detected in Culex pipiens mosquitoes during a severe outbreak of human West Nile disease in Greece 2010. The virus showed closest genetic relationship to the lineage 2 strain that emerged in Hungary in 2004; increased virulence may be associated with amino acid substitution H249P.
Collapse
Affiliation(s)
- Anna Papa
- Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
30
|
Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain. Vaccine 2011; 29:4853-61. [PMID: 21549792 DOI: 10.1016/j.vaccine.2011.04.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 12/24/2022]
Abstract
The nonstructural (NS) proteins of West Nile virus (WNV) have been associated with participation in evasion of host innate immune defenses. In the present study, we characterized immune response to an attenuated WNV strain, which has a P38G substitution in the NS4B protein. The WNV NS4B-P38G mutant induced a lower level of viremia and no lethality in C57BL/6 (B6) mice following a systemic infection. Interestingly, there were higher type 1 IFNs and IL-1β responses compared to mice infected by wild-type WNV. NS4B-P38G mutant-infected mice also showed stronger effector and memory T cell responses. WNV specific antibody responses were not different between mice infected with these two viruses. As a consequence, all mice were protected from a secondary infection with a lethal dose of wild-type WNV following a primary infection with NS4B-P38G mutant. Moreover, NS4B-P38G mutant infection in cultured bone-marrow derived dendritic cells (DCs) were shown to have a reduced replication rate, but a higher level of innate cytokine production than wild-type WNV, some of which were dependent on Myd88 signaling. In conclusion, the NS4B-P38G mutant strain induces higher protective innate and adaptive immune response in mice, which results in a lower viremia and no lethality in either primary or secondary infection, suggesting a high potential as an attenuating mutation in a vaccine candidate.
Collapse
|
31
|
Venter M, Swanepoel R. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa. Vector Borne Zoonotic Dis 2011; 10:659-64. [PMID: 20854018 DOI: 10.1089/vbz.2009.0230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) is widely distributed in South Africa, but since a few cases of neurological disease have been reported from this region, endemic lineage 2 strains were postulated to be of low virulence. Several cases of nonfatal encephalitis in humans as well as fatal cases in a foal, dog, and ostrich chicks have, however, been associated with lineage 2 WNV in South Africa. The pathogenesis of lineage 2 WNV strains was investigated using mouse neuroinvasive experiments, gene expression experiments, and genome sequence comparisons which indicated that lineage 2 strains that are highly pathogenic exist. To determine whether cases of WNV were being missed in South Africa, horses with fever and neurological disease were investigated. Several cases of WNV were identified, all associated with severe neurological disease, 85% of which had to be euthanized or died. All cases positive by RT-PCR were shown to belong to lineage 2 WNV by DNA sequencing and phylogenetic analysis. Two cases of occupational infection were investigated, including a case of zoonotic transmission to a veterinarian who performed an autopsy on one of the horses as well as a laboratory infection after a needle stick injury with a neuroinvasive lineage 2 strain. Both resulted in neurological disease. Cytokine expression was investigated in the second case to assess the immunopathogenesis of WNV. Collectively, these studies suggest that lineage 2 WNV may be significantly under estimated as a cause of neurological disease in South Africa.
Collapse
Affiliation(s)
- Marietjie Venter
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
32
|
Berting A, Farcet MR, Kreil TR. Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol Bioeng 2010; 106:598-607. [PMID: 20503298 PMCID: PMC7161873 DOI: 10.1002/bit.22723] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/21/2010] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
Abstract
Biopharmaceuticals are of increasing importance in the treatment of a variety of diseases. A remaining concern associated with their production is the potential introduction of adventitious agents into their manufacturing process, which may compromise the pathogen safety of a product and potentially cause stock-out situations for important medical supplies. To ensure the safety of biological therapeutics, regulatory guidance requires adventitious agent testing (AAT) of the bulk harvest. AAT is a deliberately promiscuous assay procedure which has been developed to indicate, ideally, the presence of any viral contaminant. One of the most important cell lines used in the production of biopharmaceuticals is Chinese hamster ovary (CHO) cells and while viral infections of CHO cells have occurred, a systematic screen of their virus susceptibility has never been published. We investigated the susceptibility of CHO cells to infection by 14 different viruses, including members of 12 families and representatives or the very species that were implicated in previously reported production cell infections. Based on our results, four different infection outcomes were distinguished, based on the possible combinations of the two factors (i) the induction, or not, of a cytopathic effect and (ii) the ability, or not, to replicate in CHO cells. Our results demonstrate that the current AAT is effective for the detection of viruses which are able to replicate in CHO cells. Due to the restricted virus susceptibility of CHO cells and the routine AAT of bulk harvests, our results provide re-assurance for the very high safety margins of CHO cell-derived biopharmaceuticals.
Collapse
Affiliation(s)
- Andreas Berting
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| | - Maria R. Farcet
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| | - Thomas R. Kreil
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| |
Collapse
|
33
|
Abstract
Superinfection exclusion is the ability of an established viral infection to interfere with a second viral infection. Using West Nile virus (WNV) as a model, we show that replicating replicons in BHK-21 cells suppress subsequent WNV infection. The WNV replicon also suppresses superinfections of other flaviviruses but not nonflaviviruses. Mode-of-action analysis indicates that the exclusion of WNV superinfection occurs at the step of RNA synthesis. The continuous culturing of WNV in the replicon-containing cells generated variants that could overcome the superinfection exclusion. The sequencing of the selected viruses revealed mutations in structural (prM S90R or envelope E138K) and nonstructural genes (NS4a K124R and peptide 2K V9M). Mutagenesis analysis showed that the mutations in structural genes nonselectively enhance viral infection in both naïve and replicon-containing BHK-21 cells; in contrast, the mutations in nonstructural genes more selectively enhance viral replication in the replicon-containing cells than in the naïve cells. Mechanistic analysis showed that the envelope mutation functions through the enhancement of virion attachment to BHK-21 cells, whereas the 2K mutation (and, to a lesser extent, the NS4a mutation) functions through the enhancement of viral RNA synthesis. Furthermore, we show that WNV superinfection exclusion is reversible by the treatment of the replicon cells with a flavivirus inhibitor. The preestablished replication of the replicon could be suppressed by infecting the cells with the 2K mutant WNV but not with the wild-type virus. These results suggest that WNV superinfection exclusion is a result of competition for intracellular host factors that are required for viral RNA synthesis.
Collapse
|
34
|
Identification of inhibitors of yellow fever virus replication using a replicon-based high-throughput assay. Antimicrob Agents Chemother 2009; 53:4103-14. [PMID: 19651907 DOI: 10.1128/aac.00074-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flaviviruses cause severe disease in humans and are a public health priority worldwide. However, no effective therapies or drugs are commercially available yet. Several flavivirus replicon-based assays amenable to high-throughput screening of inhibitors have been reported recently. We developed and performed a replicon-based high-throughput assay for screening small-molecule inhibitors of yellow fever virus (YFV) replication. This assay utilized packaged pseudoinfectious particles containing a YFV replicon that expresses Renilla luciferase in a replication-dependent manner. Several small-molecule compounds with inhibitory activity at micromolar concentrations were identified in the high-throughput screen. These compounds were subsequently tested for their inhibitory activities against YFV replication and propagation in low-throughput assays. Furthermore, YFV mutants that escaped inhibition by two of the compounds were isolated, and in both cases, the mutations were mapped to the NS4B coding region, suggesting a novel inhibitory target for these compounds. This study opens up new avenues for pursuing the nonenzymatic nonstructural proteins as targets for antivirals against YFV and other flaviviruses.
Collapse
|
35
|
Identification and characterization of inhibitors of West Nile virus. Antiviral Res 2009; 83:71-9. [PMID: 19501258 DOI: 10.1016/j.antiviral.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 12/11/2022]
Abstract
Although flaviviruses cause significant human diseases, no antiviral therapy is currently available for clinical treatment of these pathogens. To identify flavivirus inhibitors, we performed a high-throughput screening of compound libraries using cells containing luciferase-reporting replicon of West Nile viruses (WNV). Five novel small molecular inhibitors of WNV were identified from libraries containing 96,958 compounds. The inhibitors suppress epidemic strain of WNV in cell culture, with EC(50) (50% effective concentration) values of <10microM and TI (therapeutic index) values of >10. Viral titer reduction assays, using various flaviviruses and nonflaviviruses, showed that the compounds have distinct antiviral spectra. Mode-of-action analysis showed that the inhibitors block distinct steps of WNV replication: four compounds inhibit viral RNA syntheses, while the other compound suppresses both viral translation and RNA syntheses. Biochemical enzyme assays showed that two compounds selectively inhibit viral RNA-dependent RNA polymerase (RdRp), while another compound specifically inhibits both RdRp and methyltransferase. The identified compounds could potentially be developed for treatment of flavivirus infections.
Collapse
|
36
|
Mitzel DN, Best SM, Masnick MF, Porcella SF, Wolfinbarger JB, Bloom ME. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology 2008; 381:268-76. [PMID: 18823640 DOI: 10.1016/j.virol.2008.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/05/2008] [Accepted: 08/19/2008] [Indexed: 01/12/2023]
Abstract
Tick-borne flaviviruses are maintained in nature in an enzootic cycle involving a tick vector and a vertebrate host. Thus, the virus replicates in two disparate hosts, each providing selective pressures that can influence virus replication and pathogenicity. To identify viral determinants associated with replication in the individual hosts, plaque purified Langat virus (TP21pp) was adapted to growth in mouse or tick cell lines to generate two virus variants, MNBp20 and ISEp20, respectively. Virus adaptation to mouse cells resulted in four amino acid changes in MNBp20 relative to TP21pp, occurring in E, NS4A and NS4B. A comparison between TP21pp and ISEp20 revealed three amino acid modifications in M, NS3 and NS4A of ISEp20. ISEp20, but not MNBp20, was attenuated following intraperitoneal inoculation of mice. Following isolation from mice brains, additional mutations reproducibly emerged in E and NS3 of ISEp20 that were possibly compensatory for the initial adaptation to tick cells. Thus, our data implicate a role for E, M, NS3, NS4A and NS4B in host adaptation and pathogenicity of tick-borne flaviviruses.
Collapse
Affiliation(s)
- Dana N Mitzel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Botha EM, Markotter W, Wolfaardt M, Paweska JT, Swanepoel R, Palacios G, Nel LH, Venter M. Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. Emerg Infect Dis 2008; 14:222-30. [PMID: 18258114 PMCID: PMC2600181 DOI: 10.3201/eid1402.070457] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The most likely determinants are mutations in the nonstructural proteins encoding viral replication and protein cleavage mechanisms. We determined complete genome sequences of lineage 2 West Nile virus (WNV) strains isolated from patients in South Africa who had mild or severe WNV infections. These strains had previously been shown to produce either highly or less neuroinvasive infection and induced genes similar to corresponding highly or less neuroinvasive lineage 1 strains in mice. Phylogenetic and amino acid comparison of highly and less neuroinvasive lineage 2 strains demonstrated that the nonstructural genes, especially the nonstructural protein 5 gene, were most variable. All South African lineage 2 strains possessed the envelope-protein glycosylation site previously postulated to be associated with virulence. Major deletions existed in the 3′ noncoding region of 2 lineage 2 strains previously shown to be either less or not neuroinvasive relative to the highly neuroinvasive strains sequenced in this study.
Collapse
|
38
|
West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 2008; 82:4295-307. [PMID: 18305027 DOI: 10.1128/jvi.02202-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flaviviruses encode a single methyltransferase domain that sequentially catalyzes two methylations of the viral RNA cap, GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA, by using S-adenosyl-l-methionine (SAM) as a methyl donor. Crystal structures of flavivirus methyltransferases exhibit distinct binding sites for SAM, GTP, and RNA molecules. Biochemical analysis of West Nile virus methyltransferase shows that the single SAM-binding site donates methyl groups to both N7 and 2'-O positions of the viral RNA cap, the GTP-binding pocket functions only during the 2'-O methylation, and two distinct sets of amino acids in the RNA-binding site are required for the N7 and 2'-O methylations. These results demonstrate that flavivirus methyltransferase catalyzes two cap methylations through a substrate-repositioning mechanism. In this mechanism, guanine N7 of substrate GpppA-RNA is first positioned to SAM to generate m(7)GpppA-RNA, after which the m(7)G moiety is repositioned to the GTP-binding pocket to register the 2'-OH of the adenosine with SAM, generating m(7)GpppAm-RNA. Because N7 cap methylation is essential for viral replication, inhibitors designed to block the pocket identified for the N7 cap methylation could be developed for flavivirus therapy.
Collapse
|
39
|
Rossi SL, Mason PW. Persistent infections of mammals and mammalian cell cultures with West Nile virus. Future Virol 2008. [DOI: 10.2217/17460794.3.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Before 1990, West Nile virus (WNV) was considered to be one of many arthropod-borne viruses that caused mild febrile illness in man. However, in the 1990s, the virus was associated with severe CNS disease that produced mortality in horses and man in Europe. In 1999, WNV was identified as the etiologic agent of an outbreak of human and avian encephalitis in New York City (NY, USA). Like many other Flaviviridae family members, WNV is generally considered to cause acute infections, however, persistent WNV infections have been observed in laboratory-infected animals and in human patients. These persistent infections could be facilitated by changes to the viral genome that allow the virus to evade detection by the host cell, a property that has been studied in cell culture. This review highlights our current knowledge of persistent WNV infections in vitro and in vivo, and speculates on how persistence could influence virus transmission.
Collapse
Affiliation(s)
- Shannan L Rossi
- University of Texas Medical Branch, Department of Pathology, 301 University Boulevard, Galveston, TX 77555-0428, USA
| | - Peter W Mason
- University of Texas Medical Branch, Departments of Pathology, Microbiology & Immunology and Sealy Center for Vaccine Development, 301 University Boulevard, Galveston, TX 77555-0436, USA
| |
Collapse
|
40
|
Evans JD, Seeger C. Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol 2007; 81:11809-16. [PMID: 17715229 PMCID: PMC2168815 DOI: 10.1128/jvi.00791-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis. Previously, we demonstrated that replication of WNV inhibits the interferon (IFN) signal transduction pathway by preventing the accumulation of phosphorylated Janus kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2) (J. T. Guo et al., J. Virol. 79:1343-1350, 2005). Through a genetic analysis, we have now identified a determinant on the nonstructural protein 4B (NS4B) that controls IFN resistance in HeLa cells expressing subgenomic WNV replicons lacking the structural genes. However, in the context of infectious genomes, the same determinant did not influence IFN signaling. Thus, our results indicate that NS4B may be sufficient to inhibit the IFN response in replicon cells and suggest a role for structural genes, or as yet unknown interactions, in the inhibition of the IFN signaling pathway during WNV infections.
Collapse
Affiliation(s)
- Jared D Evans
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
41
|
Jia Y, Moudy RM, Dupuis AP, Ngo KA, Maffei JG, Jerzak GVS, Franke MA, Kauffman EB, Kramer LD. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 2007; 367:339-47. [PMID: 17617432 PMCID: PMC2190729 DOI: 10.1016/j.virol.2007.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/07/2007] [Accepted: 06/07/2007] [Indexed: 11/29/2022]
Abstract
A small-plaque variant (SP) of West Nile virus (WNV) was isolated in Vero cell culture from kidney tissue of an American crow collected in New York in 2000. The in vitro growth of the SP and parental (WT) strains was characterized in mammalian (Vero), avian (DF-1 and PDE), and mosquito (C6/36) cells. The SP variant replicated less efficiently than did the WT in Vero cells. In avian cells, SP growth was severely restricted at high temperatures, suggesting that the variant is temperature sensitive. In mosquito cells, growth of SP and WT was similar, but in vivo in Culex pipiens (L.) there were substantial differences. Relative to WT, SP exhibited reduced replication following intrathoracic inoculation and lower infection, dissemination, and transmission rates following oral infection. Analysis of the full length sequence of the SP variant identified sequence differences which led to only two amino acid substitutions relative to WT, prM P54S and NS2A V61A.
Collapse
Affiliation(s)
- Yongqing Jia
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Robin M. Moudy
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Alan P. Dupuis
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Kiet A. Ngo
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Joseph G. Maffei
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Greta V. S. Jerzak
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Mary A. Franke
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Elizabeth B. Kauffman
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
| | - Laura D. Kramer
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201
| |
Collapse
|
42
|
Deas TS, Bennett CJ, Jones SA, Tilgner M, Ren P, Behr MJ, Stein DA, Iversen PL, Kramer LD, Bernard KA, Shi PY. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob Agents Chemother 2007; 51:2470-82. [PMID: 17485503 PMCID: PMC1913242 DOI: 10.1128/aac.00069-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We characterize in vitro resistance to and demonstrate the in vivo efficacy of two antisense phosphorodiamidate morpholino oligomers (PMOs) against West Nile virus (WNV). Both PMOs were conjugated with an Arg-rich peptide. One peptide-conjugated PMO (PPMO) binds to the 5' terminus of the viral genome (5'-end PPMO); the other targets an essential 3' RNA element required for genome cyclization (3' conserved sequence I [3' CSI] PPMO). The 3' CSI PPMO displayed a broad spectrum of antiflavivirus activity, suppressing WNV, Japanese encephalitis virus, and St. Louis encephalitis virus, as demonstrated by reductions in viral titers of 3 to 5 logs in cell cultures, likely due to the absolute conservation of the 3' CSI PPMO-targeted sequences among these viruses. The selection and sequencing of PPMO-resistant WNV showed that the 5'-end-PPMO-resistant viruses contained two to three mismatches within the PPMO-binding site whereas the 3' CSI PPMO-resistant viruses accumulated mutations outside the PPMO-targeted region. The mutagenesis of a WNV infectious clone demonstrated that the mismatches within the PPMO-binding site were responsible for the 5'-end PPMO resistance. In contrast, a U insertion or a G deletion located within the 3'-terminal stem-loop of the viral genome was the determinant of the 3' CSI PPMO resistance. In a mouse model, both the 5'-end and 3' CSI PPMOs (administered at 100 or 200 microg/day) partially protected mice from WNV disease, with minimal to no PPMO-mediated toxicity. A higher treatment dose (300 microg/day) caused toxicity. Unconjugated PMOs (3 mg/day) showed neither efficacy nor toxicity, suggesting the importance of the peptide conjugate for efficacy. The results suggest that a modification of the peptide conjugate composition to reduce its toxicity yet maintain its ability to effectively deliver PMO into cells may improve PMO-mediated therapy.
Collapse
Affiliation(s)
- Tia S Deas
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rossi SL, Fayzulin R, Dewsbury N, Bourne N, Mason PW. Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo. Virology 2007; 364:184-95. [PMID: 17382364 DOI: 10.1016/j.virol.2007.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 12/25/2022]
Abstract
West Nile virus (WNV) infections in vertebrates are generally acute but persistent infections have been observed. To investigate the ability of WNV to produce persistent infections, we forced subgenomic WNV replicons to replicate within a cell without causing cell death. Detailed analyses of these cell-adapted genomes revealed mutations within the nonstructural protein genes NS2A (D73H, M108K), NS3 (117Kins), NS4B (E249G) and NS5 (P528H). WNV replicons and WNVs harboring a subset of NS2A or NS3 mutations showed a reduction in genome replication, a reduction in antigen accumulation, a decrease in cytopathic effect, an increased ability to persist in cell culture and/or attenuation in vivo. Taken together, these data indicate that WNV with a defect in replication and an increased potential to persist within the host cell can be generated by point mutations at multiple independent loci, suggesting that persistent viruses could arise in nature.
Collapse
Affiliation(s)
- Shannan L Rossi
- Department of Pathology, 3.206B Mary Moody Northen Pavilion, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0436, USA
| | | | | | | | | |
Collapse
|
44
|
Davis CT, Galbraith SE, Zhang S, Whiteman MC, Li L, Kinney RM, Barrett ADT. A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3' untranslated region alters virus phenotype. J Virol 2007; 81:6111-6. [PMID: 17376926 PMCID: PMC1900292 DOI: 10.1128/jvi.02387-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported mutations in North American West Nile viruses (WNVs) with a small-plaque (sp), temperature-sensitive (ts), and/or mouse-attenuated (att) phenotype. Using an infectious clone, site-directed mutations and 3' untranslated region (3'UTR) exchanges were introduced into the WNV NY99 genome. Characterization of mutants demonstrated that a combination of mutations involving the NS4B protein (E249G) together with either a mutation in the NS5 protein (A804V) or three mutations in the 3'UTR (A10596G, C10774U, A10799G) produced sp, ts, and/or att variants. These results suggested that the discovery of North American WNV-phenotypic variants is rare because of the apparent requirement of concurrent polygenic mutations.
Collapse
Affiliation(s)
- C Todd Davis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H. Structure and function of flavivirus NS5 methyltransferase. J Virol 2007; 81:3891-903. [PMID: 17267492 PMCID: PMC1866096 DOI: 10.1128/jvi.02704-06] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.
Collapse
Affiliation(s)
- Yangsheng Zhou
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|