1
|
Gray WL. Insertion of foreign genes into the simian varicella virus genome by Tn7-mediated site-specific transposition. J Virol Methods 2024; 327:114936. [PMID: 38583808 PMCID: PMC11129925 DOI: 10.1016/j.jviromet.2024.114936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
A Tn7-transposition approach was utilized for site-specific insertion of foreign genes into the genome of simian varicella virus (SVV), the causative agent of simian varicella in nonhuman primates. The severe acute respiratory syndrome coronavirus (SARS-CoV-2) nucleocapsid (N) gene and receptor binding domain (RBD) of the spike gene were inserted into the ORF 14 region of the SVV genome cloned into a bacterial artificial chromosome and then transfected into Vero cells to generate the infectious recombinant SVV (rSVV). The rSVV replicated efficiently in infected Vero cells and expressed the N and RBD antigens as indicated by immunoblot and immunofluorescence assays. Tn7-mediated transposition provides a rapid and efficient method for constructing rSVVs which may be evaluated as live-attenuated vaccines.
Collapse
Affiliation(s)
- Wayne L Gray
- Biology Department, University of Mississippi, MS 38677, USA.
| |
Collapse
|
2
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
3
|
Jankeel A, Coimbra-Ibraim I, Messaoudi I. Simian Varicella Virus: Molecular Virology and Mechanisms of Pathogenesis. Curr Top Microbiol Immunol 2023; 438:163-188. [PMID: 34669041 PMCID: PMC9577235 DOI: 10.1007/82_2021_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Simian varicella virus (SVV) was first isolated in 1966 from African green monkeys (Cercopithecus aethiops) imported from Nairobi, Kenya, to the Liverpool School of Tropical Medicine in the United Kingdom (UK) (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). SVV infection caused severe disease that resulted in a 56% case fatality rate (CFR) in the imported animals within 48 h of the appearance of a varicella-like rash (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967; Hemme et al., Am J Trop Med Hyg 94:1095-1099, 2016). The deceased animals presented with fever, widespread vesicular rash, and multiple hemorrhagic foci throughout the lungs, liver, and spleen (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). This outbreak was quickly followed by a second outbreak in 47 patas monkeys (Erythrocebus patas) imported from Chad and Nigeria by Glaxo Laboratories (London, England, UK), which quickly spread within the facility (McCarthy et al., Lancet 2:856-857, 1968).
Collapse
Affiliation(s)
- Allen Jankeel
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Izabela Coimbra-Ibraim
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA,Institute for Immunology, University of California Irvine, Irvine, CA, USA,Center for Virus Research, University of California Irvine, Irvine, CA, USA,To whom correspondence should be addressed: Ilhem Messaoudi, PhD, Molecular Biology and Biochemistry, University of California Irvine, 2400 Biological Sciences III, Irvine, CA 92697, Phone: 949-824-3078,
| |
Collapse
|
4
|
Simian Varicella Virus Pathogenesis in Skin during Varicella and Zoster. Viruses 2022; 14:v14061167. [PMID: 35746639 PMCID: PMC9227806 DOI: 10.3390/v14061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Primary simian varicella virus (SVV) infection and reactivation in nonhuman primates is a valuable animal model in the study of varicella zoster virus disease [varicella (chickenpox) and herpes zoster (shingles)]. To understand SVV pathogenesis in skin, we inoculated 10 rhesus macaques with SVV, resulting in varicella rash. After the establishment of latency, eight of the monkeys were immunosuppressed using tacrolimus with or without irradiation and prednisone and two monkeys were not immunosuppressed. Zoster rash developed in all immunosuppressed monkeys and in one non-immunosuppressed monkey. Five monkeys had recurrent zoster. During varicella and zoster, SVV DNA in skin scrapings ranged from 50 to 107 copies/100 ng of total DNA and 2–127 copies/100 ng of total DNA, respectively. Detection of SVV DNA in blood during varicella was more frequent and abundant compared to that of zoster. During varicella and zoster, SVV antigens colocalized with neurons expressing β-III tubulin in epidermis, hair follicles, and sweat glands, suggesting axonal transport of the virus. Together, we have demonstrated that both SVV DNA and antigens can be detected in skin lesions during varicella and zoster, providing the basis for further studies on SVV skin pathogenesis, including immune responses and mechanisms of peripheral spread.
Collapse
|
5
|
Histopathological Analysis of Adrenal Glands after Simian Varicella Virus Infection. Viruses 2021; 13:v13071245. [PMID: 34206909 PMCID: PMC8310062 DOI: 10.3390/v13071245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Latent varicella zoster virus (VZV) has been detected in human adrenal glands, raising the possibility of virus-induced adrenal damage and dysfunction during primary infection or reactivation. Rare cases of bilateral adrenal hemorrhage and insufficiency associated with VZV reactivation have been reported. Since there is no animal model for VZV infection of adrenal glands, we obtained adrenal glands from two non-human primates (NHPs) that spontaneously developed varicella from primary simian varicella virus (SVV) infection, the NHP VZV homolog. Histological and immunohistochemical analysis revealed SVV antigen and DNA in the adrenal medulla and cortex of both animals. Adrenal glands were observed to have Cowdry A inclusion bodies, cellular necrosis, multiple areas of hemorrhage, and varying amounts of polymorphonuclear cells. No specific association of SVV antigen with βIII-tubulin-positive nerve fibers was found. Overall, we found that SVV can productively infect NHP adrenal glands, and is associated with inflammation, hemorrhage, and cell death. These findings suggest that further studies are warranted to examine the contribution of VZV infection to human adrenal disease. This study also suggests that VZV infection may present itself as acute adrenal dysfunction with “long-hauler” symptoms of fatigue, weakness, myalgias/arthralgias, and hypotension.
Collapse
|
6
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
7
|
Ouwendijk WJ, van den Ham HJ, Delany MW, van Kampen JJ, van Nierop GP, Mehraban T, Zaaraoui-Boutahar F, van IJcken WF, van den Brand JM, de Vries RD, Andeweg AC, Verjans GM. Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation. JCI Insight 2020; 5:138900. [PMID: 33021967 PMCID: PMC7710321 DOI: 10.1172/jci.insight.138900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation.
Collapse
Affiliation(s)
| | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,ENPICOM BV, 's-Hertogenbosch, Netherlands
| | - Mark W Delany
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Tamana Mehraban
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Judith Ma van den Brand
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Arno C Andeweg
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
8
|
Elevated serum substance P during simian varicella virus infection in rhesus macaques: implications for chronic inflammation and adverse cerebrovascular events. J Neurovirol 2020; 26:945-951. [PMID: 32964407 DOI: 10.1007/s13365-020-00907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023]
Abstract
Varicella and zoster, produced by varicella-zoster virus (VZV), are associated with an increased risk of stroke that may be due to persistent inflammation and hypercoagulability. Because substance P is associated with inflammation, hypercoagulability, and atherosclerotic plaque rupture that may contribute to increased stroke risk after VZV infection, we measured serum substance P in simian varicella virus-infected rhesus macaques. We found significantly increased and persistent serum substance P concentrations during varicella and zoster compared with pre-inoculation, supporting the hypothesis that VZV-induced increases in serum substance P may contribute to increased stroke risk associated with VZV infection.
Collapse
|
9
|
Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses 2019; 11:v11060502. [PMID: 31159224 PMCID: PMC6631480 DOI: 10.3390/v11060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.
Collapse
|
10
|
Traina-Dorge V, Mehta S, Rooney B, Crucian B, Doyle-Meyers L, Das A, Coleman C, Nagel M, Mahalingam R. Simian Varicella Virus DNA in Saliva and Buccal Cells After Experimental Acute Infection in Rhesus Macaques. Front Microbiol 2019; 10:1009. [PMID: 31143167 PMCID: PMC6520666 DOI: 10.3389/fmicb.2019.01009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Simian varicella virus (SVV) infection of non-human primates is the counterpart of varicella zoster virus (VZV) infection in humans. To develop non-invasive methods of assessing SVV infection, we tested for the presence of SVV DNA in saliva, as has been documented in human VZV infection, and in buccal cells to determine whether epithelial cells might provide a more reliable source of material for analysis. Five rhesus macaques intratracheally inoculated with SVV all developed varicella with viremia and macular-papular skin rash in 1-2 weeks, which resolved followed by establishment of latency. DNA extracted from longitudinal blood peripheral blood mononuclear cells (PBMCs), saliva and buccal samples collected during acute infection and establishment of latency were analyzed by real-time qPCR. After intratracheal inoculation, viremia was observed, with peak levels of 101-102 copies of SVV DNA in 100 ng of PBMC DNA at 4 and 7 days post inoculation (dpi), which then decreased at 9-56 dpi. In saliva and buccal cells at 7 dpi, 101-104 copies and 101-105 copies of SVV DNA in 100 ng of cellular DNA, respectively, were detected in all the five monkeys. At 9 dpi, saliva samples from only two of the five monkeys contained SVV DNA at 102-103 copies/100 ng of saliva DNA, while buccal cells from all five monkeys showed 100-103 copies of SVV DNA/100 ng of buccal cell DNA. Similar to viremia, SVV DNA in saliva and buccal cells at 11-56 dpi was lower, suggesting clearance of viral shedding. SVV DNA levels were generally higher in buccal cells than in saliva. Our findings indicate that SVV shedding into the oral cavity parallels acute SVV infection and underscore the relevance of both saliva and buccal cell samples to monitor acute varicella virus infection.
Collapse
Affiliation(s)
- Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Satish Mehta
- Jes Tech, Houston, TX, United States.,KBR wyle Laboratories, Houston, TX, United States
| | | | - Brian Crucian
- Johnson Space Center, NASA, Houston, TX, United States
| | - Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Colin Coleman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Nagel MA, Bubak AN. Herpes Zoster, a Rash of Cerebrovascular Events. Mayo Clin Proc 2019; 94:742-744. [PMID: 31054599 PMCID: PMC6822385 DOI: 10.1016/j.mayocp.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Maria A Nagel
- Department of Neurology and Department of Ophthalmology, University of Colorado School of Medicine, Aurora.
| | - Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora
| |
Collapse
|
12
|
Reactivation of Simian Varicella Virus in Rhesus Macaques after CD4 T Cell Depletion. J Virol 2019; 93:JVI.01375-18. [PMID: 30404798 DOI: 10.1128/jvi.01375-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.
Collapse
|
13
|
Sorel O, Messaoudi I. Varicella Virus-Host Interactions During Latency and Reactivation: Lessons From Simian Varicella Virus. Front Microbiol 2018; 9:3170. [PMID: 30619226 PMCID: PMC6308120 DOI: 10.3389/fmicb.2018.03170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/07/2018] [Indexed: 01/11/2023] Open
Abstract
Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus and the causative agent of varicella (chickenpox) in humans. Following primary infection, VZV establishes latency in the sensory ganglia and can reactivate to cause herpes zoster, more commonly known as shingles, which causes significant morbidity, and on rare occasions mortality, in the elderly. Because VZV infection is highly restricted to humans, the development of a reliable animal model has been challenging, and our understanding of VZV pathogenesis remains incomplete. As an alternative, infection of rhesus macaques with the homologous simian varicella virus (SVV) recapitulates the hallmarks of VZV infection and thus constitutes a robust animal model to provide critical insights into VZV pathogenesis and the host antiviral response. In this model, SVV infection results in the development of varicella during primary infection, generation of an adaptive immune response, establishment of latency in the sensory ganglia, and viral reactivation upon immune suppression. In this review, we discuss our current knowledge about host and viral factors involved in the establishment of SVV latency and reactivation as well as the important role played by T cells in SVV pathogenesis and antiviral immunity.
Collapse
Affiliation(s)
- Océane Sorel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 2018; 92:JVI.02253-17. [PMID: 29343566 DOI: 10.1128/jvi.02253-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Simian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys. Here, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N terminus of open reading frame 9 (ORF9) (rSVV.eGFP-2a-ORF9), and another harbors eGFP fused to the C terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (i.t.) or i.t. plus intravenous (i.v.) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) fluid at 10 days postinoculation (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP-expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in nonhuman primates has served as an extremely useful animal model to study varicella-zoster virus (VZV) pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to that with SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.
Collapse
|
15
|
Ouwendijk WJD, van Veen S, Mahalingam R, Verjans GMGM. Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol 2017; 98:2582-2588. [PMID: 28901902 PMCID: PMC5845570 DOI: 10.1099/jgv.0.000925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023] Open
Abstract
The alphaherpesvirus simian varicella virus (SVV) causes varicella and zoster in nonhuman primates. Herpesviruses evolved elaborate mechanisms to escape host immunity, but the immune evasion strategies employed by SVV remain ill-defined. We analysed whether SVV impairs the cellular response to key antiviral cytokine interferon-γ (IFNγ). SVV infection inhibited the expression of IFNγ-induced genes like C-X-C motif chemokine 10 and interferon regulatory factor 1. Phosphorylation and nuclear translocation of the signal transducer and activator of transcription 1 (STAT1) was blocked in SVV-infected cells, which did not involve cellular and viral phosphatases. SVV infection did not downregulate IFNγ receptor α and β chain expression on the cell surface. Instead, STAT1, Janus tyrosine kinases 1 (JAK1) and JAK2 protein levels were significantly decreased in SVV-infected cells. Collectively, these results demonstrate that SVV targets three proteins in the IFNγ signal transduction pathway to escape the antiviral effects of IFNγ.
Collapse
Affiliation(s)
| | - Suzanne van Veen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Georges M. G. M. Verjans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
16
|
Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res 2017; 238:226-235. [PMID: 28698046 PMCID: PMC7114558 DOI: 10.1016/j.virusres.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
Abstract
T cells play a major role in varicella viruses dissemination to ganglia and skin. SVV infection of T cells increases the expression of cell cycle genes. SVV infection downregulates genes important for antigen presentation in T cells. SVV T cell infection disrupts expression of genes vital for metabolism and immunity.
Varicella zoster virus (VZV) causes varicella (chickenpox) during acute infection. Several studies have shown that T cells are early and preferential targets of VZV infection that play a critical role in disseminating VZV in to the skin and ganglia. However, the transcriptional changes that occur in VZV-infected T cells remain unclear due to limited access to clinical samples and robust translational animal models. In this study, we used a nonhuman primate model of VZV infection where rhesus macaques are infected with the closely related Simian Varicella Virus (SVV) to provide novel insights into VZV-T cell interactions. RNA sequencing of bronchial alveolar lavage-resident T cells isolated from infected rhesus macaques show that SVV infection alters expression of genes important for regulation of gene expression, cell cycle progression, metabolism, and antiviral immunity. These data provide insight into cellular processes that may support viral replication, facilitate SVV dissemination, and evade host defense.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California, Riverside, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
17
|
Donald H. Gilden, M.D. J Neuroimmunol 2017; 308:2-5. [DOI: 10.1016/j.jneuroim.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
|
18
|
Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J Neurovirol 2017; 23:520-538. [PMID: 28321697 DOI: 10.1007/s13365-017-0522-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
Varicella zoster virus (VZV) causes varicella during acute infection and establishes latency in the sensory ganglia. Reactivation of VZV results in herpes zoster, a debilitating and painful disease. It is believed that VZV reactivates due to a decline in cell-mediated immunity; however, the roles that CD4 versus CD8 T cells play in the prevention of herpes zoster remain poorly understood. To address this question, we used a well-characterized model of VZV infection where rhesus macaques are intrabronchially infected with the homologous simian varicella virus (SVV). Latently infected rhesus macaques were thymectomized and depleted of either CD4 or CD8 T cells to induce selective senescence of each T cell subset. After T cell depletion, the animals were transferred to a new housing room to induce stress. SVV reactivation (viremia in the absence of rash) was detected in three out of six CD8-depleted and two out of six CD4-depleted animals suggesting that both CD4 and CD8 T cells play a critical role in preventing SVV reactivation. Viral loads in multiple ganglia were higher in reactivated animals compared to non-reactivated animals. In addition, reactivation results in sustained transcriptional changes in the ganglia that enriched to gene ontology and diseases terms associated with neuronal function and inflammation indicative of potential damage as a result of viral reactivation. These studies support the critical role of cellular immunity in preventing varicella virus reactivation and indicate that reactivation results in long-lasting remodeling of the ganglia transcriptome.
Collapse
|
19
|
Arnold N, Messaoudi I. Herpes zoster and the search for an effective vaccine. Clin Exp Immunol 2017; 187:82-92. [PMID: 27164323 PMCID: PMC5167054 DOI: 10.1111/cei.12809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022] Open
Abstract
Primary infection with varicella zoster virus (VZV), an exclusively human neurotrophic alphaherpsesvirus, results in varicella, known more commonly as chickenpox. Like other alphaherpesviruses, VZV establishes latency in the sensory ganglia and can reactivate to cause herpes zoster (also known as shingles), a painful and debilitating disease, especially in elderly and immunocompromised individuals. The overall incidence of herpes zoster in Europe and the United States is three per 1000 people, but increases sharply after 60 years of age to 10 per 1000 people. Zostavax® is a vaccine approved by the Federal Drug Administration for the prevention of herpes zoster. Unfortunately, this vaccine reduces the incidence of disease by only 51% and the incidence of post-herpetic neuralgia by 66·5% when administered to those aged 60 and older. Moreover, it is contraindicated for individuals who are immunocompromised or receiving immunosuppressant treatments, although they are at higher risk for herpes zoster compared to immune-competent older individuals. This paper reviews VZV pathogenesis, host responses and current vaccines available to prevent herpes zoster.
Collapse
Affiliation(s)
- N Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, CA, USA
| | - I Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
20
|
Arnold N, Girke T, Sureshchandra S, Messaoudi I. Acute Simian Varicella Virus Infection Causes Robust and Sustained Changes in Gene Expression in the Sensory Ganglia. J Virol 2016; 90:10823-10843. [PMID: 27681124 PMCID: PMC5110160 DOI: 10.1128/jvi.01272-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression. IMPORTANCE Many aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
21
|
Ouwendijk WJD, Getu S, Mahalingam R, Gilden D, Osterhaus ADME, Verjans GMGM. Characterization of the immune response in ganglia after primary simian varicella virus infection. J Neurovirol 2015; 22:376-88. [PMID: 26676825 PMCID: PMC4899505 DOI: 10.1007/s13365-015-0408-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 10/25/2022]
Abstract
Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8(dim) and CD8(bright) memory T cells, some of which expressed granzyme B, and fewer CD11c(+) and CD68(+) cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.
Collapse
Affiliation(s)
- Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Sarah Getu
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Don Gilden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Abstract
Varicella zoster virus (VZV) is a ubiquitous, exclusively human alphaherpesvirus. Primary infection usually results in varicella (chickenpox), after which VZV becomes latent in ganglionic neurons along the entire neuraxis. As VZV-specific cell-mediated immunity declines in elderly and immunocompromised individuals, VZV reactivates and causes herpes zoster (shingles), frequently complicated by postherpetic neuralgia. VZV reactivation also produces multiple serious neurological and ocular diseases, such as cranial nerve palsies, meningoencephalitis, myelopathy, and VZV vasculopathy, including giant cell arteritis, with or without associated rash. Herein, we review the clinical, laboratory, imaging, and pathological features of neurological complications of VZV reactivation as well as diagnostic tests to verify VZV infection of the nervous system. Updates on the physical state of VZV DNA and viral gene expression in latently infected ganglia, neuronal, and primate models to study varicella pathogenesis and immunity are presented along with innovations in the immunization of elderly individuals to prevent VZV reactivation.
Collapse
Affiliation(s)
- Don Gilden
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, 12700, USA; Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 12800, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, 12700, USA
| | - Randall Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, 12700, USA; Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 12800, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, 12700, USA
| | - Nicholas Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, 12700, USA
| |
Collapse
|
23
|
Galetta KM, Gilden D. Zeroing in on zoster: A tale of many disorders produced by one virus. J Neurol Sci 2015; 358:38-45. [PMID: 26454371 PMCID: PMC4628852 DOI: 10.1016/j.jns.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
While herpes zoster infection has been recognized since antiquity, chickenpox (varicella) was confused with smallpox until the 1800s, when both illnesses became better understood. In the 20th century, varicella zoster virus (VZV) was shown to cause varicella upon primary (first-time) infection and herpes zoster (shingles) after reactivation of latent VZV. Scientific progress over the past 50 years has rapidly advanced the understanding and prevention of disease produced by VZV. Combined imaging and virological studies continue to reveal the protean neurological, ocular and visceral disorders produced by VZV.
Collapse
Affiliation(s)
- Kristin M Galetta
- Department of Neurology, Brigham and Women's Hospital, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Don Gilden
- Departments of Neurology and Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
24
|
Simian Varicella Virus Is Present in Macrophages, Dendritic Cells, and T Cells in Lymph Nodes of Rhesus Macaques after Experimental Reactivation. J Virol 2015; 89:9817-24. [PMID: 26178993 DOI: 10.1128/jvi.01324-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Like varicella-zoster virus (VZV), simian varicella virus (SVV) reactivates to produce zoster. In the present study, 5 rhesus macaques were inoculated intrabronchially with SVV, and 5 months later, 4 monkeys were immunosuppressed; 1 monkey was not immunosuppressed but was subjected to the stress of transportation. In 4 monkeys, a zoster rash developed 7 to 12 weeks after immunosuppression, and a rash also developed in the monkey that was not immunosuppressed. Analysis at 24 to 48 h after zoster revealed SVV antigen in the lung alveolar wall, in ganglionic neurons and nonneuronal cells, and in skin and in lymph nodes. In skin, SVV was found primarily in sweat glands. In lymph nodes, the SVV antigen colocalized mostly with macrophages, dendritic cells, and, to a lesser extent, T cells. The presence of SVV in lymph nodes, as verified by quantitative PCR detection of SVV DNA, might reflect the sequestration of virus by macrophages and dendritic cells in lymph nodes or the presentation of viral antigens to T cells to initiate an immune response against SVV, or both. IMPORTANCE VZV causes varicella (chickenpox), becomes latent in ganglia, and reactivates to produce zoster and multiple other serious neurological disorders. SVV in nonhuman primates has proved to be a useful model in which the pathogenesis of the virus parallels the pathogenesis of VZV in humans. Here, we show that SVV antigens are present in sweat glands in skin and in macrophages and dendritic cells in lymph nodes after SVV reactivation in monkeys, raising the possibility that macrophages and dendritic cells in lymph nodes serve as antigen-presenting cells to activate T cell responses against SVV after reactivation.
Collapse
|
25
|
Ouwendijk WJD, Verjans GMGM. Pathogenesis of varicelloviruses in primates. J Pathol 2015; 235:298-311. [PMID: 25255989 DOI: 10.1002/path.4451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/01/2023]
Abstract
Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation.
Collapse
|
26
|
Traina-Dorge V, Sanford R, James S, Doyle-Meyers LA, de Haro E, Wellish M, Gilden D, Mahalingam R. Robust pro-inflammatory and lesser anti-inflammatory immune responses during primary simian varicella virus infection and reactivation in rhesus macaques. J Neurovirol 2014; 20:526-30. [PMID: 25139181 PMCID: PMC4394654 DOI: 10.1007/s13365-014-0274-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
Simian varicella virus (SVV) infection of non-human primates models human varicella zoster virus (VZV) infection. Assessment of cell signaling immune responses in monkeys after primary SVV infection, after immunosuppression and during reactivation revealed strong pro-inflammatory responses and lesser anti-inflammatory components during varicella and reactivation. Pro-inflammatory mediators elevated during varicella included interferon-gamma (IFN-γ), interleukin (IL)-6, monocyte chemoattractant protein (MCP-1), interferon inducible T-cell α chemoattractant protein (I-TAC), interferon processing protein (IP-10), and anti-inflammatory interleukin-1 Receptor antagonist (IL-1Ra). After immunosuppression and at reactivation, levels of pro-inflammatory mediators MCP-1, eotaxin, IL-6, IL-8, MIF, RANTES (regulated-on-activation normal T-cell expressed and secreted), and HGF (hepatocyte growth factor) were elevated, as was the anti-inflammatory mediator IL-1Ra. Characterization of cytokine, chemokine and growth factor responses during different stages of varicella virus infection will facilitate immunotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gilden D, Nagel MA, Cohrs RJ, Mahalingam R. The variegate neurological manifestations of varicella zoster virus infection. Curr Neurol Neurosci Rep 2013; 13:374. [PMID: 23884722 PMCID: PMC4051361 DOI: 10.1007/s11910-013-0374-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which the virus becomes latent in ganglionic neurons along the entire neuraxis. With advancing age or immunosuppression, cell-mediated immunity to VZV declines, and the virus reactivates to cause zoster (shingles), dermatomal distribution, pain, and rash. Zoster is often followed by chronic pain (postherpetic neuralgia), cranial nerve palsies, zoster paresis, vasculopathy, meningoencephalitis, and multiple ocular disorders. This review covers clinical, laboratory, and pathological features of neurological complications of VZV reactivation, including diagnostic testing to verify active VZV infection in the nervous system. Additional perspectives are provided by discussions of VZV latency, animal models to study varicella pathogenesis and immunity, and of the value of vaccination of elderly individuals to boost cell-mediated immunity to VZV and prevent VZV reactivation.
Collapse
Affiliation(s)
- Don Gilden
- Department of Neurology and Microbiology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B182, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
28
|
Genome-wide analysis of T cell responses during acute and latent simian varicella virus infections in rhesus macaques. J Virol 2013; 87:11751-61. [PMID: 23986583 DOI: 10.1128/jvi.01809-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.
Collapse
|
29
|
Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens 2013; 2:364-82. [PMID: 25437040 PMCID: PMC4235715 DOI: 10.3390/pathogens2020364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 11/16/2022] Open
Abstract
Primary infection with varicella zoster virus (VZV) results in varicella (chickenpox) followed by the establishment of latency in sensory ganglia. Declining T cell immunity due to aging or immune suppressive treatments can lead to VZV reactivation and the development of herpes zoster (HZ, shingles). HZ is often associated with significant morbidity and occasionally mortality in elderly and immune compromised patients. There are currently two FDA-approved vaccines for the prevention of VZV: Varivax® (for varicella) and Zostavax® (for HZ). Both vaccines contain the live-attenuated Oka strain of VZV. Although highly immunogenic, a two-dose regimen is required to achieve a 99% seroconversion rate. Zostavax vaccination reduces the incidence of HZ by 51% within a 3-year period, but a significant reduction in vaccine-induced immunity is observed within the first year after vaccination. Developing more efficacious vaccines and therapeutics requires a better understanding of the host response to VZV. These studies have been hampered by the scarcity of animal models that recapitulate all aspects of VZV infections in humans. In this review, we describe different animal models of VZV infection as well as an alternative animal model that leverages the infection of Old World macaques with the highly related simian varicella virus (SVV) and discuss their contributions to our understanding of pathogenesis and immunity during VZV infection.
Collapse
Affiliation(s)
- Kristen Haberthur
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Ilhem Messaoudi
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
30
|
T-Cell tropism of simian varicella virus during primary infection. PLoS Pathog 2013; 9:e1003368. [PMID: 23675304 PMCID: PMC3649965 DOI: 10.1371/journal.ppat.1003368] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. Varicella-zoster virus (VZV) causes varicella, establishes life-long latent infection in ganglia and reactivates later in life to cause zoster. VZV is acquired via the respiratory route, with skin rash occurring up to 3 weeks after exposure. The cell types that transport VZV to skin and ganglia during primary infection are unknown. Simian varicella virus (SVV) infection of non-human primates mimics clinical, pathological and immunological features of human VZV infection. African green monkeys were infected with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) or wild-type SVV (SVV-wt) as a control. By visualizing SVV-EGFP−infected cells in the living animal and in tissue samples, we identified the virus-infected cell types in blood, lungs, skin and ganglia during primary infection. Our data demonstrate that during viremia, SVV predominantly infects peripheral blood memory T-cells. Detection of SVV-infected memory T-cells in lungs, in early varicella skin lesions and also, albeit to a lesser extent, in ganglia suggests a role for memory T-cells in transporting virus to these organs. Our study provides novel insights into the cell types involved in virus dissemination and the overall pathology of varicella in a non-human primate model.
Collapse
|
31
|
Gray WL. The simian varicella virus ORF A is expressed in infected cells but is non-essential for replication in cell culture. Arch Virol 2012; 157:1803-6. [PMID: 22678718 PMCID: PMC3560413 DOI: 10.1007/s00705-012-1367-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
The simian varicella virus (SVV) genome encodes ORF A, a truncated homolog of SVV ORF 4. The SVV ORF A was expressed as a 1.0-kb transcript in SVV-infected Vero cells. The ORF A promoter was active in infected Vero cells and was stimulated by the SVV immediate-early gene ORF 62 product (IE62), a viral transactivator of SVV genes. The SVV ORF A did not transactivate SVV IE, early, or late gene promoters in transfected Vero cells and was unable to augment IE62-mediated transactivation of SVV promoters. A SVV mutant lacking ORF A replicated as efficiently as wild-type SVV in infected Vero cells, indicating that ORF A expression is not essential for in vitro replication.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 511, Little Rock, AR 72205, USA.
| |
Collapse
|
32
|
Ouwendijk WJD, Mahalingam R, Traina-Dorge V, van Amerongen G, Wellish M, Osterhaus ADME, Gilden D, Verjans GMGM. Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash. J Neurovirol 2012; 18:91-9. [PMID: 22399159 PMCID: PMC3325412 DOI: 10.1007/s13365-012-0083-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/29/2022]
Abstract
Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 103 plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash.
Collapse
|
33
|
Gilden D, Mahalingam R, Nagel MA, Pugazhenthi S, Cohrs RJ. Review: The neurobiology of varicella zoster virus infection. Neuropathol Appl Neurobiol 2011; 37:441-63. [PMID: 21342215 PMCID: PMC3176736 DOI: 10.1111/j.1365-2990.2011.01167.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Varicella zoster virus (VZV) is a neurotropic herpesvirus that infects nearly all humans. Primary infection usually causes chickenpox (varicella), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia and autonomic ganglia along the entire neuraxis. Although VZV cannot be isolated from human ganglia, nucleic acid hybridization and, later, polymerase chain reaction proved that VZV is latent in ganglia. Declining VZV-specific host immunity decades after primary infection allows virus to reactivate spontaneously, resulting in shingles (zoster) characterized by pain and rash restricted to one to three dermatomes. Multiple other serious neurological and ocular disorders also result from VZV reactivation. This review summarizes the current state of knowledge of the clinical and pathological complications of neurological and ocular disease produced by VZV reactivation, molecular aspects of VZV latency, VZV virology and VZV-specific immunity, the role of apoptosis in VZV-induced cell death and the development of an animal model provided by simian varicella virus infection of monkeys.
Collapse
Affiliation(s)
- D Gilden
- Department of Neurology, University of Colorado School of Medicine, USA.
| | | | | | | | | |
Collapse
|
34
|
Zao CL, Ward JA, Tomanek L, Cooke A, Berger R, Armstrong K. Virological and serological characterization of SRV-4 infection in cynomolgus macaques. Arch Virol 2011; 156:2053-6. [DOI: 10.1007/s00705-011-1068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
|
35
|
Gray WL, Zhou F, Noffke J, Tischer BK. Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome. Arch Virol 2011; 156:739-46. [PMID: 21487663 DOI: 10.1007/s00705-010-0889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Simian varicella virus (SVV) is closely related to human varicella-zoster virus and causes varicella and zoster-like disease in nonhuman primates. In this study, a mini-F replicon was inserted into a SVV cosmid, and infectious SVV was generated by co-transfection of Vero cells with overlapping SVV cosmids. The entire SVV genome, cloned as a bacterial artificial chromosome (BAC), was stably propagated upon serial passage in E. coli. Transfection of pSVV-BAC DNA into Vero cells yielded infectious SVV (rSVV-BAC). The mini-F vector sequences flanked by loxP sites were removed by co-infection of Vero cells with rSVV-BAC and adenovirus expressing Cre-recombinase. Recombinant SVV generated using the SVV-BAC genetic system has similar molecular and in vitro replication properties as wild-type SVV. To demonstrate the utility of this approach, a SVV ORF 10 deletion mutant was created using two-step Red-mediated recombination. The results indicate that SVV ORF 10, which encodes a homolog of the HSV-1 virion VP-16 transactivator protein, is not essential for in vitro replication but is required for optimal replication in cell culture.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | | | |
Collapse
|
36
|
Mahalingam R, Traina-Dorge V, Wellish M, Deharo E, Singletary ML, Ribka EP, Sanford R, Gilden D. Latent simian varicella virus reactivates in monkeys treated with tacrolimus with or without exposure to irradiation. J Neurovirol 2011; 16:342-54. [PMID: 20822371 DOI: 10.3109/13550284.2010.513031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simian varicella virus (SVV) infection of primates resembles human varicella-zoster virus (VZV) infection. After primary infection, SVV becomes latent in ganglia and reactivates after immunosuppression or social and environmental stress. Herein, natural SVV infection was established in 5 cynomolgus macaques (cynos) and 10 African green (AG) monkeys. Four cynos were treated with the immunosuppressant tacrolimus (80 to 300 μg/kg/day) for 4 months and 1 was untreated (group 1). Four AG monkeys were exposed to a single dose (200 cGy) of x-irradiation (group 2), and 4 other AG monkeys were irradiated and treated with tacrolimus for 4 months (group 3); the remaining 2 AG monkeys were untreated. Zoster rash developed 1 to 2 weeks after tacrolimus treatment in 3 of 4 monkeys in group 1, 6 weeks after irradiation in 1 of 4 monkeys in group 2, and 1 to 2 weeks after irradiation in all 4 monkeys in group 3. All monkeys were euthanized 1 to 4 months after immunosuppression. SVV antigens were detected immunohistochemically in skin biopsies as well as in lungs of most monkeys. Low copy number SVV DNA was detected in ganglia from all three groups of monkeys, including controls. RNA specific for SVV ORFs 61, 63, and 9 was detected in ganglia from one immunosuppressed monkey in group 1. SVV antigens were detected in multiple ganglia from all immunosuppressed monkeys in every group, but not in controls. These results indicate that tacrolimus treatment produced reactivation in more monkeys than irradiation and tacrolimus and irradiation increased the frequency of SVV reactivation as compared to either treatment alone.
Collapse
Affiliation(s)
- Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Simian herpesviruses and their risk to humans. Vaccine 2010; 28 Suppl 2:B78-84. [PMID: 20510749 DOI: 10.1016/j.vaccine.2009.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 11/02/2009] [Indexed: 11/22/2022]
Abstract
A high level of genetic and physiological homology with humans has rendered non-human primates (NHP) an essential animal model for biomedical research. As such NHP offer a unique opportunity to study host-pathogen interactions in a species that closely mimics human biology but can yet be maintained under tight laboratory conditions. Indeed, studies using NHP have been critical to our understanding of pathogenesis as well as the development of vaccines and therapeutics. This further facilitated by the fact that NHPs are susceptible to a variety of pathogens that bear significant homology to human pathogens. Unfortunately, these same viruses pose a potential health issue to humans. In this review we discuss the simian herpesviruses and their potential to cause disease in researchers that come into close contact with them.
Collapse
|
38
|
Vahle JL, Finch GL, Heidel SM, Hovland DN, Ivens I, Parker S, Ponce RA, Sachs C, Steigerwalt R, Short B, Todd MD. Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations. Toxicol Pathol 2010; 38:522-53. [PMID: 20472697 DOI: 10.1177/0192623310368984] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An important safety consideration for developing new therapeutics is assessing the potential that the therapy will increase the risk of cancer. For biotherapeutics, traditional two-year rodent bioassays are often not scientifically applicable or feasible. This paper is a collaborative effort of industry toxicologists to review past and current practice regarding carcinogenicity assessments of biotherapeutics and to provide recommendations. Publicly available information on eighty marketed protein biotherapeutics was reviewed. In this review, no assessments related to carcinogenicity or tumor growth promotion were identified for fifty-one of the eighty molecules. For the twenty-nine biotherapeutics in which assessments related to carcinogenicity were identified, various experimental approaches were employed. This review also discusses several key principles to aid in the assessment of carcinogenic potential, including (1) careful consideration of mechanism of action to identify theoretical risks, (2) careful investigation of existing data for indications of proliferative or immunosuppressive potential, and (3) characterization of any proliferative or immunosuppressive signals detected. Traditional two-year carcinogenicity assays should not be considered as the default method for assessing the carcinogenicity potential of biotherapeutics. If experimentation is considered warranted, it should be hypothesis driven and may include a variety of experimental models. Ultimately, it is important that preclinical data provide useful guidance in product labeling.
Collapse
Affiliation(s)
- John L Vahle
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, Quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 2010; 342:229-41. [PMID: 20186615 DOI: 10.1007/82_2009_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Varicella zoster virus (VZV) establishes latency in neurons of human peripheral ganglia where the virus genome is most likely maintained as a circular episome bound to histones. There is considerable variability among individuals in the number of latent VZV DNA copies. The VZV DNA burden does not appear to exceed that of herpes simplex type 1 (HSV-1). Expression of VZV genes during latency is highly restricted and is regulated epigenetically. Of the VZV open reading frames (ORFs) that have been analyzed for transcription during latency using cDNA sequencing, only ORFs 21, 29, 62, 63, and 66 have been detected. VZV ORF 63 is the most frequently and abundantly transcribed VZV gene detected in human ganglia during latency, suggesting a critical role for this gene in maintaining the latent state and perhaps the early stages of virus reactivation. The inconsistent detection and low abundance of other VZV transcripts suggest that these genes play secondary roles in latency or possibly reflect a subpopulation of neurons undergoing VZV reactivation. New technologies, such as GeXPS multiplex PCR, have the sensitivity to detect multiple low abundance transcripts and thus provide a means to elucidate the entire VZV transcriptome during latency.
Collapse
|
40
|
Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, Planer S, Gilden D, Nikolich-Zugich J, Mahalingam R. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog 2009; 5:e1000657. [PMID: 19911054 PMCID: PMC2770849 DOI: 10.1371/journal.ppat.1000657] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022] Open
Abstract
Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Alexander Barron
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Mary Wellish
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Flora Engelmann
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Alfred Legasse
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Shannon Planer
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Don Gilden
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
41
|
Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186. J Virol 2009; 83:12094-100. [PMID: 19759161 DOI: 10.1128/jvi.01526-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 is abundantly transcribed in latently infected human ganglia and encodes a 278-amino-acid protein, IE63, with immediate-early kinetics. IE63 is expressed in the cytoplasm of neurons during VZV latency and in both the cytoplasm and the nucleus during productive infection; however, the mechanism(s) involved in IE63 nuclear import and retention has remained unclear. We constructed and identified a recombinant monoclonal antibody to detect a posttranslationally modified form of IE63. Analysis of a series of IE63 truncation and substitution mutants showed that amino acids 186 to 195 are required for antibody binding. Synthetic peptides corresponding to this region identified IE63 S186 as a target for casein kinase II phosphorylation. In addition, acidic charges supplied by E194 and E195 were required for antibody binding. Immunofluorescence analysis of VZV-infected MeWo cells using the recombinant monoclonal antibody detected IE63 exclusively in the nuclei of infected cells, indicating that casein kinase II phosphorylation of S186 occurs in the nucleus and possibly identifying an initial molecular event operative in VZV reactivation.
Collapse
|
42
|
Abstract
In general, veterinary dermatologists do not have extensive clinical experience of nonhuman primate (NHP) dermatoses. The bulk of the published literature does not provide an organized evidence-based approach to the NHP dermatologic case. The veterinary dermatologist is left to extract information from both human and veterinary dermatology, an approach that can be problematic as it forces the clinician to make diagnostic and therapeutic decisions based on two very disparate bodies of literature. A more cohesive approach to NHP dermatology - without relying on assumptions that NHP pathology most commonly behaves similarly to other veterinary and human disease - is required. This review of the dermatology of NHP species includes discussions of primary dermatoses, as well as diseases where dermatologic signs represent a significant secondary component, provides a first step towards encouraging the veterinary community to study and report the dermatologic diseases of nonhuman primates.
Collapse
|
43
|
Gilden D, Nagel MA, Mahalingam R, Mueller NH, Brazeau EA, Pugazhenthi S, Cohrs RJ. Clinical and molecular aspects of varicella zoster virus infection. FUTURE NEUROLOGY 2009; 4:103-117. [PMID: 19946620 PMCID: PMC2782836 DOI: 10.2217/14796708.4.1.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A declining cell-mediated immunity to varicella zoster virus (VZV) with advancing age or immunosuppression results in virus reactivation from latently infected human ganglia anywhere along the neuraxis. Virus reactivation produces zoster, often followed by chronic pain (postherpetic neuralgia or PHN) as well as vasculopathy, myelopathy, retinal necrosis and cerebellitis. VZV reactivation also produces pain without rash (zoster sine herpete). Vaccination after age 60 reduces the incidence of shingles by 51%, PHN by 66% and the burden of illness by 61%. However, even if every healthy adult over age 60 years is vaccinated, there would still be about 500,000 zoster cases annually in the United States alone, about 200,000 of whom will experience PHN. Analyses of viral nucleic acid and gene expression in latently infected human ganglia and in an animal model of varicella latency in primates are serving to determine the mechanism(s) of VZV reactivation with the aim of preventing reactivation and the clinical sequelae.
Collapse
Affiliation(s)
- Don Gilden
- Author for correspondence: Department of Neurology, University of Colorado Denver School of Medicine, 4200 E. 9 Avenue, Mail Stop B182, Denver, CO 80262, USA. Tel: 1-303-315-8281; Fax: 1-303-315-8281;
| | | | | | | | | | | | | |
Collapse
|
44
|
Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin 2008; 26:675-97, viii. [PMID: 18657721 PMCID: PMC2754837 DOI: 10.1016/j.ncl.2008.03.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in association with a decline in cell-mediated immunity in elderly and immunocompromised individuals, VZV reactivates and causes a wide range of neurologic disease. This article discusses the clinical manifestations, treatment, and prevention of VZV infection and reactivation; pathogenesis of VZV infection; and current research focusing on VZV latency, reactivation, and animal models.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado School of Medicine, 4200 East 9th Avenue, Mail Stop B182, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|