1
|
Fernández-Alarcón C, Buchholz G, Contreras H, Wussow F, Nguyen J, Diamond DJ, Schleiss MR. Protection against Congenital CMV Infection Conferred by MVA-Vectored Subunit Vaccines Extends to a Second Pregnancy after Maternal Challenge with a Heterologous, Novel Strain Variant. Viruses 2021; 13:v13122551. [PMID: 34960820 PMCID: PMC8703303 DOI: 10.3390/v13122551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Maternal reinfection of immune women with novel human cytomegalovirus (HCMV) strains acquired during pregnancy can result in symptomatic congenital CMV (cCMV) infection. Novel animal model strategies are needed to explore vaccine-mediated protections against maternal reinfection. To investigate this in the guinea pig cytomegalovirus (GPCMV) model, a strictly in vivo-passaged workpool of a novel strain, the CIDMTR strain (dose, 1 × 107 pfu) was used to infect dams that had been challenged in a previous pregnancy with the 22122 strain, following either sham-immunization (vector only) or vaccination with MVA-vectored gB, gH/gL, or pentameric complex (PC) vaccines. Maternal DNAemia cleared by day 21 in the glycoprotein-vaccinated dams, but not in the sham-immunized dams. Mean pup birth weights were 72.85 ± 10.2, 80.0 ± 6.9, 81.4 ± 14.1, and 89.38 ± 8.4 g in sham-immunized, gB, gH/gL, and PC groups, respectively (p < 0.01 for control v. PC). Pup mortality in the sham-immunized group was 6/12 (50%), but reduced to 3/35 (8.6%) in combined vaccine groups (p = 0.0048). Vertical CIDMTR transmission occurred in 6/12 pups (50%) in the sham-vaccinated group, compared to 2/34 pups (6%) in the vaccine groups (p = 0.002). We conclude that guinea pigs immunized with vectored vaccines expressing 22122 strain-specific glycoproteins are protected after a reinfection with a novel, heterologous clinical isolate (CIDMTR) in a second pregnancy.
Collapse
Affiliation(s)
- Claudia Fernández-Alarcón
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (G.B.)
| | - Grace Buchholz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (G.B.)
| | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.C.); (F.W.); (J.N.); (D.J.D.)
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.C.); (F.W.); (J.N.); (D.J.D.)
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.C.); (F.W.); (J.N.); (D.J.D.)
| | - Don J. Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.C.); (F.W.); (J.N.); (D.J.D.)
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (G.B.)
- Correspondence:
| |
Collapse
|
2
|
Berkebile ZW, Putri DS, Abrahante JE, Seelig DM, Schleiss MR, Bierle CJ. The Placental Response to Guinea Pig Cytomegalovirus Depends Upon the Timing of Maternal Infection. Front Immunol 2021; 12:686415. [PMID: 34211475 PMCID: PMC8239309 DOI: 10.3389/fimmu.2021.686415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects the placenta, and these placental infections can cause fetal injury and/or demise. The timing of maternal HCMV infection during pregnancy is a determinant of fetal outcomes, but how development affects the placenta's susceptibility to infection, the likelihood of placental injury post-infection, and the frequency of transplacental HCMV transmission remains unclear. In this study, guinea pig cytomegalovirus (GPCMV) was used to model primary maternal infection and compare the effects of infection at two different times on the placenta. When guinea pigs were infected with GPCMV at either 21- or 35-days gestation (dGA), maternal and placental viral loads, as determined by droplet digital PCR, were not significantly affected by the timing of maternal infection. However, when the transcriptomes of gestational age-matched GPCMV-infected and control placentas were compared, significant infection-associated changes in gene expression were only observed after maternal infection at 35 dGA. Notably, transcripts associated with immune activation (e.g. Cxcl10, Ido1, Tgtp1, and Tlr8) were upregulated in the infected placenta. A GPCMV-specific in situ hybridization assay detected rare infected cells in the main placenta after maternal infection at either time, and maternal infection at 35 dGA also caused large areas of GPCMV-infected cells in the junctional zone. As GPCMV infection after mid-gestation is known to cause high rates of stillbirth and/or fetal growth restriction, our results suggest that the placenta becomes sensitized to infection-associated injury late in gestation, conferring an increased risk of adverse pregnancy outcomes after cytomegalovirus infection.
Collapse
Affiliation(s)
- Zachary W. Berkebile
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Dira S. Putri
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Juan E. Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mark R. Schleiss
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Majima R, Koshizuka T, Inoue N. The Guinea pig cytomegalovirus GP119.1 gene encodes an IgG-binding glycoprotein that is incorporated into the virion. Microbiol Immunol 2021; 65:28-39. [PMID: 33616978 DOI: 10.1111/1348-0421.12867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Cytomegaloviruses (CMVs) encode various immunoevasins, including viral receptors for the Fc domain of host IgG (vFcγR), to evade host immune responses. Although guinea pig CMV (GPCMV) provides a useful animal model for congenital CMV infection, the GPCMV genes encoding such receptors have not yet been characterized. In this study, we analyzed a locus that may encode gene products for the GPCMV immune evasion mechanisms and identified the following. (a) RACE analyses identified four transcripts in the GP117 to GP122 locus. One of the transcripts contained the GP119.1 ORF, which has weak homologies with human CMV UL119/UL118 encoding a viral FcγR and with guinea pig FcγR. (b) A transient transfection assay with plasmids expressing EGFP-tagged GP119.1 or its mutated forms identified its true translational initiation site, localization mainly in the endoplasmic reticulum, and N-glycosylation. (c) Importantly, GP119.1 bound to guinea pig IgG or the IgG-Fc fragment. (d) GP119.1 is present in the virion with a molecular mass of 15 and 23~30 kDa, and a portion of the GP119.1 products are N-glycosylated. (e) GP119.1 was dispensable for viral growth on guinea pig fibroblasts and epithelial cells in vitro. Taken together, our findings indicate that GP119.1 is an IgG-Fc binding glycoprotein incorporated into the virion, and this finding warrants further studies on the functions of GP119.1 in animal models.
Collapse
Affiliation(s)
- Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| |
Collapse
|
4
|
Okumura M, Matsuura-Miura M, Makino R, Miura T, Noguchi K, Majima R, Koshizuka T, Inoue N. Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells. Sci Rep 2020; 10:8530. [PMID: 32444790 PMCID: PMC7244513 DOI: 10.1038/s41598-020-65545-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
A better understanding of the mechanisms underlying cell tropisms and the efficiency of viral infection is critical for the development of vaccines and antiviral drugs for viral diseases. In this study, we worked on the entry mechanisms of guinea pig cytomegalovirus and found that endogenous expression of a combination of two components (GP131 and GP133) of the pentameric glycoprotein complex, which is required for non-fibroblast cell tropisms, enhanced viral infection more than 10-fold. In addition, D138A alteration in GP131 increased this enhancement by an additional 10-fold. Although differences in the efficiency of viral infection among various cell types are usually explained by differences in viral entry or traffic processes, our experimental evidences dismissed such possibilities. Instead, our findings that i) endogenous expression of GP131 and GP133 after nuclear delivery of viral DNA still enhanced infection and ii) an HDAC inhibitor overcame the need of the endogenous expression led us to hypothesize a novel mechanism that controls the efficiency of viral infection through the activation of gene expression from viral DNA delivered to the nuclei. Further studies of this unexpected phenomena warrant to understand novel but also general mechanisms for cell tropisms of viral infection and determinants that control infection efficiency.
Collapse
Affiliation(s)
- Misaki Okumura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Miku Matsuura-Miura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,Akashi City Hall, Hyogo, Japan
| | - Reina Makino
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takuya Miura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,JCR Pharmaceuticals Co., Ltd., Hyogo, Japan
| | - Kazuma Noguchi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
5
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Motoya T, Umezawa M, Goto K, Doi I, Nagata N, Ikeda Y, Sakuta A, Sasaki N, Ishii K. High prevalence of hepatitis E virus infection among domestic pigs in Ibaraki Prefecture, Japan. BMC Vet Res 2019; 15:87. [PMID: 30866949 PMCID: PMC6416891 DOI: 10.1186/s12917-019-1816-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is prevalent in pigs and may serve as a reservoir for human infection. However, data on HEV infections in pigs in Ibaraki Prefecture, Japan, are limited. Here, we clarified the process and course of HEV in naturally infected pigs. Serum (n = 160) and liver (n = 110) samples were collected from pigs at the slaughterhouse. Furthermore, serum samples were collected from 45 breeding sows and serum and feces samples were collected from 7 piglets once a week (raised until 166 days of age). HEV antigen and antibodies were evaluated, and the genotype was identified based on molecular phylogenetic tree analysis. RESULTS The samples collected from the slaughterhouse revealed that few pigs were HEV carriers but most possessed anti-HEV antibodies. Most breeding sows possessed antibodies, and the piglets excreted HEV on the farm at approximately 10 weeks of age. One pig was initially infected, and in a few weeks, the other pigs living in the same sty became infected. CONCLUSIONS Most pigs in Ibaraki Prefecture were with HEV. On the farm, most piglets were infected with HEV by the time they reached slaughter age. We confirmed that HEV infection is successively transmitted among piglets living in the same sty.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan. .,Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Masahiro Umezawa
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Ikuko Doi
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Yoshiaki Ikeda
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Atsushi Sakuta
- Swine Laboratory, Ibaraki Prefectural Livestock Research Center, Inashiki, Ibaraki, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
7
|
Roles of GP33, a guinea pig cytomegalovirus-encoded G protein-coupled receptor homolog, in cellular signaling, viral growth and inflammation in vitro and in vivo. PLoS Pathog 2018; 14:e1007487. [PMID: 30571759 PMCID: PMC6319746 DOI: 10.1371/journal.ppat.1007487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/04/2019] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cytomegaloviruses (CMVs) encode cellular homologs to evade host immune functions. In this study, we analyzed the roles of GP33, a guinea pig CMV (GPCMV)-encoded G protein-coupled receptor (GPCR) homolog, in cellular signaling, viral growth and pathogenesis. The cDNA structure of GP33 was determined by RACE. The effects of GP33 on some signaling pathways were analyzed in transient transfection assays. The redET two-step recombination system for a BAC containing the GPCMV genome was used to construct a mutant GPCMV containing an early stop codon in the GP33 gene (Δ33) and a rescued GPCMV (r33). We found the following: 1) GP33 activated the CRE- and NFAT-, but not the NFκB-mediated signaling pathway. 2) GP33 was dispensable for infection in tissue cultures and in normal animals. 3) In pregnant animals, viral loads of r33 in the livers, lungs, spleens, and placentas at 6 days post-infection were higher than those of Δ33, although the viruses were cleared by 3 weeks post-infection. 4) The presence of GP33 was associated with frequent lesions, including alveolar hemorrhage in the lungs, and inflammation in the lungs, livers, and spleens of the dams. Our findings suggest that GP33 has critical roles in the pathogenesis of GPCMV during pregnancy. We hypothesize that GP33-mediated signaling activates cytokine secretion from the infected cells, which results in inflammation in some of the maternal organs and the placentas. Alternatively, GP33 may facilitate transient inflammation that is induced by the chemokine network specific to the pregnancy. Cytomegalovirus (CMV) is a major pathogen that causes congenital diseases, including birth defects and developmental abnormalities in newborns. Better understanding of the immune evasion mechanisms may open the way to the development of new types of live attenuated vaccines for congenital CMV infection. In contrast to murine and rat CMVs, guinea pig CMV (GPCMV) causes infection in utero, which makes GPCMV animal models a useful tool for understanding the pathogenesis of congenital infection and evaluation of vaccine strategies. By constructing a GPCMV mutant lacking GP33, a viral G protein-coupled receptor homolog, this study found that GP33 was involved in the induction of significant inflammatory responses in pregnant but not in normal animals. As GP33 activated the NFAT- and CRE-, but not the NFκB-signal pathway, it is plausible that GP33 enhanced cytokine expression, which results in pathogenic outcomes in the maternal organs and placentas.
Collapse
|
8
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
9
|
Miura T, Makino R, Yamada K, Matsuura M, Okumura M, Yamada S, Watanabe S, Inoue N. Differences in the effects of mutations in GP131, a guinea pig cytomegalovirus homologue of pentameric complex component UL130, on macrophage and epithelial cell infection. J Gen Virol 2018; 99:1425-1431. [PMID: 30113297 DOI: 10.1099/jgv.0.001137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As congenital cytomegalovirus (CMV) infection is the major cause of developmental abnormalities in children, the development of effective vaccines is critical to public health. Recent studies have demonstrated that the pentameric complex (Pentamer) of glycoproteins, which is required for human CMV infection of endothelial and epithelial cells, could be a potent vaccine antigen. As guinea pig CMV (GPCMV) infects congenitally and encodes homologues of all Pentamer components, GPCMV models are considered to be useful for the development of vaccine strategies. Here, to clarify the precise requirement of GP131, one of the GPCMV Pentamer components, for the infection of epithelial cells and macrophages, we prepared several mutants with a charged amino acid-to-alanine alteration in GP131 and found some differences in the effects of the mutations on the infection of the two cell types, suggesting the existence of cell type-dependent recognition or function of Pentamer in GPCMV infection.
Collapse
Affiliation(s)
- Takuya Miura
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,†Present address: JCR Pharmaceuticals, Hyogo, Japan
| | - Reina Makino
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kouhei Yamada
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,‡Present address: Nagoya City Hall, Aichi, Japan
| | - Miku Matsuura
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,§Present address: Hanshin Dispensing Pharmacy, Hyogo, Japan
| | - Misaki Okumura
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Souichi Yamada
- 2Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Watanabe
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,¶Present address: Eiken Chemical, Tochigi, Japan
| | - Naoki Inoue
- 1Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
Abstract
The development of a cytomegalovirus (CMV) vaccine has become a top priority due to its potential cost-effectiveness and associated public health benefits. However, there are a number of challenges facing vaccine development including the following: (1) CMV has many mechanisms for evading immune responses , and natural immunity is not perfect, (2) the immune correlates for protection are unclear, (3) a narrow range of CMV hosts limits the value of animal models, and (4) the placenta is a specialized organ formed transiently and its immunological status changes with time. In spite of these limitations, several types of CMV vaccine candidate, including live-attenuated, DISC , subunit, DNA, vectored, and peptide vaccines, have been developed or are currently under development. The recognition of the pentameric complex as the major neutralization target and identification of various strategies to block viral immune response evasion mechanisms have opened new avenues to CMV vaccine development. Here, we discuss the immune correlates for protection, the characteristics of the various vaccine candidates and their clinical trials, and the relevant animal models.
Collapse
|
11
|
Itell HL, Nelson CS, Martinez DR, Permar SR. Maternal immune correlates of protection against placental transmission of cytomegalovirus. Placenta 2017; 60 Suppl 1:S73-S79. [PMID: 28456432 PMCID: PMC5650553 DOI: 10.1016/j.placenta.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenitally transmitted pathogen worldwide, impacting an estimated 1 million newborns annually. In a subset of infected infants, congenital HCMV causes severe, long-lasting sequelae, including deafness, microcephaly, neurodevelopmental delay, and even death. Accordingly, a maternal vaccine to prevent congenital HCMV infection continues to be a top public health priority. Nevertheless, all vaccines tested to date have failed to meet clinical trial endpoints. Maternal immunity provides partial protection against congenital HCMV transmission, as vertical transmission from seropositive mothers is relatively rare. Therefore, an understanding of the maternal immune correlates of protection against HCMV congenital infection will be critical to inform design of an efficacious maternal vaccine. This review summarizes our understanding of the innate and adaptive immune correlates of protection against congenital transmission of HCMV, and discusses the advantages and applications of a novel nonhuman primate model of congenital CMV transmission to aid in rational vaccine design and evaluation.
Collapse
Affiliation(s)
- Hannah L Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - David R Martinez
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
12
|
Coleman S, Choi KY, McGregor A. Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig. Virology 2017. [PMID: 28651121 DOI: 10.1016/j.virol.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) encodes a homolog pentameric complex (PC) for specific cell tropism and congenital infection. In human cytomegalovirus, the PC is an important antibody neutralizing target and GPCMV studies will aid in the development of intervention strategies. Deletion mutants of the C-terminal domains of unique PC proteins (UL128, UL130 and UL131 homologs) were unable to form a PC in separate transient expression assays. Minor modifications to the UL128 homolog (GP129) C-terminal domain enabled PC formation but viruses encoding these mutants had altered tropism to renal and placental trophoblast cells. Mutation of the presumptive CC chemokine motif encoded by GP129 was investigated by alanine substitution of the CC motif (codons 26-27) and cysteines (codons 47 and 62). GP129 chemokine mutants formed PC but GP129 chemokine mutant viruses had reduced epitropism. A GP129 chemokine mutant virus pathogenicity study demonstrated reduced viral load to target organs but highly extended viremia.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
13
|
Repair of a Mutation Disrupting the Guinea Pig Cytomegalovirus Pentameric Complex Acquired during Fibroblast Passage Restores Pathogenesis in Immune-Suppressed Guinea Pigs and in the Context of Congenital Infection. J Virol 2016; 90:7715-27. [PMID: 27307567 DOI: 10.1128/jvi.00320-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Guinea pig cytomegalovirus (GPCMV) provides a valuable model for congenital cytomegalovirus transmission. Salivary gland (SG)-passaged stocks of GPCMV are pathogenic, while tissue culture (TC) passage in fibroblasts results in attenuation. Nonpathogenic TC-derived virus N13R10 (cloned as a bacterial artificial chromosome [BAC]) has a 4-bp deletion that disrupts GP129, which encodes a subunit of the GPCMV pentameric complex (PC) believed to govern viral entry into select cell types, and GP130, an overlapping open reading frame (ORF) of unknown function. To determine if this deletion contributes to attenuation of N13R10, markerless gene transfer in Escherichia coli was used to construct virus r129, a variant of N13R10 in which the 4-bp deletion is repaired. Virions from r129 were found to contain GP129 as well as two other PC subunit proteins, GP131 and GP133, whereas these three PC subunits were absent from N13R10 virions. Replication of r129 in fibroblasts appeared unaltered compared to that of N13R10. However, following experimental challenge of immunocompromised guinea pigs, r129 induced significant weight loss, longer duration of viremia, and dramatically higher (up to 1.5 × 10(6)-fold) viral loads in blood and end organs compared to N13R10. In pregnant guinea pigs, challenge with doses of r129 virus of ≥5 × 10(6) PFU resulted in levels of maternal viremia, congenital transmission, pup viral loads, intrauterine growth restriction, and pup mortality comparable to that induced by pathogenic SG virus, although higher doses of r129 were required. These results suggest that the GP129-GP130 mutation is a significant contributor to attenuation of N13R10, likely by abrogating expression of a functional PC. IMPORTANCE Tissue culture adaptation of cytomegaloviruses rapidly selects for mutations, deletions, and rearrangements in the genome, particularly for viruses passaged in fibroblast cells. Some of these mutations are focused in the region of the genome encoding components of the pentameric complex (PC), in particular homologs of human cytomegalovirus (HCMV) proteins UL128, UL130, and UL131A. These mutations can attenuate the course of infection when the virus is reintroduced into animals for vaccine and pathogenesis studies. This study demonstrates that a deletion that arose during the process of tissue culture passage can be repaired, with subsequent restoration of pathogenicity, using BAC-based mutagenesis. Restoration of pathogenicity by repair of a frameshift mutation in GPCMV gene GP129 using this approach provides a valuable genetic platform for future studies using the guinea pig model of congenital CMV infection.
Collapse
|
14
|
A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus. PLoS Pathog 2016; 12:e1005755. [PMID: 27387220 PMCID: PMC4936736 DOI: 10.1371/journal.ppat.1005755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.
Collapse
|
15
|
An Ex vivo culture model for placental cytomegalovirus infection using slices of Guinea pig placental tissue. Placenta 2015; 37:85-8. [PMID: 26625961 DOI: 10.1016/j.placenta.2015.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
Congenital infection with human cytomegalovirus (CMV) through the placenta is one of the major causes of birth and developmental abnormalities. Guinea pig CMV (GPCMV) causes in utero infection, which makes its animal models useful for studies on congenital diseases. Here, we established an ex vivo culture method for tissue slices prepared from guinea pig placentas and demonstrated that viral spread in the model resembles those in the placenta of GPCMV-infected animals and that the infection is independent of the pentameric glycoprotein complex for endothelial/epithelial cell tropism. Thus, this model affords a useful tool for pathobiological studies on CMV placental infection.
Collapse
|
16
|
Coleman S, Hornig J, Maddux S, Choi KY, McGregor A. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus. PLoS One 2015; 10:e0135567. [PMID: 26267274 PMCID: PMC4534421 DOI: 10.1371/journal.pone.0135567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Sarah Maddux
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - K. Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
17
|
Vaccination with a Live Attenuated Cytomegalovirus Devoid of a Protein Kinase R Inhibitory Gene Results in Reduced Maternal Viremia and Improved Pregnancy Outcome in a Guinea Pig Congenital Infection Model. J Virol 2015; 89:9727-38. [PMID: 26178990 DOI: 10.1128/jvi.01419-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Development of a vaccine to prevent congenital cytomegalovirus infection is a major public health priority. Live vaccines attenuated through mutations targeting viral mechanisms responsible for evasion of host defense may be both safe and efficacious. Safety and vaccine efficacy were evaluated using a guinea pig cytomegalovirus (GPCMV) model. Recombinant GPCMV with a targeted deletion of gp145 (designated Δ145), a viral protein kinase R (PKR) inhibitor, was generated. Attenuation was evaluated following inoculation of 10(7) PFU of Δ145 or parental virus into guinea pigs immunosuppressed with cyclophosphamide. Efficacy was evaluated by immunizing GPCMV-naive guinea pigs twice with either 10(5) or 10(6) PFU of Δ145, establishing pregnancy, and challenging the guinea pigs with salivary gland-adapted GPCMV. The immune response, maternal viral load, pup mortality, and congenital infection rates in the vaccine and control groups were compared. Δ145 was substantially attenuated for replication in immunocompromised guinea pigs. Vaccination with Δ145 induced enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody levels comparable to those achieved in natural infection. In the higher- and lower-dose vaccine groups, pup mortality was reduced to 1/24 (4%) and 4/29 (14%) pups, respectively, whereas it was 26/31 (81%) in unvaccinated control pups (P < 0.0001 for both groups versus the control group). Congenital infection occurred in 20/31 (65%) control pups but only 8/24 (33%) pups in the group vaccinated with 10(6) PFU (P < 0.05). Significant reductions in the magnitude of maternal DNAemia and pup viral load were noted in the vaccine groups compared to those in the controls. Deletion of a GPCMV genome-encoded PKR inhibitor results in a highly attenuated virus that is immunogenic and protective as a vaccine against transplacental infection. IMPORTANCE Previous attempts to develop successful immunization against cytomegalovirus have largely centered on subunit vaccination against virion proteins but have yielded disappointing results. The advent of bacterial artificial chromosome technologies has enabled engineering of recombinant cytomegaloviruses (CMVs) from which virus genome-encoded immune modulation genes have been deleted, toward the goal of developing a safe and potentially more efficacious live attenuated vaccine. Here we report the findings of studies of such a vaccine against congenital CMV infection based on a virus with a targeted deletion in gp145, a virus genome-encoded inhibitor of protein kinase R, using the guinea pig model of vertical CMV transmission. The deletion virus was attenuated for dissemination in immunocompromised guinea pigs but elicited ELISA and neutralizing responses. The vaccine conferred protection against maternal DNAemia and congenital transmission and resulted in reduced viral loads in newborn guinea pigs. These results provide support for future studies of attenuated CMV vaccines.
Collapse
|
18
|
Stahl FR, Keyser KA, Heller K, Bischoff Y, Halle S, Wagner K, Messerle M, Förster R. Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 2015; 8:57-67. [PMID: 24894498 DOI: 10.1038/mi.2014.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
Infection with cytomegalovirus (CMV) shows a worldwide high prevalence with only immunocompromised individuals or newborns to become symptomatic. The host's constitution and the pathogen's virulence determine whether disease occurs after infection. Mouse CMV (MCMV) is an appreciated pathogen for in vivo investigation of host-pathogen interactions. It has recently been reported that a single base pair deletion can spontaneously occur in the open reading frame of MCMV-encoded chemokine 2 (MCK2), preventing the expression of the full-length gene product. To study the consequences of this mutation, we compared the Mck2-defective reporter virus MCMV-3D with the newly generated repaired Mck2(+) mutant MCMV-3DR. Compared with MCMV-3D, neonatal mice infected with MCMV-3DR showed severe viral disease after lung infection. Viral disease coincided with high viral activity in multiple organs and increased virus replication in previously described nodular inflammatory foci (NIF) in the lung. Notably, MCMV-3DR showed tropism for alveolar macrophages in vitro and in vivo, whereas MCMV-3D did not infect this cell type. Moreover, in vivo depletion of alveolar macrophages reduced MCMV-3DR replication in the lung. We proposed an Mck2-mediated mechanism by which MCMV exploits alveolar macrophages to increase replication upon first encounter with the host's lung mucosa.
Collapse
Affiliation(s)
- F R Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - K Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Y Bischoff
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - S Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - M Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - R Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Complete genome sequence of cell culture-attenuated Guinea pig cytomegalovirus cloned as an infectious bacterial artificial chromosome. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00928-14. [PMID: 25323707 PMCID: PMC4200145 DOI: 10.1128/genomea.00928-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The complete genome sequence of attenuated guinea pig cytomegalovirus cloned as bacterial artificial chromosome N13R10 was determined. Comparison to pathogenic salivary gland-derived virus revealed 13 differences, 1 of which disrupted overlapping open reading frames encoding GP129 and GP130. Attenuation of N13R10 may arise from an inability to express GP129 and/or GP130.
Collapse
|
20
|
Yamada S, Fukuchi S, Hashimoto K, Fukui Y, Tsuda M, Kataoka M, Katano H, Inoue N. Guinea pig cytomegalovirus GP129/131/133, homologues of human cytomegalovirus UL128/130/131A, are necessary for infection of monocytes and macrophages. J Gen Virol 2014; 95:1376-1382. [DOI: 10.1099/vir.0.064527-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GP129, GP131 and GP133 genes of guinea pig cytomegalovirus (GPCMV) are homologues of human cytomegalovirus UL128, UL130 and UL131A, respectively, which are essential for infection of endothelial and epithelial cells, and for viral transmission to leukocytes. Our previous study demonstrated that a GPCMV strain lacking the 1.6 kb locus that contains the GP129, GP131 and GP133 genes had a growth defect in animals. Here, we demonstrated that the WT strain, but not the 1.6 kb-deleted strain, formed capsids in macrophages prepared from the peritoneal fluid. To understand the mechanism, we prepared GPCMV strains defective in each of GP129, GP131 and GP133, and found that they were all essential for the infection of peritoneal, splenic and PBMC-derived macrophages/monocytes, and for expression of immediate-early antigens in the macrophages/monocytes, although they were dispensable for infection of fibroblasts. Monocyte/macrophage tropism could be one of the important determinants for viral dissemination in vivo.
Collapse
Affiliation(s)
- Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Saki Fukuchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaede Hashimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiko Fukui
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mihoko Tsuda
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
21
|
Auerbach MR, Yan D, Vij R, Hongo JA, Nakamura G, Vernes JM, Meng YG, Lein S, Chan P, Ross J, Carano R, Deng R, Lewin-Koh N, Xu M, Feierbach B. A neutralizing anti-gH/gL monoclonal antibody is protective in the guinea pig model of congenital CMV infection. PLoS Pathog 2014; 10:e1004060. [PMID: 24722349 PMCID: PMC3983071 DOI: 10.1371/journal.ppat.1004060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/25/2014] [Indexed: 11/29/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital virus infection. Congenital HCMV infection occurs in 0.2–1% of all births, and causes birth defects and developmental abnormalities, including sensorineural hearing loss and developmental delay. Several key studies have established the guinea pig as a tractable model for the study of congenital HCMV infection and have shown that polyclonal antibodies can be protective [1]–[3]. In this study, we demonstrate that an anti-guinea pig CMV (GPCMV) glycoprotein H/glycoprotein L neutralizing monoclonal antibody protects against fetal infection and loss in the guinea pig. Furthermore, we have delineated the kinetics of GPCMV congenital infection, from maternal infection (salivary glands, seroconversion, placenta) to fetal infection (fetus and amniotic fluid). Our studies support the hypothesis that a neutralizing monoclonal antibody targeting an envelope GPCMV glycoprotein can protect the fetus from infection and may shed light on the therapeutic intervention of HCMV congenital infection in humans. Human cytomegalovirus (HCMV) is the most common cause of congenital virus infection and causes developmental abnormalities, including hearing loss and developmental delay. Although there is no therapy for congenital HCMV disease, there is evidence from both human and animal studies that antibodies can have efficacy in this setting. Such studies have focused exclusively on polyclonal antibodies, in which the targets of protective antibodies are unknown. Guinea pigs have been used as a model of human maternal fetal transmission of infection because of similarities in placental anatomy between human and guinea pig. Furthermore, guinea pig CMV (GPCMV) has been demonstrated to cross the placenta and cause fetal infection and loss, similar to the effects of infection with HCMV. However, the kinetics of maternal and fetal infection in this model has not been carefully investigated. In this work, we have delineated the kinetics of maternal to fetal infection and found that congenital infection is rapid following maternal infection. Importantly, we demonstrate that a monoclonal antibody against a protein critical for viral entry protects pregnant guinea pigs against fetal infection. Thus, our studies may be informative for development of a therapeutic intervention to treat congenital HCMV infection in humans.
Collapse
Affiliation(s)
- Marcy R. Auerbach
- Department of Infectious Diseases, Genentech, South San Francisco, California, United States of America
| | - Donghong Yan
- Department of Translational Immunology, Genentech, South San Francisco, California, United States of America
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Jo-Anne Hongo
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Jean-Michel Vernes
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California, United States of America
| | - Y. Gloria Meng
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California, United States of America
| | - Samantha Lein
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California, United States of America
| | - Jed Ross
- Department of Biomedical Imaging, Genentech, South San Francisco, California, United States of America
| | - Richard Carano
- Department of Biomedical Imaging, Genentech, South San Francisco, California, United States of America
| | - Rong Deng
- Department of Clinical Pharmacology, Genentech, South San Francisco, California, United States of America
| | - Nicholas Lewin-Koh
- Department of Biostatistics, Genentech, South San Francisco, California, United States of America
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, California, United States of America
| | - Becket Feierbach
- Department of Infectious Diseases, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gnanandarajah JS, Gillis PA, Hernandez-Alvarado N, Higgins L, Markowski TW, Sung H, Lumley S, Schleiss MR. Identification by mass spectrometry and immune response analysis of guinea pig cytomegalovirus (GPCMV) pentameric complex proteins GP129, 131 and 133. Viruses 2014; 6:727-51. [PMID: 24531333 PMCID: PMC3939480 DOI: 10.3390/v6020727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 11/16/2022] Open
Abstract
Development of a vaccine against congenital infection with human cytomegalovirus (HCMV) is a major public health priority. A potential vaccine target receiving considerable recent attention is the pentameric complex (PC) of HCMV proteins consisting of gL, gH, UL128, UL130, and UL131, since some antibodies against these target proteins are capable of potently neutralizing virus at epithelial and endothelial cell surfaces. Recently, homologous proteins have been described for guinea pig cytomegalovirus (GPCMV), consisting of gH, gL, and the GPCMV proteins GP129, GP131, and GP133. To investigate these proteins as potential vaccine targets, expression of GP129-GP133 transcripts was confirmed by reverse-transcriptase PCR. Mass spectrometry combined with western blot assays demonstrated the presence of GP129, GP131, and GP133 proteins in virus particles. Recombinant proteins corresponding to these PC proteins were generated in baculovirus, and as GST fusion proteins. Recombinant proteins were noted to be immunoreactive with convalescent sera from infected animals, suggesting that these proteins are recognized in the humoral immune response to GPCMV infection. These analyses support the study of PC-based recombinant vaccines in the GPCMV congenital infection model.
Collapse
Affiliation(s)
- Josephine S Gnanandarajah
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Peter A Gillis
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Nelmary Hernandez-Alvarado
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Heungsup Sung
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Sheila Lumley
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Mark R Schleiss
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Molecular and biological characterization of a new isolate of guinea pig cytomegalovirus. Viruses 2014; 6:448-75. [PMID: 24473341 PMCID: PMC3939465 DOI: 10.3390/v6020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/28/2022] Open
Abstract
Development of a vaccine against congenital infection with human cytomegalovirus is complicated by the issue of re-infection, with subsequent vertical transmission, in women with pre-conception immunity to the virus. The study of experimental therapeutic prevention of re-infection would ideally be undertaken in a small animal model, such as the guinea pig cytomegalovirus (GPCMV) model, prior to human clinical trials. However, the ability to model re-infection in the GPCMV model has been limited by availability of only one strain of virus, the 22122 strain, isolated in 1957. In this report, we describe the isolation of a new GPCMV strain, the CIDMTR strain. This strain demonstrated morphological characteristics of a typical Herpesvirinae by electron microscopy. Illumina and PacBio sequencing demonstrated a genome of 232,778 nt. Novel open reading frames ORFs not found in reference strain 22122 included an additional MHC Class I homolog near the right genome terminus. The CIDMTR strain was capable of dissemination in immune compromised guinea pigs, and was found to be capable of congenital transmission in GPCMV-immune dams previously infected with salivary gland‑adapted strain 22122 virus. The availability of a new GPCMV strain should facilitate study of re-infection in this small animal model.
Collapse
|
24
|
Genome Sequence of a Novel, Newly Identified Isolate of Guinea Pig Cytomegalovirus, the CIDMTR Strain. GENOME ANNOUNCEMENTS 2013; 1:1/6/e01052-13. [PMID: 24371200 PMCID: PMC3873610 DOI: 10.1128/genomea.01052-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sequence of a newly discovered isolate of guinea pig cytomegalovirus (GPCMV), the CIDMTR strain, was determined. The 232,778-nucleotide genome was generally well conserved with that of the 22122 reference strain, although some regions of substantial sequence divergence allowed annotation of strain-specific open reading frames encoding putative immune modulation gene products.
Collapse
|
25
|
Schleiss MR, Buus R, Choi KY, McGregor A. An Attenuated CMV Vaccine with a Deletion in Tegument Protein GP83 (pp65 Homolog) Protects against Placental Infection and Improves Pregnancy Outcome in a Guinea Pig Challenge Model. Future Virol 2013; 8:1151-1160. [PMID: 24465269 DOI: 10.2217/fvl.13.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Preconception vaccine strategies relevant to prevention of HCMV-mediated injury to the newborn can be studied in the guinea pig cytomegalovirus (GPCMV) model. The objectives of this study were: 1) to assess in guinea pigs the protective efficacy against congenital infection and disease of a recombinant live, attenuated vaccine with a targeted deletion of the GPCMV homolog of the HCMV pUL83 tegument protein, GP83; and, 2) to compare the extent of placental infection in vaccine and control groups, using an in situ hybridization (ISH) assay. MATERIALS AND METHODS Outbred Hartley guinea pigs were vaccinated prior to pregnancy with a two-dose series of 5×104 pfu of vAM409, a GP83 deletion virus. Deletion of the GP83 gene resulted in an attenuated virus, and vAM409 vaccinated animals did not demonstrate evidence of DNAemia following vaccination, although ELISA antibody responses were comparable to those observed in natural infection. After mating, pregnant animals were challenged with salivary gland-adapted (SG) GPCMV (1×106 pfu) in the second trimester, and pregnancy outcomes were compared to controls. RESULTS Compared to placebo-immunized controls, vaccination resulted in significantly reduced maternal DNAemia following SG challenge, and there was significantly decreased pup mortality in litters born to vaccinated dams (3/29; 10%), compared to control (35/50; 70%; p<0.001). By in situ hybridization study, recovered placentas in the vAM409 vaccine group demonstrated reduced infection and fewer infectious foci compared to the control group. CONCLUSIONS In summary, preconception immunization with a GP83 deletion vaccine reduced maternal DNAemia and results in protection against congenital GPCMV-associated pup mortality compared to unvaccinated controls. Vaccination resulted in reduced placental infection, probably related to the reduction in maternal DNAemia. Although the pp65 homolog in GPCMV, GP83, is a known target of protective T cell immune responses, it is nevertheless dispensable for effective vaccination against maternal and fetal CMV disease in this model.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Ryan Buus
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - K Yeon Choi
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Alistair McGregor
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| |
Collapse
|
26
|
Schleiss MR. Developing a Vaccine against Congenital Cytomegalovirus (CMV) Infection: What Have We Learned from Animal Models? Where Should We Go Next? Future Virol 2013; 8:1161-1182. [PMID: 24523827 DOI: 10.2217/fvl.13.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Unfortunately, CMVs are highly adapted to their specific species, precluding the evaluation of HCMV vaccines in animal models prior to clinical trials. Several species-specific CMVs have been characterized and developed in models of pathogenesis and vaccine-mediated protection against disease. These include the murine CMV (MCMV), the porcine CMV (PCMV), the rhesus macaque CMV (RhCMV), the rat CMV (RCMV), and the guinea pig CMV (GPCMV). Because of the propensity of the GPCMV to cross the placenta, infecting the fetus in utero, it has emerged as a model of particular interest in studying vaccine-mediated protection of the fetus. In this paper, a review of these various models, with particular emphasis on the value of the model in the testing and evaluation of vaccines against congenital CMV, is provided. Recent exciting developments and advances in these various models are summarized, and recommendations offered for high-priority areas for future study.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School Center for Infectious Diseases and Microbiology Translational Research Department of Pediatrics Division of Pediatric Infectious Diseases and Immunology 2001 6 Street SE Minneapolis, MN 55455-3007
| |
Collapse
|
27
|
An attenuated cytomegalovirus vaccine with a deletion of a viral chemokine gene is protective against congenital CMV transmission in a guinea pig model. Clin Dev Immunol 2013; 2013:906948. [PMID: 24000289 PMCID: PMC3755440 DOI: 10.1155/2013/906948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 01/05/2023]
Abstract
Development of a vaccine against congenital cytomegalovirus (CMV) infection is a public health priority, but CMVs encode immune evasion genes that complicate live virus vaccine design. To resolve this problem, this study employed guanosyl phosphoribosyl transferase (gpt) mutagenesis to generate a recombinant guinea pig CMV (GPCMV) with a knockout of a viral chemokine gene, GPCMV MIP (gp1). MIP deletion virus replicated with wild-type kinetics in cell culture but was attenuated in nonpregnant guinea pigs, demonstrating reduced viremia and reduced inflammation and histopathology (compared to a control virus with an intact GPCMV MIP gene) following footpad inoculation. In spite of attenuation, the vaccine was immunogenic, eliciting antibody responses comparable to those observed in natural infection. To assess its protective potential as a vaccine, either recombinant virus or placebo was used to immunize seronegative female guinea pigs. Dams were challenged in the early 3rd trimester with salivary gland-adapted GPCMV. Immunization protected against DNAemia (1/15 in vaccine group versus 12/13 in the control group, P < 0.01). Mean birth weights were significantly higher in pups born to vaccinated dams compared to controls (98.7 g versus 71.2 g, P < 0.01). Vaccination reduced pup mortality, from 35/50 (70%) in controls to 8/52 (15%) in the immunization group. Congenital GPCMV infection was also reduced, from 35/50 (70%) in controls to 9/52 (17%) in the vaccine group (P < 0.0001). We conclude that deletion of an immune modulation gene can attenuate the pathogenicity of GPCMV while resulting in a viral vaccine that retains immunogenicity and demonstrates efficacy against congenital infection and disease.
Collapse
|
28
|
Hashimoto K, Yamada S, Katano H, Fukuchi S, Sato Y, Kato M, Yamaguchi T, Moriishi K, Inoue N. Effects of immunization of pregnant guinea pigs with guinea pig cytomegalovirus glycoprotein B on viral spread in the placenta. Vaccine 2013; 31:3199-205. [PMID: 23684839 DOI: 10.1016/j.vaccine.2013.04.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/24/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) is the most common cause of congenital virus infection. Infection of guinea pigs with guinea pig CMV (GPCMV) can provide a useful model for the analysis of its pathogenesis as well as for the evaluation of vaccines. Although glycoprotein B (gB) vaccines have been reported to reduce the incidence and mortality of congenital infection in human clinical trials and guinea pig animal models, the mechanisms of protection remain unclear. METHODS To understand the gB vaccine protection mechanisms, we analyzed the spread of challenged viruses in the placentas and fetuses of guinea pig dams immunized with recombinant adenoviruses expressing GPCMV gB and β-galactosidase, rAd-gB and rAd-LacZ, respectively. RESULTS Mean body weight of the fetuses in the dams immunized with rAd-LacZ followed by GPCMV challenge 3 weeks after immunization was 78% of that observed for dams immunized with rAd-gB. Under conditions in which congenital infection occurred in 75% of fetuses in rAd-LacZ-immunized dams, only 13% of fetuses in rAd-gB-immunized dams were congenitally infected. The placentas were infected less frequently in the gB-immunized animals. In the placentas of the rAd-LacZ- and rAd-gB-immunized animals, CMV early antigens were detected mainly in the spongiotrophoblast layer. Focal localization of viral antigens in the spongiotrophoblast layer suggests cell-to-cell viral spread in the placenta. In spite of a similar level of antibodies against gB and avidity indices among fetuses in each gB-immunized dam, congenital infection was sometimes observed in a littermate fetus. In such infected fetuses, CMV spread to most organs. CONCLUSIONS Our results suggest that antibodies against gB protected against infection mainly at the interface of the placenta rather than from the placenta to the fetus. The development of strategies to block cell-to-cell viral spread in the placenta is, therefore, required for effective protection against congenital CMV infection.
Collapse
Affiliation(s)
- Kaede Hashimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A chemokine-like viral protein enhances alpha interferon production by plasmacytoid dendritic cells but delays CD8+ T cell activation and impairs viral clearance. J Virol 2013; 87:7911-20. [PMID: 23658453 DOI: 10.1128/jvi.00187-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Murine cytomegalovirus encodes numerous proteins that act on a variety of pathways to modulate the innate and adaptive immune responses. Here, we demonstrate that a chemokine-like protein encoded by murine cytomegalovirus activates the early innate immune response and delays adaptive immunity, thereby impairing viral clearance. The protein, m131/129 (also known as MCK-2), is not required to establish infection in the spleen; however, a mutant virus lacking m131/129 was cleared more rapidly from this organ. In the absence of m131/129 expression, there was enhanced activation of dendritic cells (DC), and virus-specific CD8(+) T cells were recruited into the immune response earlier. Viral mutants lacking m131/129 elicited weaker production of alpha interferon (IFN-α) at 40 h postinfection, indicating that this protein exerts its effects during early rounds of viral replication in the spleen. Furthermore, while wild-type and mutant viruses activated plasmacytoid dendritic cells (pDC) equally at this time, as measured by the upregulation of costimulatory molecules, the presence of m131/129 stimulated more pDC to secrete IFN-α, accounting for the stronger IFN-α response than from the wild-type virus. These data provide evidence for a novel immunomodulatory function of a viral chemokine and expose the multifunctionality of immune evasion proteins. In addition, these results broaden our understanding of the interplay between innate and adaptive immunity.
Collapse
|
30
|
Characterization of the guinea pig CMV gH/gL/GP129/GP131/GP133 complex in infection and spread. Virology 2013; 441:75-84. [PMID: 23562482 DOI: 10.1016/j.virol.2013.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/15/2013] [Accepted: 03/13/2013] [Indexed: 11/20/2022]
Abstract
In human cytomegalovirus (HCMV), the UL128-131A locus plays an essential role in cellular tropism and spread. Here, we report the complete annotation of the GP129-133 locus from guinea pig cytomegalovirus (GPCMV) and the discovery of the UL131A homolog, named GP133. We have found that similar to HCMV the GP129-133 proteins form a pentamer complex with the GPCMV glycoproteins gH and gL. In addition, we find that the GP129-133 proteins play a critical role in entry as the GP129-133 deletion mutant shows a defect in both endothelial and fibroblast cell entry. Although the GP129-133 deletion strain can propagate in vitro, we find that the deletion fails to spread in vivo. Interestingly, the wildtype strain can spontaneously give rise to the GP129-133 deletion strain during in vivo spread, suggesting genetic instability at this locus.
Collapse
|
31
|
Complete genome sequence of pathogenic Guinea pig cytomegalovirus from salivary gland homogenates of infected animals. GENOME ANNOUNCEMENTS 2013; 1:e0005413. [PMID: 23516193 PMCID: PMC3622957 DOI: 10.1128/genomea.00054-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sequence of guinea pig cytomegalovirus (GPCMV) was determined by direct sequencing of salivary gland homogenates obtained following sustained, serial in vivo passage of pathogenic virus in guinea pigs. The 233,501-nucleotide salivary gland (SG) genome was noted to have 11 differences compared to the tissue culture-passaged virus, although no variations were noted in putative protein coding sequences.
Collapse
|
32
|
Bierle CJ, Schleiss MR, Geballe AP. Antagonism of the protein kinase R pathway by the guinea pig cytomegalovirus US22-family gene gp145. Virology 2012; 433:157-66. [PMID: 22917493 DOI: 10.1016/j.virol.2012.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023]
Abstract
Viral double-stranded RNA (dsRNA) activates protein kinase R (PKR), which phosphorylates eIF2α and inhibits translation. In response, viruses have evolved various strategies to evade the antiviral impact of PKR. We investigated whether guinea pig cytomegalovirus (GPCMV), a useful model of congenital CMV infection, encodes a gene that interferes with the PKR pathway. Using a proteomic screen, we identified several GPCMV dsRNA-binding proteins, among which only gp145 rescued replication of a vaccinia virus mutant that lacks E3L. gp145 also reversed the inhibitory effects of PKR on expression of a cotransfected reporter gene. Mapping studies demonstrated that the gp145 dsRNA-binding domain has homology to the PKR antagonists of other CMVs. However, dsRNA-binding by gp145 is not sufficient for it to block PKR. gp145 differs from the PKR antagonists of murine CMV in that it functions alone and from those encoded by human CMV in functioning in cells from both primates and rodents.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a lifelong asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life-threatening end-organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long-term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled preclinical animal models but species specificity of human CMV precludes the direct study of the virus in an animal model. AREAS COVERED This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. EXPERT OPINION Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients, there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important as an effective CMV vaccine remains an elusive goal. In this regard, greater emphasis should be placed on suitable preclinical animal models and greater collaboration between industry and academia.
Collapse
Affiliation(s)
- Alistair McGregor
- University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, MN 55455, USA.
| | | |
Collapse
|
34
|
Olejniczak MJ, Choi KY, McVoy MA, Cui X, Schleiss MR. Intravaginal cytomegalovirus (CMV) challenge elicits maternal viremia and results in congenital transmission in a guinea pig model. Virol J 2011; 8:89. [PMID: 21371319 PMCID: PMC3062623 DOI: 10.1186/1743-422x-8-89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The objective of this study was to compare intravaginal (ivg) and subcutaneous (sc) administration of the guinea pig cytomegalovirus (GPCMV) in pregnant and non-pregnant guinea pigs. These studies tested the hypotheses that ivg infection would elicit immune responses, produce maternal viremia, and lead to vertical transmission, with an efficiency similar to the traditionally employed sc route. RESULTS Four groups of age- and size-matched guinea pigs were studied. Two groups were pregnant, and two groups were not pregnant. Animals received 5 x 10(5) plaque-forming units (PFU) of a GPCMV reconstituted from an infectious bacterial artificial chromosome (BAC) construct containing the full-length GPCMV genome. Seroconversion was compared by IgG ELISA, and viremia (DNAemia) was monitored by PCR. In both pregnant and non-pregnant animals, sc inoculation resulted in significantly higher serum ELISA titers than ivg inoculation at 8 and 12 weeks post-infection. Patterns of viremia (DNAemia) were similar in animals inoculated by either sc or ivg route. However, in pregnant guinea pigs, animals inoculated by both routes experienced an earlier onset of DNAemia than did non-pregnant animals. Neither the percentage of dead pups nor the percentage of GPCMV positive placentas differed by inoculation route. CONCLUSIONS In the guinea pig model of congenital CMV infection, the ivg route is as efficient at causing congenital infection as the conventional but non-physiologic sc route. This finding could facilitate future experimental evaluation of vaccines and antiviral interventions in this highly relevant animal model.
Collapse
Affiliation(s)
- Megan J Olejniczak
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
35
|
Kanai K, Yamada S, Yamamoto Y, Fukui Y, Kurane I, Inoue N. Re-evaluation of the genome sequence of guinea pig cytomegalovirus. J Gen Virol 2011; 92:1005-1020. [PMID: 21270288 DOI: 10.1099/vir.0.027789-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital infection by human cytomegalovirus (HCMV) is a major cause of birth defects and developmental abnormalities. Since guinea pig cytomegalovirus (GPCMV) crosses the placenta and causes infection in utero, GPCMV models are useful for studies of the mechanisms of transplacental transmission. During our characterization of a genomic locus required for GPCMV dissemination in animals, we found that the nucleotide sequence in and around the nearby immediate-early genes in our lineage of GPCMV strain 22122 [designated GPCMV (ATCC-P5)] showed clear differences from that reported previously for the same strain [designated GPCMV (UMN)] passaged extensively in vitro. Since in vitro passaging of HCMV is known to result in genetic alterations, especially in the UL128-UL131A locus, and loss of growth ability in particular cell types, in this study we determined the complete genome sequence of GPCMV (ATCC-P5), which grows efficiently in animals. A total of 359 differences were identified between the genome sequences of GPCMV (UMN) and GPCMV (ATCC-P5), and these resulted in structural differences in 29 protein-encoding regions. In addition, some genes predicted from our analysis but not from GPCMV (UMN) are well conserved among cytomegaloviruses. An additional 18 passages of GPCMV (ATCC-P5) in vitro generated no further marked alterations in these genes or in the locus corresponding to the HCMV UL128-UL131A. Our analyses indicate that the published sequence of GPCMV (UMN) contains a substantial number of sequencing errors and, possibly, some mutations resulting from a long history of passaging in vitro. Our re-evaluation of the genetic content of GPCMV will provide a solid foundation for future studies.
Collapse
Affiliation(s)
- Kyosuke Kanai
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumiko Yamamoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiko Fukui
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ichiro Kurane
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Inoue
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
36
|
Schleiss MR, McVoy MA. Guinea Pig Cytomegalovirus (GPCMV): A Model for the Study of the Prevention and Treatment of Maternal-Fetal Transmission. Future Virol 2010; 5:207-217. [PMID: 23308078 DOI: 10.2217/fvl.10.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major public health challenge today is the problem of congenital cytomegalovirus (CMV) transmission. Maternal-fetal CMV infections are common, occurring in 0.5-2% of pregnancies, and these infections often lead to long-term injury of the newborn infant. In spite of the well-recognized burden that these infections place on society, there are as yet no clearly established interventions available to prevent transmission of CMV. In order to study potential interventions, such as vaccines or antiviral therapies, an animal model of congenital CMV transmission is required. The best small animal model of CMV transmission is the guinea pig cytomegalovirus (GPCMV) model. This article summarizes the GPCMV model, putting it into the larger context of how studies in this system have relevance to human health. An emphasis is placed on how the vertical transmission of GPCMV recapitulates the pathogenesis of congenital CMV in infants, making this a uniquely well-suited model for the study of potential CMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6 Street SE, Minneapolis, MN 55455,
| | | |
Collapse
|
37
|
Yamada S, Nozawa N, Katano H, Fukui Y, Tsuda M, Tsutsui Y, Kurane I, Inoue N. Characterization of the guinea pig cytomegalovirus genome locus that encodes homologs of human cytomegalovirus major immediate-early genes, UL128, and UL130. Virology 2009; 391:99-106. [PMID: 19559454 DOI: 10.1016/j.virol.2009.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
Abstract
We reported previously that the guinea pig cytomegalovirus (CMV) stock purchased from the American Type Culture Collection contained two types of strains, one containing and the other lacking a 1.6 kb locus, and that the 1.6 kb locus was required for efficient viral growth in animals but not in cell culture. In this study, we characterized the genetic contents of the locus, and found that i) the 1.6 kb locus encodes homologs of human CMV UL128 and UL130, GP129 and GP131, respectively, ii) these genes are expressed with late gene kinetics, iii) GP131 protein (pGP131) localized to cell surface only in the presence of glycoproteins H and L, and iv) pGP131 is a virion component. Therefore, it is plausible that pGP131 forms a complex with glycoproteins H and L and becomes a virion component as does UL130 protein (pUL130). Since pUL130 is one of the glycoproteins essential for infection of endothelial and epithelial cells in human and primates, functional and immunological analyses of this GPCMV homolog of pUL130 may help to illuminate the in vivo role of pUL130.
Collapse
Affiliation(s)
- Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cui X, McGregor A, Schleiss MR, McVoy MA. The impact of genome length on replication and genome stability of the herpesvirus guinea pig cytomegalovirus. Virology 2009; 386:132-8. [PMID: 19174305 DOI: 10.1016/j.virol.2008.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/25/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022]
Abstract
The impact of genome length on replication and genome stability was assessed for guinea pig cytomegalovirus (GPCMV), a member of the Herpesviridae. The 233-kb genome could be decreased by 15.1 kb without discernable impact on viral replication efficiency in vitro. Viruses with genomes under-length by up to 31 kb replicated with decreased efficiencies but this appeared to arise from the loss of augmenting viral genes rather than decreased genome length. Two deletions that were non-lethal on their own were lethal when combined, suggesting that the resulting 40.1 kb under-length genome fell below a minimum packageable size. Genomes over-length by 8.8 kb gave rise to spontaneous deletions just to the right of the major immediate early locus, the same region that undergoes deletions during fibroblast passage of human and rhesus cytomegaloviruses. These results suggest that genome integrity should be confirmed for herpesvirus mutants in which genome length is increased even modestly.
Collapse
Affiliation(s)
- Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University School of Medicine P.O. Box 980163, Richmond Virginia 23298-0163, USA
| | | | | | | |
Collapse
|
39
|
Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA. Analysis of the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV) genome. Virol J 2008; 5:139. [PMID: 19014498 PMCID: PMC2614972 DOI: 10.1186/1743-422x-5-139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
In this report we describe the genomic sequence of guinea pig cytomegalovirus (GPCMV) assembled from a tissue culture-derived bacterial artificial chromosome clone, plasmid clones of viral restriction fragments, and direct PCR sequencing of viral DNA. The GPCMV genome is 232,678 bp, excluding the terminal repeats, and has a GC content of 55%. A total of 105 open reading frames (ORFs) of > 100 amino acids with sequence and/or positional homology to other CMV ORFs were annotated. Positional and sequence homologs of human cytomegalovirus open reading frames UL23 through UL122 were identified. Homology with other cytomegaloviruses was most prominent in the central ~60% of the genome, with divergence of sequence and lack of conserved homologs at the respective genomic termini. Of interest, the GPCMV genome was found in many cases to bear stronger phylogenetic similarity to primate CMVs than to rodent CMVs. The sequence of GPCMV should facilitate vaccine and pathogenesis studies in this model of congenital CMV infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|