1
|
Hessell AJ, Powell R, Jiang X, Luo C, Weiss S, Dussupt V, Itri V, Fox A, Shapiro MB, Pandey S, Cheever T, Fuller DH, Park B, Krebs SJ, Totrov M, Haigwood NL, Kong XP, Zolla-Pazner S. Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Rep 2020; 28:877-895.e6. [PMID: 31340151 DOI: 10.1016/j.celrep.2019.06.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
The V1V2 region of the HIV-1 envelope is the target of several broadly neutralizing antibodies (bNAbs). Antibodies to V1V2 elicited in the RV144 clinical trial correlated with a reduced risk of HIV infection, but these antibodies were without broad neutralizing activity. Antibodies targeting V1V2 also correlated with a reduced viral load in immunized macaques challenged with simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV). To focus immune responses on V1V2, we engrafted the native, glycosylated V1V2 domain onto five different multimeric scaffold proteins and conducted comparative immunogenicity studies in macaques. Vaccinated macaques developed high titers of plasma and mucosal antibodies that targeted structurally distinct V1V2 epitopes. Plasma antibodies displayed limited neutralizing activity but were functionally active for ADCC and phagocytosis, which was detectable 1-2 years after immunizations ended. This study demonstrates that multivalent, glycosylated V1V2-scaffold protein immunogens focus the antibody response on V1V2 and are differentially effective at inducing polyfunctional antibodies with characteristics associated with protection.
Collapse
Affiliation(s)
- Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Rebecca Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Christina Luo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Svenja Weiss
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alisa Fox
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariya B Shapiro
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tracy Cheever
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Byung Park
- Primate Genetics Program, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239.
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. J Virol 2020; 94:JVI.01175-20. [PMID: 32554699 DOI: 10.1128/jvi.01175-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV vaccine field now recognizes the potential importance of generating polyfunctional antibodies (Abs). The only clinical HIV vaccine trial to date to show significant efficacy (RV144) found that reduced infection rates correlated with the level of nonneutralizing Abs specific for the V2 region of the envelope glycoprotein. We have conducted a comprehensive preclinical reverse vaccinology-based vaccine program that has included the design and production and testing of numerous scaffolded V2 region immunogens. The most immunogenic vaccine regimen in nonhuman primates among those studied as part of this program consisted of a cocktail of three immunogens presenting V2 from different viruses and clades in the context of different scaffolds. Presently we demonstrate that the V2-specific Ab response from this regimen was highly durable and functionally diverse for the duration of the study (25 weeks after the final immunization). The total IgG binding response at this late time point exhibited only an ∼5× reduction in potency. Three immunizations appeared essential for the elicitation of a strong Ab-dependent cellular cytotoxicity (ADCC) response for all animals, as opposed to the Ab-dependent cellular phagocytosis (ADCP) and virus capture responses, which were comparably potent after only 2 immunizations. All functionalities measured were highly durable through the study period. Therefore, testing this vaccine candidate for its protective capacity is warranted.IMPORTANCE The only HIV vaccine trial for which protective efficacy was detected correlated this efficacy with V2-specific Abs that were effectively nonneutralizing. This result has fueled a decade of HIV vaccine research focused on designing an HIV vaccine capable of eliciting V2-focused, polyfunctional Abs that effectively bind HIV and trigger various leukocytes to kill the virus and restrict viral spread. From the numerous vaccine candidates designed and tested as part of our V2-focused preclinical vaccine program, we have identified immunogens and a vaccine regimen that induces a highly durable and polyfunctional V2-focused Ab response in rhesus macaques, described herein.
Collapse
|
3
|
Zhang Z, Wei X, Lin Y, Huang F, Shao J, Qi J, Deng T, Li Z, Gao S, Li S, Yu H, Zhao Q, Li S, Gu Y, Xia N. HIV-1 Membrane-Proximal External Region Fused to Diphtheria Toxin Domain-A Elicits 4E10-Like Antibodies in Mice. Immunol Lett 2019; 213:30-38. [PMID: 31356841 DOI: 10.1016/j.imlet.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
The production of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an HIV-1 vaccine. The membrane-proximal external region (MPER) of gp41, which plays a critical role in the virus membrane fusion process, is highly conserved and targeted by bNAbs 2F5, 4E10, and 10E8. As such, MPER could be a promising epitope for vaccine design. In this study, diphtheria toxin domain A (CRM197, amino acids 1-191) was used as a scaffold to display the 2F5 and 4E10 epitopes of MPER, named CRM197-A-2F5 and CRM197-A-4E10. Modest neutralizing activities were detected against HIV-1 clade B and D viruses in the sera from mice immunized with CRM197-A-4E10. Monoclonal antibodies raised from CRM197-A-4E10 could neutralize several HIV-1 strains, and epitope-mapping analysis indicated that some antibodies recognized the same amino acids as 4E10. Collectively, we show that 4E10-like antibodies can be induced by displaying MPER epitopes using an appropriate scaffold. These results provide insights for HIV-1 MPER-based immunogens design.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiang Wei
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yanling Lin
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jialong Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingting Deng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zizhen Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaoyong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Francica JR, Laga R, Lynn GM, Mužíková G, Androvič L, Aussedat B, Walkowicz WE, Padhan K, Ramirez-Valdez RA, Parks R, Schmidt SD, Flynn BJ, Tsybovsky Y, Stewart-Jones GBE, Saunders KO, Baharom F, Petrovas C, Haynes BF, Seder RA. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biol 2019; 17:e3000328. [PMID: 31206510 PMCID: PMC6597128 DOI: 10.1371/journal.pbio.3000328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic “star” nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes. Synthetic polymer-based nanoparticles effectively deliver HIV Env glycopeptide immunogens to lymph nodes and stimulate B cell lineages with characteristics resembling broadly neutralizing antibodies, in nonhuman primates.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Geoffrey M Lynn
- Avidea Technologies, Inc., Baltimore, Maryland, United States of America
| | - Gabriela Mužíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kartika Padhan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramiro Andrei Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Zhang Z, He M, Bai S, Zhang F, Jiang J, Zheng Q, Gao S, Yan X, Li S, Gu Y, Xia N. T = 4 Icosahedral HIV-1 Capsid As an Immunogenic Vector for HIV-1 V3 Loop Epitope Display. Viruses 2018; 10:v10120667. [PMID: 30486318 PMCID: PMC6316451 DOI: 10.3390/v10120667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 mature capsid (CA) assumes an amorphous, fullerene conical configuration due to its high flexibility. How native CA self-assembles is still unclear despite having well-defined structures of its pentamer and hexamer building blocks. Here we explored the self-assembly of an engineered capsid protein built through artificial disulfide bonding (CA N21C/A22C) and determined the structure of one fraction of the globular particles. CA N21C/A22C was found to self-assemble into particles in relatively high ionic solutions. These particles contained disulfide-bonding hexamers as determined via non-reducing SDS-PAGE, and exhibited two major components of 57.3 S and 80.5 S in the sedimentation velocity assay. Particles had a globular morphology, approximately 40 nm in diameter, in negative-staining TEM. Through cryo-EM 3-D reconstruction, we determined a novel T = 4 icosahedral structure of CA, comprising 12 pentamers and 30 hexamers at 25 Å resolution. We engineered the HIV-1 V3 loop to the CA particles, and found the resultant particles resembled the morphology of their parental particles in TEM, had a positive reaction with V3-specific neutralizing antibodies, and conferred neutralization immunogenicity in mice. Our results shed light on HIV CA assembly and provide a particulate CA for epitope display.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shimeng Bai
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Feng Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jie Jiang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA 92093-0378, USA.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
van Schooten J, van Gils MJ. HIV-1 immunogens and strategies to drive antibody responses towards neutralization breadth. Retrovirology 2018; 15:74. [PMID: 30477581 PMCID: PMC6260891 DOI: 10.1186/s12977-018-0457-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Despite enormous efforts no HIV-1 vaccine has been developed that elicits broadly neutralizing antibodies (bNAbs) to protect against infection to date. The high antigenic diversity and dense N-linked glycan armor, which covers nearly the entire HIV-1 envelope protein (Env), are major roadblocks for the development of bNAbs by vaccination. In addition, the naive human antibody repertoire features a low frequency of exceptionally long heavy chain complementary determining regions (CDRH3s), which is a typical characteristic that many HIV-1 bNAbs use to penetrate the glycan armor. Native-like Env trimer immunogens can induce potent but strain-specific neutralizing antibody responses in animal models but how to overcome the many obstacles towards the development of bNAbs remains a challenge. Here, we review recent HIV-1 Env immunization studies and discuss strategies to guide strain-specific antibody responses towards neutralization breadth.
Collapse
Affiliation(s)
- Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Room K3-105, 1105AZ, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Room K3-105, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Bowder D, Hollingsead H, Durst K, Hu D, Wei W, Wiggins J, Medjahed H, Finzi A, Sodroski J, Xiang SH. Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 2018; 521:158-168. [PMID: 29936340 PMCID: PMC6053598 DOI: 10.1016/j.virol.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
The V3 loop of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein (Env) becomes exposed after CD4 binding and contacts the coreceptor to mediate viral entry. Prior to CD4 engagement, a hydrophobic patch located at the tip of the V3 loop stabilizes the non-covalent association of gp120 with the Env trimer of HIV-1 subtype B strains. Here, we show that this conserved hydrophobic patch (amino acid residues 307, 309 and 317) contributes to gp120-trimer association in HIV-1 subtype C, HIV-2 and SIV. Changes that reduced the hydrophobicity of these V3 residues resulted in increased gp120 shedding and decreased Env-mediated cell-cell fusion and virus entry in the different primate immunodeficiency viruses tested. Thus, the hydrophobic patch is an evolutionarily conserved element in the tip of the gp120 V3 loop that plays an essential role in maintaining the stability of the pre-triggered Env trimer in diverse primate immunodeficiency viruses. The V3-loop of HIV-1 gp120 contributes to Env trimer stability and viral entry. The hydrophobic patch in the tip of the V3 loop is critical for pre-triggered Env trimer stability. The hydrophobic patch is a conserved motif in primate immunodeficiency viruses.
Collapse
Affiliation(s)
- Dane Bowder
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Haley Hollingsead
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Kate Durst
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Duoyi Hu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Wenzhong Wei
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Halima Medjahed
- Centre de Recherche du CHUM, Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, United States; Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02215, United States; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
8
|
Identification of Novel Structural Determinants in MW965 Env That Regulate the Neutralization Phenotype and Conformational Masking Potential of Primary HIV-1 Isolates. J Virol 2018; 92:JVI.01779-17. [PMID: 29237828 DOI: 10.1128/jvi.01779-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The subtype C HIV-1 isolate MW965.26 is a highly neutralization-sensitive tier 1a primary isolate that is widely used in vaccine studies, but the basis for the sensitive neutralization phenotype of this isolate is not known. Substituting the MW965.26 V1/V2 domain into a neutralization-sensitive SF162 Env clone resulted in high resistance to standard anti-V3 monoclonal antibodies, demonstrating that this region possesses strong masking activity in a standard Env backbone and indicating that determinants elsewhere in MW965.26 Env are responsible for its unusual neutralization sensitivity. Key determinants for this phenotype were mapped by generating chimeric Envs between MW965.26 Env and a typical resistant Env clone, the consensus C (ConC) clone, and localized to two residues, Cys384 in the C3 domain and Asn502 in the C5 domain. Substituting the sensitizing mutations Y384C and K502N at these positions into several resistant primary Envs resulted in conversion to neutralization-sensitive phenotypes, demonstrating the generalizability of this effect. In contrast to the sensitizing effects of these substitutions on normally masked epitopes, these mutations reduced the sensitivity of VRC01-like epitopes overlapping the CD4-binding domain, while they had no effect on several other classes of broadly neutralizing epitopes, including members of several lineages of V2-dependent quaternary epitopes and representatives of N332 glycan-dependent epitopes (PGT121) and quaternary, cleavage-dependent epitopes centered at the gp41-gp120 interface on intact HIV-1 Env trimers (PGT151). These results identify novel substitutions in gp120 that regulate the expression of alternative conformations of Env and differentially affect the exposure of different classes of epitopes, thereby influencing the neutralization phenotype of primary HIV-1 isolates.IMPORTANCE A better understanding of the mechanisms that determine the wide range of neutralization sensitivity of circulating primary HIV-1 isolates would provide important information about the natural structural and conformational diversity of HIV-1 Env and how this affects the neutralization phenotype. A useful way of studying this is to determine the molecular basis for the unusually high neutralization sensitivities of the limited number of available tier 1a viruses. This study localized the neutralization sensitivity of MW965.26, an extremely sensitive subtype C-derived primary isolate, to two rare substitutions in the C3 and C5 domains and demonstrated that the sequences at these positions differentially affect the presentation of epitopes recognized by different classes of standard and conformation-dependent broadly neutralizing antibodies. These results provide novel insight into how these regions regulate the neutralization phenotype and provide tools for controlling the Env conformation that could have applications both for structural studies and in vaccine design.
Collapse
|
9
|
Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Sci Rep 2018; 8:542. [PMID: 29323175 PMCID: PMC5765017 DOI: 10.1038/s41598-017-18863-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Immunization with HIV AIDSVAX gp120 vaccines in the phase III VAX003 and VAX004 trials did not confer protection. To understand the shortcomings in antibody (Ab) responses induced by these vaccines, we evaluated the kinetics of Ab responses to the V1V2 and V3 regions of gp120 and the induction of Ab-mediated antiviral functions during the course of 7 vaccinations over a 30.5-month period. Plasma samples from VAX003 and VAX004 vaccinees and placebo recipients were measured for ELISA-binding Abs and for virus neutralization, Ab-dependent cellular phagocytosis (ADCP), and Ab-dependent cellular cytotoxicity (ADCC). Ab responses to V1V2 and V3 peaked after 3 to 4 immunizations and declined after 5 to 7 immunizations. The deteriorating responses were most evident against epitopes in the underside of the V1V2 β-barrel and in the V3 crown. Correspondingly, vaccinees demonstrated higher neutralization against SF162 pseudovirus sensitive to anti-V1V2 and anti-V3 Abs after 3 or 4 immunizations than after 7 immunizations. Higher levels of ADCP and ADCC were also observed at early or mid-time points as compared with the final time point. Hence, VAX003 and VAX004 vaccinees generated V1V2- and V3-binding Abs and functional Abs after 3 to 4 immunizations, but subsequent boosts did not maintain these responses.
Collapse
|
10
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
11
|
Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. J Virol 2016; 90:11007-11019. [PMID: 27707920 DOI: 10.1128/jvi.01409-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the β-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env.
Collapse
|
12
|
Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. J Virol 2016; 90:10993-11006. [PMID: 27630234 DOI: 10.1128/jvi.01403-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/04/2016] [Indexed: 01/27/2023] Open
Abstract
Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable ≥1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. IMPORTANCE Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an activity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity that has been associated with protection from infection with HIV, SIV, and SHIV.
Collapse
|
13
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
14
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
15
|
The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. J Virol 2015; 89:8003-10. [PMID: 26018158 PMCID: PMC4505664 DOI: 10.1128/jvi.00754-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/16/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The region consisting of the first and second variable regions (V1V2) of gp120 plays vital roles in the functioning of the HIV-1 envelope (Env). V1V2, which harbors multiple glycans and is highly sequence diverse, is located at the Env apex and stabilizes the trimeric gp120 spike on the virion surface. It shields V3 and the coreceptor binding sites in the prefusion state and exposes them upon CD4 binding. Data from the RV144 human HIV-1 vaccine trial suggested that antibody responses targeting the V1V2 region inversely correlated with the risk of infection; thus, understanding the antigenic structure of V1V2 can contribute to vaccine design. We have determined a crystal structure of a V1V2 scaffold molecule (V1V2ZM109-1FD6) in complex with 830A, a human monoclonal antibody that recognizes a V1V2 epitope overlapping the integrin-binding motif in V2. The structure revealed that V1V2 assumes a five-stranded beta barrel structure with the region of the integrin-binding site (amino acids [aa] 179 to 181) included in a "kink" followed by an extra beta strand. The complete barrel structure naturally presents the glycans on its outer surface and packs into its core conserved hydrophobic residues, including the Ile at position 181 which was highly correlated with vaccine efficacy in RV144. The epitope of monoclonal antibody 830A is discontinuous and composed of three segments: (i) Thr175, Tyr177, Leu179, and Asp180 at the kink overlapping the integrin-binding site; (ii) Arg153 and Val154 in V1; and (iii) Ile194 at the C terminus of V2. This report thus provides the atomic details of the immunogenic "V2i epitope." IMPORTANCE Data from the RV144 phase III clinical trial suggested that the presence of antibodies to the first and second variable regions (V1V2) of gp120 was associated with the modest protection afforded by the vaccine. V1V2 is a highly variable and immunogenic region of HIV-1 surface glycoprotein gp120, and structural information about this region and its antigenic landscape will be crucial in the design of an effective HIV-1 vaccine. We have determined a crystal structure of V1V2 in complex with human MAb 830A and have shown that MAb 830A recognizes a region overlapping the α4β7 integrin-binding site. We also showed that V1V2 forms a 5-stranded beta barrel, an elegant structure allowing sequence variations in the strand-connecting loops while preserving a conserved core.
Collapse
|
16
|
Li L, Wang XH, Williams C, Volsky B, Steczko O, Seaman MS, Luthra K, Nyambi P, Nadas A, Giudicelli V, Lefranc MP, Zolla-Pazner S, Gorny MK. A broad range of mutations in HIV-1 neutralizing human monoclonal antibodies specific for V2, V3, and the CD4 binding site. Mol Immunol 2015; 66:364-74. [PMID: 25965315 DOI: 10.1016/j.molimm.2015.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022]
Abstract
The HIV vaccine-induced neutralizing antibodies (Abs) display low rates of mutation in their variable regions. To determine the range of neutralization mediated by similar human monoclonal Abs (mAbs) but derived from unselected chronically HIV-1 infected subjects, we tested a panel of 66 mAbs specific to V3, CD4 binding site (CD4bs) and V2 regions. The mAbs were tested against 41 pseudoviruses, including 15 tier 1 and 26 tier 2, 3 viruses, showing that the neutralization potency and breadth of anti-V3 mAbs were significantly higher than those of the anti-CD4bs and anti-V2 mAbs, and only anti-V3 mAbs were able to neutralize some tier 2, 3 viruses. The percentage of mutations in the variable regions of the heavy (VH) and light (VL) chains varied broadly in a range from 2% to 18% and correlated moderately with the neutralization breadth of tier 2, 3 viruses. There was no correlation with neutralization of tier 1 viruses as some mAbs with low and high percentages of mutations neutralized the same number of viruses. The electrostatic interactions between anti-V3 mAbs and the charged V3 region may contribute to their neutralization because the isoelectric points of the VH CDR3 of 48 anti-V3 mAbs were inversely correlated with the neutralization breadth of tier 2, 3 viruses. The results demonstrate that infection-induced antibodies to CD4bs, V3 and V2 regions can mediate cross-clade neutralization despite low levels of mutations which can be achieved by HIV-1 vaccine-induced antibodies.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Xiao-Hong Wang
- Veterans Affairs Medical Center, New York, NY 10010, USA
| | - Constance Williams
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Barbara Volsky
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Olivia Steczko
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kalpana Luthra
- All India Institute of Medical Sciences, New Delhi, India
| | - Phillipe Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Arthur Nadas
- Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Véronique Giudicelli
- IMGT(®), The International ImMunoGeneTics Information System(®), CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- IMGT(®), The International ImMunoGeneTics Information System(®), CNRS, Montpellier University, Montpellier, France
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Veterans Affairs Medical Center, New York, NY 10010, USA
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
Gianvincenzo PD, Calvo J, Perez S, Álvarez A, Bedoya LM, Alcamí J, Penadés S. Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: toward fully synthetic HIV vaccine candidates. Bioconjug Chem 2015; 26:755-65. [PMID: 25734507 DOI: 10.1021/acs.bioconjchem.5b00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The third variable region (V3 peptide) of the HIV-1 gp120 is a major immunogenic domain of HIV-1. Controlling the formation of the immunologically active conformation is a crucial step to the rational design of fully synthetic candidate vaccines. Herein, we present the modulation and stabilization of either the α-helix or β-strand conformation of the V3 peptide by conjugation to negatively charged gold glyconanoparticles (GNPs). The formation of the secondary structure can be triggered by the variation of the buffer concentration and/or pH as indicated by circular dichoism. The peptide on the GNPs shows increased stability toward peptidase degradation as compared to the free peptide. Moreover, only the V3β-GNPs bind to the anti-V3 human broadly neutralizing mAb 447-52D as demonstrated by surface plasmon resonance (SPR). The strong binding of V3β-GNPs to the 447-52D mAb was the starting point to address its study as immunogen. V3β-GNPs elicit antibodies in rabbits that recognize a recombinant gp120 and the serum displayed low but consistent neutralizing activity. These results open up the way for the design of new fully synthetic HIV vaccine candidates.
Collapse
Affiliation(s)
| | | | - Serge Perez
- ∥Département de Pharmacochimie, UMR 5063 CNRS-Université Grenoble Alpes, BP53, 38041, Grenoble cédex 09, France
| | - Amparo Álvarez
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Luis Miguel Bedoya
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain.,#Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid. Pz. Ramón Y Cajal, 28040, Madrid, Spain
| | - José Alcamí
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain
| | | |
Collapse
|
18
|
Klein F, Nogueira L, Nishimura Y, Phad G, West AP, Halper-Stromberg A, Horwitz JA, Gazumyan A, Liu C, Eisenreich TR, Lehmann C, Fätkenheuer G, Williams C, Shingai M, Martin MA, Bjorkman PJ, Seaman MS, Zolla-Pazner S, Karlsson Hedestam GB, Nussenzweig MC. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. ACTA ACUST UNITED AC 2014; 211:2361-72. [PMID: 25385756 PMCID: PMC4235636 DOI: 10.1084/jem.20141050] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian-human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Lilian Nogueira
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anthony P West
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Ariel Halper-Stromberg
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Cassie Liu
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Thomas R Eisenreich
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Clara Lehmann
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | | | - Masashi Shingai
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pamela J Bjorkman
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Susan Zolla-Pazner
- Department of Pathology, NYU School of Medicine, New York, NY 10016 Research Service, Veterans Affairs Medical Center, New York, NY 10010
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
19
|
Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine 2014; 32:4916-24. [PMID: 25045827 DOI: 10.1016/j.vaccine.2014.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Timothy Cardozo
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States.
| | - Shixia Wang
- University of Massachusetts Medical School, Department of Medicine, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, United States
| | - Xunqing Jiang
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Xiang-Peng Kong
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Catarina Hioe
- New York University School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States; Veterans Affairs Medical Center, 423 East 23rd Street, New York, NY 10010, United States
| | - Chavdar Krachmarov
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| |
Collapse
|
20
|
Abstract
A vaccine against HIV-1 must prevent infection against genetically diverse virus strains. Two approaches are currently being pursued to elicit antibody-mediated protection: vaccines that induce potent and broadly reactive neutralizing antibodies (bnAbs) or vaccines that induce "conventional antibodies," which are less potent and broadly neutralizing in comparison. Although bnAbs may provide the greatest level of protection, their structural and genetic characteristics make their elicitation through vaccination a major challenge. In contrast, conventional HIV-1 antibodies have been induced by vaccination and correlated with reduced HIV-1 infection in a phase III vaccine trial. Here, I present evidence that both approaches should be pursued with equal vigor.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Harbor Healthcare System, New York, NY 10010, USA. New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwon PD. Transplanting supersites of HIV-1 vulnerability. PLoS One 2014; 9:e99881. [PMID: 24992528 PMCID: PMC4084637 DOI: 10.1371/journal.pone.0099881] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/19/2014] [Indexed: 11/24/2022] Open
Abstract
One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env) of the human immunodeficiency virus type 1 (HIV-1) involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of “supersite transplants”, capable of binding (and potentially eliciting) antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER) on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2) on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3) on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼25 Env residues, can be segregated into acceptor scaffolds away from the immune-evading capabilities of the rest of HIV-1 Env, thereby providing a means to focus the immune response on the scaffolded supersite.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jiang Zhu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sanjay Srivatsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher R. Lees
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Lu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Design, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wayne C. Koff
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Mark Connors
- HIV-Specific Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
23
|
Kumar R, Tuen M, Liu J, Nàdas A, Pan R, Kong X, Hioe CE. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 2013; 31:5413-21. [PMID: 24051158 DOI: 10.1016/j.vaccine.2013.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 01/25/2023]
Abstract
HIV-1 envelope gp120 is the target for neutralizing antibodies (NAbs) against the virus. Various approaches have been explored to improve immunogenicity of broadly neutralizing epitopes on this antigen with limited success. We previously demonstrated that immunogenicity of gp120 and especially its V3 epitopes was enhanced when gp120 was co-administered as immune-complex vaccines with monoclonal antibodies (mAb) to the CD4-binding site (CD4bs). To define the mechanisms by which immune complexes influence V3 immunogenicity, we compared gp120 complexed with mAbs specific for the C2 region (1006-30), the V2 loop (2158), or the CD4bs (654), and found that the gp120/654 and gp120/2158 complexes elicited anti-V3 NAbs, but the gp120/654 complex was the most effective. gp120 complexed with 654 F(ab')2 was as potent, indicating that V3 immunogenicity is determined by the specificity of the mAb's Fab fragment used to form the complexes. Importantly, the gp120/654 complex not only induced anti-gp120 antibodies (Abs) to higher titers, but also of greater avidity. The Abs were cross-reactive with V3 peptides from most subtype B and some subtype C isolates. Neutralization was detected only against Tier-1 HIV-1 pseudoviruses, while Tier-2 viruses, including the homologous JRFL strain, were not neutralized. However, JRFL produced in the presence of a mannosidase inhibitor was sensitive to anti-V3 NAbs in the immune sera. These results demonstrate that the gp120/654 complex is a potent immunogen for eliciting cross-reactive functional NAbs against V3 epitopes, of which exposure is determined by the specific compositions of glycans shrouding the HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Rajnish Kumar
- VA New York Harbor Healthcare System, Manhattan Campus and New York University School of Medicine, Department of Pathology, New York, NY 10010, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Andrianov AM, Kornoushenko YV, Anishchenko IV, Eremin VF, Tuzikov AV. Structural analysis of the envelope gp120 V3 loop for some HIV-1 variants circulating in the countries of Eastern Europe. J Biomol Struct Dyn 2013; 31:665-83. [DOI: 10.1080/07391102.2012.706455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Powell RL, Lindsay RW, Wilson A, Carpov A, Rabinovich S, Hoffenberg S, Caulfield MJ. Rapid, quantitative mapping of anti-HIV type 1 envelope serum antibody specificities. AIDS Res Hum Retroviruses 2013; 29:971-8. [PMID: 23394346 DOI: 10.1089/aid.2012.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new generation of extremely broad and potent neutralizing antibodies (bNAbs) has been isolated from HIV-infected subjects. This has refocused interest in the sites of vulnerability targeted by these bNAbs and in the potential for designing Envelope (Env) immunogens that display these sites. Standard methods for evaluating HIV-1 vaccine candidates do not enable epitope mapping on the HIV Env spike, the target for NAbs. To meet the need for rapid analysis of Ab specificity, we designed a multiplexed, quantitative mapping assay that can test for serum Ab competition for the binding of an HIV-1 Env gp120 to a panel of bNAbs directed to different sites of vulnerability on the Env that do not compete for one another in the assay. Using serum samples from rabbits immunized with various DNA prime/gp120 protein boost vaccines we were able to detect serum Ab competition for multiple classes of bNAbs in the postimmune samples that were significantly higher than background competition detected in samples obtained prior to vaccination. Importantly, application of this novel assay to our ongoing HIV-1 Env viral vector studies in mice has allowed us to distinguish qualitative differences in the Ab elicited by various regimens that ELISA cannot. Furthermore, pooled immunoglobulin from HIV-infected donors (HIVIg) competes for binding to the bNAb panel whereas a control pool from HIV-negative donors does not, highlighting the utility of this assay for human studies. This novel assay will add value in rational immunogen design and in the detailed, qualitative evaluation of binding and, potentially, neutralizing Abs elicited by natural infections and HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Rebecca L.R. Powell
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Ross W.B. Lindsay
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Aaron Wilson
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Alexei Carpov
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Svetlana Rabinovich
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Simon Hoffenberg
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Michael J. Caulfield
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| |
Collapse
|
26
|
Martin K, Nashar TO. E. coli Heat-labile Enterotoxin B Subunit as a Platform for the Delivery of HIV Gag p24 Antigen. ACTA ACUST UNITED AC 2013; 4. [PMID: 27375923 PMCID: PMC4929988 DOI: 10.4172/2155-9899.1000140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple vaccination strategies have been devised against HIV-1 including delivery of HIV moieties in attenuated or replication defective recombinant microbial agents alone or in combination with priming agents in form of soluble proteins or naked DNA. For the priming agents to be effective, adjuvants might be essential in directing the immune response to a desired outcome. E. coli enterotoxin B subunit (LTB) is an effective adjuvant and carrier for other proteins and epitopes. Here we show that conjugation of HIV gag p24 to LTB enhances the T cell response to gag p24 by increasing rate of T cell division compared to other treatments. Because HIV vaccines are likely to be multivalent, we further investigated whether gag p24 inhibits antigen presentation of an unrelated antigen, OVA. Addition of gag p24 to OVA-responsive DO.11.10 cell culture did not have adverse effects on antigen presentation. Interestingly, the presence of LTB in these cultures significantly increased proliferation of DO.11.10 cells. In all, the results suggest the use of LTB to boost immune responses against HIV gag p24 in systemic priming regimens with oral recombinant HIV vaccines.
Collapse
Affiliation(s)
- Karmarcha Martin
- College of Veterinary Medicine, Nursing and Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Toufic O Nashar
- College of Veterinary Medicine, Nursing and Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
27
|
Andrabi R, Williams C, Wang XH, Li L, Choudhary AK, Wig N, Biswas A, Luthra K, Nadas A, Seaman MS, Nyambi P, Zolla-Pazner S, Gorny MK. Cross-neutralizing activity of human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals. Virology 2013; 439:81-8. [PMID: 23466102 DOI: 10.1016/j.virol.2012.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 01/04/2023]
Abstract
One approach to the development of an HIV vaccine is to design a protein template which can present gp120 epitopes inducing cross-neutralizing antibodies. To select a V3 sequence for immunogen design, we compared the neutralizing activities of 18 anti-V3 monoclonal antibodies (mAbs) derived from Cameroonian and Indian individuals infected with clade AG and C, respectively. It was found that V3 mAbs from the Cameroonian patients were significantly more cross-neutralizing than those from India. Interestingly, superior neutralizing activity of Cameroonian mAbs was also observed among the nine VH5-51/VL lambda genes encoding V3 mAbs which mediate a similar mode of recognition. This correlated with higher relative binding affinity to a variety of gp120s and increased mutation rates in V3 mAbs from Cameroon. These results suggest that clade C V3 is probably weakly immunogenic and that the V3 sequence of CRF02_AG viruses can serve as a plausible template for vaccine immunogen design.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Viana IFT, Soares TA, Lima LFO, Marques ETA, Krieger MA, Dhalia R, Lins RD. De novo design of immunoreactive conformation-specific HIV-1 epitopes based on Top7 scaffold. RSC Adv 2013. [DOI: 10.1039/c3ra41562g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Andrabi R, Kumar R, Bala M, Nair A, Biswas A, Wig N, Kumar P, Pal R, Sinha S, Luthra K. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors. Virol J 2012; 9:196. [PMID: 22971578 PMCID: PMC3493341 DOI: 10.1186/1743-422x-9-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/29/2012] [Indexed: 01/10/2023] Open
Abstract
Background Analysis of human monoclonal antibodies (mAbs) developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3) is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5) binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females) within the age range of 20–57 years (median = 33 years) were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB) fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL), suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope specificities of these mAbs and further experimental manipulations will be helpful in identification of epitopes, unique to clade C or shared with non-clade C viruses, in context of V3 region.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
HIV p24 as scaffold for presenting conformational HIV Env antigens. PLoS One 2012; 7:e43318. [PMID: 22912852 PMCID: PMC3422313 DOI: 10.1371/journal.pone.0043318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022] Open
Abstract
Heterologous protein scaffolds engrafted with structurally defined HIV Env epitopes recognized by broadly neutralizing monoclonal antibodies (MAbs) represent a promising strategy to elicit broad neutralizing antibodies. In such regards, a protein scaffold based on the HIV p24 CA protein is a highly attractive approach, providing also Gag epitopes for eliciting HIV non-neutralizing protective antibodies and specific CD4+ and CD8+ T cell responses. In the present study, computational techniques were employed to verify the presence of acceptor sites for conformational HIV Env epitopes and, as proof of concept, the analysis of HIV p24 CA-based scaffolds using a complete V3 loop in a MAb-bound conformation is presented. The V3-p24 epitope-scaffold proteins show the formation of capsomers made of hexamers similarly to the p24 wild type protein. Moreover, the conformational V3 loop presented on p24 scaffold is recognized by a panel of anti-V3 MAbs. The results suggest that HIV p24 CA protein has suitable acceptor sites for engrafting foreign epitopes, without disrupting the formation of capsomer hexamer structures, and that the V3 epitope does retain its antibody-bound conformation. This strongly support the feasibility of developing a scaffolding strategy based on p24 CA proteins displaying conformational minimal structural, antigenic HIV Env epitopes.
Collapse
|
31
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
32
|
Jaworski JP, Krebs SJ, Trovato M, Kovarik DN, Brower Z, Sutton WF, Waagmeester G, Sartorius R, D'Apice L, Caivano A, Doria-Rose NA, Malherbe D, Montefiori DC, Barnett S, De Berardinis P, Haigwood NL. Co-immunization with multimeric scaffolds and DNA rapidly induces potent autologous HIV-1 neutralizing antibodies and CD8+ T cells. PLoS One 2012; 7:e31464. [PMID: 22359593 PMCID: PMC3281069 DOI: 10.1371/journal.pone.0031464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/08/2012] [Indexed: 01/11/2023] Open
Abstract
To obtain proof of concept for HIV vaccines, we generated recombinant multimeric particles displaying the HIV-1 Envelope (Env) third hypervariable region (V3) as an N-terminal fusion protein on the E2 subunit of the pyruvate dehydrogenase complex of Geobacillus stearothermophilus. The E2 scaffold self-assembles into a 60-mer core that is 24 nm in diameter, with a molecular weight of 1.5 MDa, similar to a virus like particle with up to 60 copies of a heterologous protein accessible on the surface. Env(V3)-E2 multimers were tested alone and in combination with Env(gp160) DNA in mice and rabbits. Following two or more co-immunizations with Env(V3)-E2 and Env gp160 DNA, all 18 rabbits developed potent autologous neutralizing antibodies specific for V3 in six weeks. These neutralizing antibodies were sustained for 16 weeks without boosting, and comparable responses were obtained when lipopolysaccharide, a contaminant from expression in E. coli, was removed. Co-immunizations of Env(V3)-E2 and DNA expressing gp160 elicited moderate CD8-specific responses and Env-specific antibodies in mice. Co-immunization with DNA and E2 was superior to individual or sequential vaccination with these components in eliciting both neutralizing antibodies in rabbits and CD8(+) T cell responses in mice. Co-immunization with DNA and multimeric E2 scaffolds appears to offer a highly effective means of eliciting rapid, specific, and sustained immune responses that may be a useful approach for other vaccine targets.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Shelly J. Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Maria Trovato
- Institute of Protein Biochemistry, C.N.R., Naples, Italy
| | - Dina N. Kovarik
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Zachary Brower
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - William F. Sutton
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Garrett Waagmeester
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | | | | | | | - Nicole A. Doria-Rose
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Delphine Malherbe
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan Barnett
- Novartis, Cambridge, Massachusetts, United States of America
| | | | - Nancy L. Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
33
|
Li L, Wang XH, Banerjee S, Volsky B, Williams C, Moody MA, Zolla-Pazner S, Gorny MK. Clonal analysis of human anti-V3 monoclonal antibodies selected by a V3 tetramer. Hum Antibodies 2012; 21:65-73. [PMID: 23549023 PMCID: PMC3708495 DOI: 10.3233/hab-130264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The production of human monoclonal antibodies (mAbs) has been improved recently using the single B cell and PCR technology. A number of new anti-HIV-1 mAbs directed to various epitopes were produced by selecting single B cells from HIV positive individuals using the HIV-1 envelope (Env) proteins, and we tested whether the peptide can select B cells specific to a particular Env epitope. Using the fluorescently-labeled peptide tetramer representative of the V3 loop of HIV-1 Env gp120 for staining the B cells derived from one HIV-1 infected donor, four clonal human mAbs were produced with specificity to the V3 region. The clonality of the four V3 mAbs was based on the usage of the same immunoglobulin genes and almost identical sequence of CDRs. The amino acid changes were present only in the framework and, possibly, they could be related to the differences observed in the relative affinity binding of these four mAbs to V3 antigen. One representative V3 mAb displayed very potent neutralizing activity to one of two viruses tested. This study shows the feasibility of utilizing a peptide tetramer to select epitope-specific B cells and produce mAbs.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Sagarika Banerjee
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Barbara Volsky
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Constance Williams
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs. Adv Virol 2011; 2011:713769. [PMID: 22312350 PMCID: PMC3265312 DOI: 10.1155/2011/713769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022] Open
Abstract
Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O(1) BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH), or the nontoxic pseudomonas exotoxin A (ntPE) was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.
Collapse
|
35
|
Can HIV p24 be a suitable scaffold for presenting Env antigens? CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2003-4. [PMID: 21900531 DOI: 10.1128/cvi.05326-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 2011; 85:9887-98. [PMID: 21795338 DOI: 10.1128/jvi.05086-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The V3 epitope is a known target for HIV-1 neutralizing antibodies (NAbs), and V3-scaffold fusion proteins used as boosting immunogens after gp120 DNA priming were previously shown to induce NAbs in rabbits. Here, we evaluated whether the breadth and potency of the NAb response could be improved when boosted with rationally designed V3-scaffold immunogens. Rabbits were primed with codon-optimized clade C gp120 DNA and boosted with one of five V3-cholera toxin B fusion proteins (V3-CTBs) or with double combinations of these. The inserts in these immunogens were designed to display V3 epitopes shared by the majority of global HIV-1 isolates. Double combinations of V3-CTB immunogens generally induced more broad and potent NAbs than did boosts with single V3-CTB immunogens, with the most potent and broad NAbs elicited with the V3-CTB carrying the consensus V3 of clade C (V3(C)-CTB), or with double combinations of V3-CTB immunogens that included V3(C)-CTB. Neutralization of tier 1 and 2 pseudoviruses from clades AG, B, and C and of peripheral blood mononuclear cell (PBMC)-grown primary viruses from clades A, AG, and B was achieved, demonstrating that priming with gp120 DNA followed by boosts with V3-scaffold immunogens effectively elicits cross-clade NAbs. Focusing on the V3 region is a first step in designing a vaccine targeting protective epitopes, a strategy with potential advantages over the use of Env, a molecule that evolved to protect the virus by poorly inducing NAbs and by shielding the epitopes that are most critical for infectivity.
Collapse
|
37
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
38
|
Andrianov AM. Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving. Expert Opin Drug Discov 2011; 6:419-35. [DOI: 10.1517/17460441.2011.560603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220141 Minsk, Republic of Belarus +375 17 2678263 ; +375 17 2241214 ;
| |
Collapse
|
39
|
Voronin Y, Phogat S. HIV/AIDS: vaccines and alternate strategies for treatment and prevention. Ann N Y Acad Sci 2010; 1205 Suppl 1:E1-9. [PMID: 20860672 DOI: 10.1111/j.1749-6632.2010.05759.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The symposium "HIV/AIDS: Vaccines and Alternate Strategies for Treatment and Prevention" brought together HIV vaccine researchers to discuss the latest developments in the field. From basic discoveries in virus diversity and mechanisms of neutralization by antibodies to nonhuman primate research and clinical trials of vaccine candidates in volunteers, scientists are making great strides in understanding the mechanisms that may protect against HIV and pathways to achieve this protection through vaccination.
Collapse
Affiliation(s)
- Yegor Voronin
- Global HIV Vaccine Enterprise, New York, New York, USA.
| | | |
Collapse
|