1
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Lee MJ, Yeon JH, Lee J, Kang YH, Park BS, Park J, Yun SH, Wirth D, Yoo SM, Park C, Gao SJ, Lee MS. Senescence of endothelial cells increases susceptibility to Kaposi's sarcoma-associated herpesvirus infection via CD109-mediated viral entry. J Clin Invest 2024; 135:e183561. [PMID: 39666389 PMCID: PMC11827841 DOI: 10.1172/jci183561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024] Open
Abstract
The aging process is characterized by cellular functional decline and increased susceptibility to infections. Understanding the association between virus infection and aging is crucial for developing effective strategies against viral infections in older individuals. However, the relationship between Kaposi's sarcoma-associated herpesvirus (KSHV) infection, a cause of increased Kaposi's sarcoma prevalence among the elderly without HIV infection, and cellular senescence remains enigmatic. This study uncovered a link between cellular senescence and enhanced KSHV infectivity in human endothelial cells. Through a comprehensive proteomic analysis, we identified caveolin-1 and CD109 as host factors significantly upregulated in senescent cells that promote KSHV infection. Remarkably, CRISPR/Cas9-mediated KO of these factors reduced KSHV binding and entry, leading to decreased viral infectivity. Furthermore, surface plasmon resonance analysis and confocal microscopy revealed a direct interaction between KSHV virions and CD109 on the cell surface during entry, with recombinant CD109 protein exhibiting inhibitory activity of KSHV infection by blocking virion binding. These findings uncover a previously unrecognized role of cellular senescence in enhancing KSHV infection through upregulation of specific host factors and provide insights into the complex interplay between aging and viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jisu Lee
- Department of Microbiology and Immunology, and
| | - Yun Hee Kang
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, South Korea
| | - Joohee Park
- Department of Microbiology and Immunology, and
| | - Sung-Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Shou-Jinag Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|
3
|
Lum KK, Reed TJ, Yang J, Cristea IM. Differential Contributions of Interferon Classes to Host Inflammatory Responses and Restricting Virus Progeny Production. J Proteome Res 2024; 23:3249-3268. [PMID: 38564653 PMCID: PMC11296908 DOI: 10.1021/acs.jproteome.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fundamental to mammalian intrinsic and innate immune defenses against pathogens is the production of Type I and Type II interferons, such as IFN-β and IFN-γ, respectively. The comparative effects of IFN classes on the cellular proteome, protein interactions, and virus restriction within cell types that differentially contribute to immune defenses are needed for understanding immune signaling. Here, a multilayered proteomic analysis, paired with biochemical and molecular virology assays, allows distinguishing host responses to IFN-β and IFN-γ and associated antiviral impacts during infection with several ubiquitous human viruses. In differentiated macrophage-like monocytic cells, we classified proteins upregulated by IFN-β, IFN-γ, or pro-inflammatory LPS. Using parallel reaction monitoring, we developed a proteotypic peptide library for shared and unique ISG signatures of each IFN class, enabling orthogonal confirmation of protein alterations. Thermal proximity coaggregation analysis identified the assembly and maintenance of IFN-induced protein interactions. Comparative proteomics and cytokine responses in macrophage-like monocytic cells and primary keratinocytes provided contextualization of their relative capacities to restrict virus production during infection with herpes simplex virus type-1, adenovirus, and human cytomegalovirus. Our findings demonstrate how IFN classes induce distinct ISG abundance and interaction profiles that drive antiviral defenses within cell types that differentially coordinate mammalian immune responses.
Collapse
Affiliation(s)
- Krystal K. Lum
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Tavis J. Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| |
Collapse
|
4
|
Andreu S, Agúndez C, Ripa I, López-Guerrero JA, Bello-Morales R. Pseudorabies virus uses clathrin mediated endocytosis to enter PK15 swine cell line. Front Microbiol 2024; 15:1332175. [PMID: 38374920 PMCID: PMC10876092 DOI: 10.3389/fmicb.2024.1332175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Pseudorabies virus (PRV), a herpesvirus responsible for Aujeszky's disease, causes high mortality in swine populations. To develop effective and novel antiviral strategies, it is essential to understand the mechanism of entry used by PRV to infect its host. Viruses have different ways of entering host cells. Among others, they can use endocytosis, a fundamental cellular process by which substances from the external environment are internalized into the cell. This process is classified into clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE), depending on the role of clathrin. Although the involvement of cholesterol-rich lipid rafts in the entry of PRV has already been described, the importance of other endocytic pathways involving clathrin remains unexplored to date. Here, we characterize the role of CME in PRV entry into the PK15 swine cell line. By using CME inhibitory drugs, we report a decrease in PRV infection when the CME pathway is blocked. We also perform the shRNA knockdown of the μ-subunit of the adaptor protein AP-2 (AP2M1), which plays an important role in the maturation of clathrin-coated vesicles, and the infection is greatly reduced when this subunit is knocked down. Furthermore, transmission electron microscopy images report PRV virions inside clathrin-coated vesicles. Overall, this study suggests for the first time that CME is a mechanism used by PRV to enter PK15 cells and provides valuable insights into its possible routes of entry.
Collapse
Affiliation(s)
- Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Carmen Agúndez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| |
Collapse
|
5
|
Patel R, Lurain K, Yarchoan R, Ramaswami R. Clinical management of Kaposi sarcoma herpesvirus-associated diseases: an update on disease manifestations and treatment strategies. Expert Rev Anti Infect Ther 2023; 21:929-941. [PMID: 37578202 PMCID: PMC10529793 DOI: 10.1080/14787210.2023.2247161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Kaposi sarcoma herpes virus (KSHV) is associated with several diseases including Kaposi sarcoma, a form of multicentric Castleman's disease, primary effusion lymphoma, and an inflammatory cytokine syndrome. These KSHV-associated diseases (KAD) can present with heterogenous signs and symptoms that are often associated with cytokine dysregulation that may result in multiorgan dysfunction. The inability to promptly diagnose and treat these conditions can result in long-term complications and mortality. AREAS COVERED Existing epidemiological subtypes of existing KSHV-associated diseases, specifically Kaposi sarcoma as well as the incidence of several KSHV-associated disorders are described. We review the KSHV latent and lytic phases as they correlate with KSHV-associated diseases. Given the complicated presentations, we discuss the clinical manifestations, current diagnostic criteria, existing treatment algorithms for individual KAD, and when they occur concurrently. With emerging evidence on the virus and host interactions, we evaluate novel approaches for the treatment of KAD. An extensive literature search was conducted to support these findings. EXPERT OPINION KSHV leads to complex and concurrent disease processes that are often underdiagnosed both in the United States and worldwide. New therapies that exist for many of these conditions focus on chemotherapy-sparing options that seek to target the underlying viral pathogenesis or immunotherapy strategies.
Collapse
Affiliation(s)
- Roshani Patel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Lu ZZ, Sun C, Zhang X, Peng Y, Wang Y, Zeng Y, Zhu N, Yuan Y, Zeng MS. Neuropilin 1 is an entry receptor for KSHV infection of mesenchymal stem cell through TGFBR1/2-mediated macropinocytosis. SCIENCE ADVANCES 2023; 9:eadg1778. [PMID: 37224259 DOI: 10.1126/sciadv.adg1778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has been implicated in the pathogenesis of Kaposi's sarcoma (KS) and other malignancies. The cellular origin of KS has been suggested to be either mesenchymal stem cells (MSCs) or endothelial cells. However, receptor(s) for KSHV to infect MSCs remains unknown. By combining bioinformatics analysis and shRNA screening, we identify neuropilin 1 (NRP1) as an entry receptor for KSHV infection of MSCs. Functionally, NRP1 knockout and overexpression in MSCs significantly reduce and promote, respectively, KSHV infection. Mechanistically, NRP1 facilitated the binding and internalization of KSHV by interacting with KSHV glycoprotein B (gB), which was blocked by soluble NRP1 protein. Furthermore, NRP1 interacts with TGF-β receptor type 2 (TGFBR2) through their respective cytoplasmic domains and thus activates the TGFBR1/2 complex, which facilitates the macropinocytosis-mediated KSHV internalization via the small GTPases Cdc42 and Rac1. Together, these findings implicate that KSHV has evolved a strategy to invade MSCs by harnessing NRP1 and TGF-beta receptors to stimulate macropinocytosis.
Collapse
Affiliation(s)
- Zheng-Zhou Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Peng
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zeng
- Precision clinical laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524037, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Nannan Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute for Advanced Medical Research, Shandong University, Jinan, Shandong, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Jung KL, Choi UY, Park A, Foo SS, Kim S, Lee SA, Jung JU. Single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection in three-dimensional air-liquid interface culture model. PLoS Pathog 2022; 18:e1010775. [PMID: 35976902 PMCID: PMC9385030 DOI: 10.1371/journal.ppat.1010775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.
Collapse
Affiliation(s)
- Kyle L. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Un Yung Choi
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
9
|
Cellular Receptors Involved in KSHV Infection. Viruses 2021; 13:v13010118. [PMID: 33477296 PMCID: PMC7829929 DOI: 10.3390/v13010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, cystine/glutamate antiporter (xCT) and Dendritic Cell-Specific Intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This diverse range of potential binding and entry sites allows KSHV to have a broad cell tropism, and entry into specific cells is dependent on the available receptor repertoire. Several molecules involved in KSHV entry have been well characterized, particularly those postulated to be associated with KSHV-associated pathologies such as Kaposi’s Sarcoma (KS). In this review, KSHV infection of specific cell types pertinent to its pathogenesis will be comprehensively summarized with a focus on the specific cell surface binding and entry receptors KSHV exploits to gain access to a variety of cell types. Gaps in the current literature regarding understanding interactions between KSHV glycoproteins and cellular receptors in virus infection are identified which will lead to the development of virus infection intervention strategies.
Collapse
|
10
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
11
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
12
|
The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) gH/gL Complex Is the Predominant Neutralizing Antigenic Determinant in KSHV-Infected Individuals. Viruses 2020; 12:v12030256. [PMID: 32111001 PMCID: PMC7150787 DOI: 10.3390/v12030256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 12/24/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), one of the most prevalent cancers of people living with HIV/AIDS in sub-Saharan Africa. The seroprevalence for KSHV is high in the region, and no prophylactic vaccine against the virus is available. In this study, we characterized the antigenic targets of KSHV-specific neutralizing antibodies (nAbs) in asymptomatic KSHV-infected individuals and KS patients with high nAbs titers. We quantified the extent to which various KSHV envelope glycoproteins (gB, ORF28, ORF68, gH, gL, gM, gN and gpK8.1) adsorbed/removed KSHV-specific nAbs from the plasma of infected individuals. Our study revealed that plasma from a majority of KSHV neutralizers recognizes multiple viral glycoproteins. Moreover, the breadth of nAbs responses against these viral glycoproteins varies among endemic KS, epidemic KS and asymptomatic KSHV-infected individuals. Importantly, among the KSHV glycoproteins, the gH/gL complex, but neither gH nor gL alone, showed the highest adsorption of KSHV-specific nAbs. This activity was detected in 80% of the KSHV-infected individuals regardless of their KS status. The findings suggest that the gH/gL complex is the predominant antigenic determinant of KSHV-specific nAbs. Therefore, gH/gL is a potential target for development of KSHV prophylactic vaccines.
Collapse
|
13
|
Melo TG, Coutinho EA, Pereira MCS. Heparan sulfate proteoglycan triggers focal adhesion kinase signaling during Trypanosoma cruzi invasion. Mem Inst Oswaldo Cruz 2020. [PMCID: PMC7849177 DOI: 10.1590/0074-02760200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is capable of triggering different signaling pathways that modulate its internalisation in mammalian cells. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase protein, has been demonstrated as a mechanism of T. cruzi invasion in cardiomyocytes. Since the involved cell surface receptors are not yet known, we evaluated whether heparan sulfate proteoglycans (HSPG), a molecule involved in T. cruzi recognition and in the regulation of multiple signaling pathways, are able to trigger the FAK signaling pathway during T. cruzi invasion. METHODS To investigate the role of HSPG in the regulation of the FAK signaling pathway during trypomastigote entry, we performed heparan sulfate (HS) depletion from the cardiomyocyte surface by treatment with heparinase I or p-nitrophenyl-β-D-xylopyranoside (p-n-xyloside), which abolishes glycosaminoglycan (GAG) attachment to the proteoglycan core protein. Wild-type (CHO-k1) and GAG-deficient Chinese hamster ovary cells (CHO-745) were also used as an approach to evaluate the participation of the HSPG-FAK signaling pathway. FAK activation (FAK Tyr397) and spatial distribution were analysed by immunoblotting and indirect immunofluorescence, respectively. FINDINGS HS depletion from the cardiomyocyte surface inhibited FAK activation by T. cruzi. Cardiomyocyte treatment with heparinase I or p-n-xyloside resulted in 34% and 28% FAK phosphorylation level decreases, respectively. The experiments with the CHO cells corroborated the role of HSPG as a FAK activation mediator. T. cruzi infection did not stimulate FAK phosphorylation in CHO-745 cells, leading to a 36% reduction in parasite invasion. FAK inhibition due to the PF573228 treatment also impaired T. cruzi entry in CHO-k1 cells. MAIN CONCLUSION Jointly, our data demonstrate that HSPG is a key molecule in the FAK signaling pathway activation, regulating T. cruzi entry.
Collapse
|
14
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
15
|
Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv Virus Res 2019; 104:313-343. [PMID: 31439152 DOI: 10.1016/bs.aivir.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prototypical human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi Sarcoma-associated herpesvirus (KSHV) are involved in the development of malignancies. Like all herpesviruses, they share the establishment of latency, the typical architecture, and the conserved fusion machinery to initiate infection. The fusion machinery reflects virus-specific adaptations due to the requirements of the respective herpesvirus. For example, EBV evolved a tropism switch involving either the B- or epithelial cell-tropism complexes to activate fusion driven by gB. Most of the EBV entry proteins and their cellular receptors have been crystallized providing molecular details of the initial steps of infection. For KSHV, a variety of entry and binding receptors has also been reported but the mechanism how receptor binding activates gB-driven fusion is not as well understood as that for EBV. However, the downstream signaling pathways that promote the early steps of KSHV entry are well described. This review summarizes the current knowledge of the key players involved in EBV and KSHV entry and the cell-type specific mechanisms that allow infection of a wide variety of cell types.
Collapse
|
16
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
17
|
Lv X, Li Z, Guan J, Zhang J, Xu B, He W, Lan Y, Zhao K, Lu H, Song D, Gao F. ATN-161 reduces virus proliferation in PHEV-infected mice by inhibiting the integrin α5β1-FAK signaling pathway. Vet Microbiol 2019; 233:147-153. [PMID: 31176401 DOI: 10.1016/j.vetmic.2019.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic virus that can cause obvious nerve damage. Integrin α5β1 is a transmembrane macromolecular that closely related to neurological function. We recently demonstrated that integrin α5β1 plays a critical role in PHEV invasion in vitro. To determine the function and mechanism of integrin α5β1 in virus proliferation in vivo, we established a mouse model of PHEV infection. Integrin α5β1-FAK signaling pathway was activated in PHEV-infected mice by qPCR, Western blotting, and GST pull-down assays. Viral proliferation and integrin α5β1-FAK signaling pathway were significantly inhibited after intravenous injection of ATN-161, an integrin α5β1 inhibitor. Through a histological analysis, we found that ATN-161-treated mice only showed pathological changes in neuronal cytoplasmic swelling at 5 day post-infection. In summary, our results provide the first evidence that ATN-161 inhibits the proliferation of PHEV in mice and explores its underlying mechanisms of action.
Collapse
Affiliation(s)
- Xiaoling Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
TerBush AA, Hafkamp F, Lee HJ, Coscoy L. A Kaposi's Sarcoma-Associated Herpesvirus Infection Mechanism Is Independent of Integrins α3β1, αVβ3, and αVβ5. J Virol 2018; 92:e00803-18. [PMID: 29899108 PMCID: PMC6096800 DOI: 10.1128/jvi.00803-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
Host receptor usage by Kaposi's sarcoma-associated herpesvirus (KSHV) has been best studied using primary microvascular endothelial and fibroblast cells, although the virus infects a wide variety of cell types in culture and in natural infections. In these two infection models, KSHV adheres to the cell though heparan sulfate (HS) binding and then interacts with a complex of EphA2, xCT, and integrins α3β1, αVβ3, and αVβ5 to catalyze viral entry. We dissected this receptor complex at the genetic level with CRISPR-Cas9 to precisely determine receptor usage in two epithelial cell lines. Surprisingly, we discovered an infection mechanism that requires HS and EphA2 but is independent of αV- and β1-family integrin expression. Furthermore, infection appears to be independent of the EphA2 intracellular domain. We also demonstrated that while two other endogenous Eph receptors were dispensable for KSHV infection, transduced EphA4 and EphA5 significantly enhanced infection of cells lacking EphA2.IMPORTANCE Our data reveal an integrin-independent route of KSHV infection and suggest that multiple Eph receptors besides EphA2 can promote and regulate infection. Since integrins and Eph receptors are large protein families with diverse expression patterns across cells and tissues, we propose that KSHV may engage with several proteins from both families in different combinations to negotiate successful entry into diverse cell types.
Collapse
Affiliation(s)
- Allison Alwan TerBush
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Florianne Hafkamp
- Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Hee Jun Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laurent Coscoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
19
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
20
|
Sarkar R, Verma SC. Egr-1 regulates RTA transcription through a cooperative involvement of transcriptional regulators. Oncotarget 2017; 8:91425-91444. [PMID: 29207655 PMCID: PMC5710935 DOI: 10.18632/oncotarget.20648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) regulates the host cellular environment to establish life-long persistent infection by manipulating cellular signaling pathways, with approximately 1- 5% of cells undergoing lytic reactivation during the course of infection. Egr-1 (Early Growth Response Factor-1) is one such cellular transcription factor, which gets phosphorylated during the lytic phase of viral life cycle to perpetrate its function. This study demonstrates the mechanism of how Egr-1 mediates transcription of the immediate early gene, RTA (Replication and transcription activator), which is the lytic switch gene of KSHV. Egr-1 depleted KSHV infected cells exhibited reduced expression of RTA. Also, an increase in Egr-1 phosphorylation led to a higher virion production, which was suppressed in the presence of p38 and Raf inhibitors. Reporter assays showed that coexpression of Egr-1 and CBP (CREB-binding protein) enhances RTA promoter activity as compared to the expression of either Egr-1 or CBP alone. Binding of Egr-1 and CBP at RTA promoter was analyzed by chromatin immunoprecipitation assay (ChIP), which showed an enhanced accumulation during viral reactivation. Mutation in Egr-1 binding site of the RTA promoter eliminated Egr-1 response on promoter activation. Furthermore, de novo infection of THP-1 (monocytic) and HUVECs (endothelial) cells showed an upregulation of Egr-1 phosphorylation, whereas depletion of Egr-1 reduced the mRNA levels of RTA during primary infection. Together, these results demonstrate a cooperative role of Egr-1 and CBP in mediating RTA transcription, which significantly improves our understanding of the involvement of cellular factors controlling RTA transcription in KSHV pathogenesis.
Collapse
Affiliation(s)
- Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
21
|
Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017; 16:1611-1621. [PMID: 28750175 DOI: 10.1080/15384101.2017.1356509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors. Here we report that KSHV infection of endothelial cells induces additional cytokines including interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-13 (IL-13) that drive monocytes to differentiate and polarize into TAMs. The KSHV-induced TAMs not only express TAM-specific markers such as CD-163 and legumain (LGMN) but also display a gene expression profile with characteristic features of viral infection. More importantly, KSHV-induced TAMs enhance tumor growth in nude mice. These results are consistent with the strong presence of TAMs in Kaposi's sarcoma (KS) tumors. Therefore, KSHV infection of endothelial cells generates a local microenvironment that not only promotes the recruitment of monocytes but also induces their differentiation and polarization into TAMs. These findings reveal a new mechanism of KSHV contribution to KS tumor development.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Santosh K Ghosh
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Xiaolan Yu
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Hubei Collaborative Innovation Center for Green Transformation of Bio-resource , College of Life Sciences, Hubei University , Wuhan , Hubei , China
| | - Sanhai Qin
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Aaron Weinberg
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Pushpa Pandiyan
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Fengchun Ye
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
22
|
Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses 2016; 8:v8110305. [PMID: 27854239 PMCID: PMC5127019 DOI: 10.3390/v8110305] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 01/27/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi's sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of KSHV glycoproteins, host receptor, signal molecules and trafficking machinery that would lead into novel therapeutic methods to prevent KSHV infection of target cells and consequently the associated malignancies.
Collapse
Affiliation(s)
- Binod Kumar
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
23
|
Santarelli R, Granato M, Pentassuglia G, Lacconi V, Gilardini Montani MS, Gonnella R, Tafani M, Torrisi MR, Faggioni A, Cirone M. KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression. Autophagy 2016; 12:2311-2325. [PMID: 27715410 DOI: 10.1080/15548627.2016.1235122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that Kaposi sarcoma-associated herpesvirus (KSHV) impairs monocyte differentiation into dendritic cells (DCs). Macroautophagy/autophagy has been reported to be essential in such a differentiating process. Here we extended these studies and found that the impairment of DC formation by KSHV occurs through autophagy inhibition. KSHV indeed reduces CAST (calpastatin) and consequently decreases ATG5 expression in both THP-1 monocytoid cells and primary monocytes. We unveiled a new mechanism put in place by KSHV to escape from immune control. The discovery of viral immune suppressive strategies that contribute to the onset and progression of viral-associated malignancies is of fundamental importance for finding new therapeutic approaches against them.
Collapse
Affiliation(s)
- R Santarelli
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Granato
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - G Pentassuglia
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - V Lacconi
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | | | - R Gonnella
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Tafani
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M R Torrisi
- b Istituto Pasteur-Fondazione Cenci Bolognetti , Department of Clinical and Molecular Medicine , Sapienza University of Rome , Rome , Italy.,c Azienda Ospedaliera Sant'Andrea , Rome , Italy
| | - A Faggioni
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Cirone
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
24
|
Nicola AV. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH. Traffic 2016; 17:965-75. [PMID: 27126894 PMCID: PMC5444542 DOI: 10.1111/tra.12408] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question.
Collapse
Affiliation(s)
- Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane. mBio 2015; 6:e01552-15. [PMID: 26489864 PMCID: PMC4620472 DOI: 10.1128/mbio.01552-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca2+ release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca2+ levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca2+ release, while EHV-4 with gH1 triggered significant Ca2+ release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca2+ release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca2+ release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. Herpesviruses are a large family of enveloped viruses that infect a wide range of hosts, causing a variety of diseases. These viruses have developed a number of strategies for successful entry into different cell types. We and others have shown that alphaherpesviruses, including EHV-1 and herpes simplex virus 1 (HSV-1), can route their entry pathway and do so by manipulation of cell signaling cascades to ensure viral genome delivery to nuclei. We show here that the interaction between EHV-1 gH and cellular α4β1-integrins is necessary to induce emptying of ER calcium stores, which induces phosphatidylserine exposure on the plasma membrane through a scramblase-dependent mechanism. This change in lipid asymmetry facilitates virus entry and might help fusion of the viral envelope at the plasma membrane. These findings will help to advance our understanding of herpesvirus entry mechanism and may facilitate the development of novel drugs that can be implemented for prevention of infection and disease.
Collapse
|
26
|
Human Blood-Circulating Basophils Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 89:8050-62. [PMID: 26018157 DOI: 10.1128/jvi.01021-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Granulocytes are a category of white blood cells, comprising mainly basophils, neutrophils, and eosinophils, and participate in various inflammatory reactions and defense against pathogens. Here, we investigated the role of human blood granulocytes in the dissemination of HIV-1. These cells were found to express a variety of HIV-1 attachment factors (HAFs). Basophils expressed HAFs dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3)-grabbing nonintegrin (DC-SIGN), DC immunoreceptor (DCIR), heparan sulfate proteoglycan (HSPG), and α4β7 integrin and mediated the most efficient capture of HIV-1 on the cell surface. Neutrophils were found to express DCIR and demonstrated limited efficiency of viral capture. Eosinophils expressed α4β7 integrin but exhibited little or no virus-binding capacity. Intriguingly, following direct contact with CD4+ T cells, viruses harbored on the surface of basophils were transferred to T cells. The contact between basophils and CD4+ T cells and formation of infectious synapses appeared necessary for efficient HIV-1 spread. In HIV-1-infected individuals, the frequency of basophils remained fairly stable over the course of disease, regardless of CD4+ T depletion or the emergence of AIDS-associated opportunistic infections. Collectively, our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. Thus, strategies designed to prevent basophil-mediated viral capture and transfer may be developed into a new form of therapy. IMPORTANCE Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Here, we demonstrated that human blood-circulating granulocytes, particularly basophils, can capture HIV-1 and mediate viral trans-infection of CD4+ T cells. The expression of a variety of HIV-1 attachment factors, such as the C-type lectins, etc., facilitates viral capture and transfer. Intriguingly, the frequency of basophils in patients with different levels of CD4+ T counts remains fairly stable during the course of disease. Our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. We suggest that strategies designed to prevent basophil-mediated viral capture and transfer may be a new direction for the development of anti-HIV therapy.
Collapse
|
27
|
Mortimer L, Moreau F, Cornick S, Chadee K. The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive Entamoeba histolytica via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction. PLoS Pathog 2015; 11:e1004887. [PMID: 25955828 PMCID: PMC4425650 DOI: 10.1371/journal.ppat.1004887] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Entamoeba histolytica (Eh) is an extracellular protozoan parasite of humans that invades the colon to cause life-threatening intestinal and extra-intestinal amebiasis. Colonized Eh is asymptomatic, however, when trophozoites adhere to host cells there is a considerable inflammatory response that is critical in the pathogenesis of amebiasis. The host and/or parasite factors that trigger the inflammatory response to invading Eh are not well understood. We recently identified that Eh adherence to macrophages induces inflammasome activation and in the present study we sought to determine the molecular events upon contact that coordinates this response. Here we report that Eh contact-dependent activation of α5β1 integrin is critical for activation of the NLRP3 inflammasome. Eh-macrophage contact triggered recruitment of α5β1 integrin and NLRP3 into the intercellular junction, where α5β1 integrin underwent activation by an integrin-binding cysteine protease on the parasite surface, termed EhCP5. As a result of its activation, α5β1 integrin induced ATP release into the extracellular space through opening of pannexin-1 channels that signalled through P2X7 receptors to deliver a critical co-stimulatory signal that activated the NLRP3 inflammasome. Both the cysteine protease activity and integrin-binding domain of EhCP5 were required to trigger α5β1 integrin that led to ATP release and NLRP3 inflammasome activation. These findings reveal engagement of α5β1 integrin across the parasite-host junction is a key regulatory step that initiates robust inflammatory responses to Eh. We propose that α5β1 integrin distinguishes Eh direct contact and functions with NLRP3 as pathogenicity sensor for invasive Eh infection. Amebiasis caused by the enteric protozoan parasite Entamoeba histolytica is among the three top causes of death from parasitic infections worldwide, as a result of amebic colitis (dysentery) and liver or brain abscess. When Eh invades the intestinal barrier and contacts host tissue there is a profound inflammatory response, which is thought to drive the disease. One of the central outstanding questions has been how the immune response is escalated at sites of invasion. Adherence of the parasite to host cells has long been appreciated in the pathogenesis of amebiasis, but was never considered as a “cue” that host cells use to detect Eh and initiate host defense. Here we introduce the idea, and demonstrate, that an intercellular junction forms between Eh and host cells upon contact that engages the NLRP3 inflammasome. The NLRP3 inflammasome belongs to a group of “danger” sensors that are uniquely designed to rapidly activate highly inflammatory host defenses. In this work, we identified a surface receptor on macrophages that normally functions in adhesion and polarization recognizes a protein on the outer surface of Eh. Intriguingly, Eh also secretes this protein. However, the full activation of the surface receptor leading to inflammasome activation only occurs when the Eh protein is immobilized on the parasite surface. Thus, we uncovered a molecular mechanism though which host cells distinguish direct contact, and therefore recognize parasites that are immediately present in the tissue, to mobilize a highly inflammatory response. We believe this concept is central to understanding the biology of amebiasis.
Collapse
Affiliation(s)
- Leanne Mortimer
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Interaction of KSHV with host cell surface receptors and cell entry. Viruses 2014; 6:4024-46. [PMID: 25341665 PMCID: PMC4213576 DOI: 10.3390/v6104024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022] Open
Abstract
Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.
Collapse
|
30
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
31
|
Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol 2014; 5:452. [PMID: 25221546 PMCID: PMC4148009 DOI: 10.3389/fmicb.2014.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) is an oncogenic gammaherpesvirus that primarily infects cells of the immune and vascular systems. HHV-8 interacts with and targets professional antigen presenting cells and influences their function. Infection alters the maturation, antigen presentation, and immune activation capabilities of certain dendritic cells (DC) despite non-robust lytic replication in these cells. DC sustains a low level of antiviral functionality during HHV-8 infection in vitro. This may explain the ability of healthy individuals to effectively control this virus without disease. Following an immune compromising event, such as organ transplantation or human immunodeficiency virus type 1 infection, a reduced cellular antiviral response against HHV-8 compounded with skewed DC cytokine production and antigen presentation likely contributes to the development of HHV-8 associated diseases, i.e., Kaposi's sarcoma and certain B cell lymphomas. In this review we focus on the role of DC in the establishment of HHV-8 primary and latent infection, the functional state of DC during HHV-8 infection, and the current understanding of the factors influencing virus-DC interactions in the context of HHV-8-associated disease.
Collapse
Affiliation(s)
- Diana M Campbell
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Giovanna Rappocciolo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Frank J Jenkins
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
32
|
Garrigues HJ, DeMaster LK, Rubinchikova YE, Rose TM. KSHV attachment and entry are dependent on αVβ3 integrin localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate. Virology 2014; 464-465:118-133. [PMID: 25063885 DOI: 10.1016/j.virol.2014.06.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/02/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
Abstract
Cellular receptors for KSHV attachment and entry were characterized using tyramide signal amplification (TSA)-enhanced confocal microscopy. Integrins αVβ3, αVβ5 and α3β1 were detected on essentially all the actin-based cell surface microdomains that initially bind KSHV, while the presence of CD98 and heparan sulfate (HS), the putative attachment receptor, was more variable. KSHV bound to the same cell surface microdomains with and without HS indicating that initial attachment of KSHV is not dependent on HS and that receptors other than HS can mediate attachment. A human salivary gland (HSG) epithelial line was identified, which lacks αVβ3 but expresses high levels of HS, α3β1 and other putative KSHV receptors. These cells were resistant to KSHV binding and infection. Reconstitution of cell surface αVβ3 rendered HSG cells highly susceptible to KSHV infection, demonstrating a critical role for αVβ3 in the binding and entry of KSHV that is not shared with other proposed receptors.
Collapse
Affiliation(s)
- H Jacques Garrigues
- Seattle Children׳s Research Institute, 1900 Ninth Avenue, 8th Floor, Seattle, WA 98101, USA.
| | - Laura K DeMaster
- Seattle Children׳s Research Institute, 1900 Ninth Avenue, 8th Floor, Seattle, WA 98101, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Yelena E Rubinchikova
- Seattle Children׳s Research Institute, 1900 Ninth Avenue, 8th Floor, Seattle, WA 98101, USA.
| | - Timothy M Rose
- Seattle Children׳s Research Institute, 1900 Ninth Avenue, 8th Floor, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Santarelli R, Gonnella R, Di Giovenale G, Cuomo L, Capobianchi A, Granato M, Gentile G, Faggioni A, Cirone M. STAT3 activation by KSHV correlates with IL-10, IL-6 and IL-23 release and an autophagic block in dendritic cells. Sci Rep 2014; 4:4241. [PMID: 24577500 PMCID: PMC3937791 DOI: 10.1038/srep04241] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/07/2014] [Indexed: 12/18/2022] Open
Abstract
Kaposis's sarcoma associated herpesvirus (KSHV) has been reported to infect, among others, monocytes and dendritic cells DCs impairing their function. However, the underlying mechanisms remain not completely elucidated yet. Here we show that DC exposure to active or UV-inactivated KSHV resulted in STAT3 phosphorylation. This effect, partially dependent on KSHV-engagement of DC-SIGN, induced a high release of IL-10, IL-6 and IL-23, cytokines that in turn might maintain STAT3 in a phosphorylated state. STAT3 activation also correlated with a block of autophagy in DCs, as indicated by LC3II reduction and p62 accumulation. The IL-10, IL-6 and IL-23 release and the autophagic block could be overcome by inhibiting STAT3 activation, highlighting the role of STAT3 in mediating such effects. In conclusion, here we show that STAT3 activation can be one of the molecular mechanisms leading to KSHV-mediated DC dysfunction, that might allow viral persistence and the onset of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Roberta Santarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Gonnella
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giulia Di Giovenale
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Laura Cuomo
- Department of Clinical Pathology, A.C.O., S. Filippo Neri, Via Giovanni Martinotti, 20, 00135 Rome, Italy
| | - Angela Capobianchi
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Via Benevento 6, 00161 Rome, Italy
| | - Marisa Granato
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giuseppe Gentile
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Via Benevento 6, 00161 Rome, Italy
| | - Alberto Faggioni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Mara Cirone
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
34
|
The involvement of FAK and Src in the invasion of cardiomyocytes by Trypanosoma cruzi. Exp Parasitol 2014; 139:49-57. [PMID: 24582948 DOI: 10.1016/j.exppara.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25μM PP1 (53% inhibition) and 40μM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.
Collapse
|
35
|
Gonnella R, Santarelli R, Farina A, Granato M, D'Orazi G, Faggioni A, Cirone M. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:79. [PMID: 24422998 PMCID: PMC3874756 DOI: 10.1186/1756-9966-32-79] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Background Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. Results We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. Conclusions KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib, but on the other hand, offer an Achilles heel, rendering the infected cells more sensitive to other treatments such as AKT or glycolysis inhibitors. These therapeutic strategies can be exploited in the anticancer therapy of KSHV-associated malignancies.
Collapse
|
36
|
Paul AG, Chandran B, Sharma-Walia N. Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies. Transl Res 2013; 162:77-92. [PMID: 23567332 PMCID: PMC7185490 DOI: 10.1016/j.trsl.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Abstract
The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2), and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic aspects of Burkitt's lymphoma, nasopharyngeal carcinoma, cervical cancer, prostate cancer, colon cancer, and Kaposi's sarcoma (KS) is an active area of investigation. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the mechanistic context underlying the chemotherapeutic potential of nonsteroidal anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several viral associated malignancies, the biological significance of the COX-2/PGE2/EP receptor inflammatory axis is extensively studied only in Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endothelial cell tumor and primary effusion lymphoma (PEL), a B cell-proliferative disorder. The purpose of this review is to summarize the salient findings delineating the molecular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor signaling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2, PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the maintenance of COX-2 activation. The mutually interdependent interactions between viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to play key roles in the biological mechanisms involved in KS and PEL pathogenesis such as blockage of apoptosis, cell cycle regulation, transformation, proliferation, angiogenesis, adhesion, invasion, and immune-suppression. Understanding the COX-2/PGE2/EP axis is very important to develop new safer and specific therapeutic modalities for KS and PEL. In addition to COX-2 being a therapeutic target, EP receptors represent ideal targets for pharmacologic agents as PGE2 analogues and their blockers/antagonists possess antineoplastic activity, without the reported gastrointestinal and cardiovascular toxicity observed with few a NSAIDs.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/metabolism
- Receptors, Eicosanoid/metabolism
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency/genetics
Collapse
Affiliation(s)
- Arun George Paul
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| |
Collapse
|
37
|
Dai L, Bai L, Lu Y, Xu Z, Reiss K, Del Valle L, Kaleeba J, Toole BP, Parsons C, Qin Z. Emmprin and KSHV: new partners in viral cancer pathogenesis. Cancer Lett 2013; 337:161-6. [PMID: 23743354 PMCID: PMC3728473 DOI: 10.1016/j.canlet.2013.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/15/2023]
Abstract
Emmprin regulates pathogenic elements relevant to virus-associated cancer, including drug resistance and cell migration. Kaposi's sarcoma-associated herpesvirus (KSHV) regulates emmprin expression and downstream function. Targeting emmprin or its interacting proteins at the cell surface suppresses KSHV-induced pathogenesis in vitro.
Emmprin (CD147; basigin) is a multifunctional glycoprotein expressed at higher levels by cancer cells and stromal cells in the tumor microenvironment. Through direct effects within tumor cells and promotion of tumor–stroma interactions, emmprin participates in induction of tumor cell invasiveness, angiogenesis, metastasis and chemoresistance. Although its contribution to cancer progression has been widely studied, the role of emmprin in viral oncogenesis still remains largely unclear, and only a small body of available literature implicates emmprin-associated mechanisms in viral pathogenesis and tumorigenesis. We summarize these data in this review, focusing on the role of emmprin in pathogenesis associated with the Kaposi sarcoma-associated herpesvirus (KSHV), a common etiology for cancers arising in the setting of immune suppression. We also discuss future directions for mechanistic studies exploring roles for emmprin in viral cancer pathogenesis.
Collapse
Affiliation(s)
- Lu Dai
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J Virol 2013; 87:5937-48. [PMID: 23514881 DOI: 10.1128/jvi.03522-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses enter cells either by direct fusion at the plasma membrane or from within endosomes, depending on the cell type and receptor(s). We investigated two closely related herpesviruses of horses, equine herpesvirus type 1 (EHV-1) and EHV-4, for which the cellular and viral determinants routing virus entry are unknown. We show that EHV-1 enters equine epithelial cells via direct fusion at the plasma membrane, while EHV-4 does so via an endocytic pathway, which is dependent on dynamin II, cholesterol, caveolin 1, and tyrosine kinase activity. Exchange of glycoprotein H (gH) between EHV-1 and EHV-4 resulted in rerouting of EHV-1 to the endocytic pathway, as did blocking of α4β1 integrins on the cell surface. Furthermore, a point mutation in the SDI integrin-binding motif of EHV-1 gH also directed EHV-1 to the endocytic pathway. Cumulatively, we show that viral gH and cellular α4β1 integrins are important determinants in the choice of alphaherpesvirus cellular entry pathways.
Collapse
|
39
|
Lang SM, Bynoe MOF, Karki R, Tartell MA, Means RE. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins down regulate both DC-SIGN and DC-SIGNR. PLoS One 2013; 8:e58056. [PMID: 23460925 PMCID: PMC3584050 DOI: 10.1371/journal.pone.0058056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman’s disease, primary effusion lymphoma and Kaposi’s sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.
Collapse
Affiliation(s)
- Sabine M. Lang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Meisha O. F. Bynoe
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Roshan Karki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael A. Tartell
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert E. Means
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Intravenous immunoglobulin inhibits BAFF production in chronic inflammatory demyelinating polyneuropathy - a new mechanism of action? J Neuroimmunol 2013; 256:84-90. [PMID: 23357714 DOI: 10.1016/j.jneuroim.2013.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease treated with intravenous immunoglobulin (IVIg). The underlying mechanism of action remains incompletely understood. The B-cell activating factor BAFF contributes to B-cell homeostasis and (auto-)antibody production. BAFF was recently identified as one key molecule in the development of autoimmune diseases. Herein, we demonstrate that BAFF serum levels are elevated in CIDP patients. IVIg treatment resulted in a significant decrease of BAFF serum level. In vitro, IVIg inhibited BAFF in monocytes. Consequently, we identified BAFF as a new target for IVIg in CIDP treatment and provide a new, Fcγ-receptor independent, mechanism of action for IVIg.
Collapse
|
41
|
Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol 2013; 3:427. [PMID: 23346088 PMCID: PMC3549500 DOI: 10.3389/fimmu.2012.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022] Open
Abstract
Professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages, and B lymphocytes, are critically important in the recognition of an invading pathogen and presentation of antigens to the T cell-mediated arm of immunity. Human herpesvirus 8 (HHV-8) is one of the few human viruses that primarily targets these APC for infection, altering their cytokine profiles, manipulating their surface expression of MHC molecules, and altering their ability to activate HHV-8-specific T cells. This could be why T cell responses to HHV-8 antigens are not very robust. Of these APC, only B cells support complete, lytic HHV-8 infection. However, both complete and abortive virus replication cycles in APC could directly affect viral pathogenesis and progression to Kaposi's sarcoma (KS) and HHV-8-associated B cell cancers. In this review, we discuss the effects of HHV-8 infection on professional APC and their relationship to the development of KS and B cell lymphomas.
Collapse
Affiliation(s)
- Emilee R Knowlton
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2013; 3:401. [PMID: 23316192 PMCID: PMC3539662 DOI: 10.3389/fimmu.2012.00401] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
43
|
Tiwari V, Maus E, Sigar IM, Ramsey KH, Shukla D. Role of heparan sulfate in sexually transmitted infections. Glycobiology 2012; 22:1402-12. [PMID: 22773448 PMCID: PMC3481906 DOI: 10.1093/glycob/cws106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
Cell surface heparan sulfate (HS), a polysaccharide composed of alternating uronic acid and glucosamine residues, represents a common link that many sexually transmitted infections (STIs) require for infection. Variable modifications within the monomeric units of HS chains together with their unique structural conformations generate heterogeneity, which expands the ability of HS to bind a diverse array of host and microbial proteins. Recent advances made in the field of glycobiology have critically enhanced our understanding of HS and its interactions with microbes and their significance in important human diseases. The role of HS has been elaborated for several STIs to include those caused by herpes simplex virus, human immunodeficiency virus, human papillomavirus, and Chlamydia. In addition, gonorrhea, syphilis, and yeast infections are also dependent on the presence of HS on human target cells. Critical steps such as pathogen adhesion or binding to host cells followed by internalization to enhance intracellular survival and possible spread to other cells are mediated by HS. In addition, HS guided cell signaling plays a role in the development of angiogenesis and inflammation associated with many STIs. Past and ongoing investigations are providing new push for the development of HS-mimetics and analogs as novel prevention strategies against many different STIs. This review article summarizes the significance of HS in STIs and describes how emerging new products that target HS can be used to control the spread of STIs.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
- Department of Ophthalmology and Visual Sciences
| | - Erika Maus
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Ira M Sigar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
44
|
Zhang W, Gao SJ. Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens 2012; 1:102-27. [PMID: 23420076 PMCID: PMC3571711 DOI: 10.3390/pathogens1020102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpes virus (KSHV) is an oncogenicvirus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle.
Collapse
Affiliation(s)
| | - Shou-Jiang Gao
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-8028; Fax: +1-323-442-1721
| |
Collapse
|
45
|
Uldrick TS, Polizzotto MN, Yarchoan R. Recent advances in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Curr Opin Oncol 2012; 24:495-505. [PMID: 22729151 PMCID: PMC6322210 DOI: 10.1097/cco.0b013e328355e0f3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The discovery of Kaposi sarcoma herpesvirus (KSHV) led to recognition of KSHV-associated multicentric Castleman disease (MCD) as a distinct lymphoproliferative disorder. The pathogenesis of KSHV-MCD is attributed to proliferation of KSHV-infected B cells, production of KSHV-encoded viral interleukin 6 by these cells, and dysregulation of human interleukin 6 and interleukin 10. This article reviews advances in the field of disease pathogenesis and targeted therapies. RECENT FINDINGS Our understanding of the pathogenesis of KSHV-MCD has increased in recent years and improved therapies have been developed. Recent studies demonstrate that the anti-CD20 monoclonal antibody, rituximab, as well as virus-activated cytotoxic therapy using high-dose zidovudine and valganciclovir, can control symptoms and decrease adenopathy. With treatment, 1-year survival now exceeds 85%. Interestingly, even in the absence of pathologic findings of MCD, KSHV-infected patients may have inflammatory symptoms, excess cytokine production, and elevated KSHV viral load similar to KSHV-associated MCD. The term KSHV-associated inflammatory cytokine syndrome has been proposed to describe such patients. SUMMARY Recent advances in targeted therapy have improved outcomes in KSHV-MCD, and decreased need for cytotoxic chemotherapy. Improved understanding of the pathogenesis of KSHV-MCD and KSHV-associated inflammatory cytokine syndrome is needed, and will likely lead to additional advances in therapy for these disorders.
Collapse
Affiliation(s)
- Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
46
|
Azab W, Zajic L, Osterrieder N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet Res 2012; 43:61. [PMID: 22909178 PMCID: PMC3522555 DOI: 10.1186/1297-9716-43-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022] Open
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) glycoprotein H (gH) has been hypothesized to play a role in direct fusion of the virus envelope with cellular membranes. To investigate gH’s role in infection, an EHV-1 mutant lacking gH was created and the gH genes were exchanged between EHV-1 and EHV-4 to determine if gH affects cellular entry and/or host range. In addition, a serine-aspartic acid-isoleucine (SDI) integrin-binding motif present in EHV-1 gH was mutated as it was presumed important in cell entry mediated by binding to α4β1 or α4β7 integrins. We here document that gH is essential for EHV-1 replication, plays a role in cell-to-cell spread and significantly affects plaque size and growth kinetics. Moreover, we could show that α4β1 and α4β7 integrins are not essential for viral entry of EHV-1 and EHV-4, and that viral entry is not affected in equine cells when the integrins are inaccessible.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, Haus 18, 10115, Berlin, Germany.
| | | | | |
Collapse
|
47
|
Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer A, Schmidt M, Chen J, König S, Ensser A, Myoung J, Brockmeyer NH, Stürzl M, Fleckenstein B, Neipel F. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's sarcoma–associated herpesvirus. Nat Med 2012; 18:961-6. [PMID: 22635007 DOI: 10.1038/nm.2805] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma(1), a highly vascularized tumor originating from lymphatic endothelial cells, and of at least two different B cell malignancies(2,3). A dimeric complex formed by the envelope glycoproteins H and L (gH-gL) is required for entry of herpesviruses into host cells(4). We show that the ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH-gL. EphA2 co-precipitated with both gH-gL and KSHV virions. Infection of human epithelial cells with a GFP-expressing recombinant KSHV strain, as measured by FACS analysis, was increased upon overexpression of EphA2. Antibodies against EphA(2) and siRNAs directed against EphA2 inhibited infection of endothelial cells. Pretreatment of KSHV with soluble EphA2 resulted in inhibition of KSHV infection by up to 90%. This marked reduction of KSHV infection was seen with all the different epithelial and endothelial cells used in this study. Similarly, pretreating epithelial or endothelial cells with the soluble EphA2 ligand ephrinA4 impaired KSHV infection. Deletion of the gene encoding EphA2 essentially abolished KSHV infection of mouse endothelial cells. Binding of gH-gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry(5,6). Quantitative RT-PCR and in situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from human Kaposi's sarcoma lesions or unaffected human lymphatic endothelium, and in situ in Kaposi's sarcoma specimens, respectively. Taken together, our results identify EphA2, a tyrosine kinase with known functions in neovascularization and oncogenesis, as an entry receptor for KSHV.
Collapse
Affiliation(s)
- Alexander S Hahn
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bowles JB, Steain M, Slobedman B, Abendroth A. Inhibition of integrin α6 expression by cell-free varicella-zoster virus. J Gen Virol 2012; 93:1725-1730. [PMID: 22592262 DOI: 10.1099/vir.0.039917-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes chickenpox and shingles. VZV is released from infected cells during natural infection, but remains highly cell-associated during experimental infection, and so most studies have utilized cell-associated infection models. We examined the impact of cell-free VZV infection of primary human foreskin fibroblasts (HFFs) on the receptor integrin α6 (ITGA6). qPCR and flow cytometry demonstrated that both cell-free VZV and cell-free UV-inactivated VZV downregulated transcription and cell-surface protein expression of ITGA6. To establish whether ITGA6 altered VZV infection, VZV transcripts and nuclear DNA levels were measured in HFFs treated with ITGA6 blocking antibody before infection. ITGA6 blocking did not impair virus entry but did negatively impact VZV transcription, and this effect was virus specific as transcription of the related herpes simplex virus type 1 was not similarly inhibited. This study identifies modulation of ITGA6 during cell-free VZV infection, and provides the first evidence linking ITGA6 with post-entry productive VZV gene expression.
Collapse
Affiliation(s)
- Joshua B Bowles
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| |
Collapse
|
49
|
Qin Z, Jakymiw A, Findlay V, Parsons C. KSHV-Encoded MicroRNAs: Lessons for Viral Cancer Pathogenesis and Emerging Concepts. Int J Cell Biol 2012; 2012:603961. [PMID: 22505930 PMCID: PMC3296157 DOI: 10.1155/2012/603961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/04/2023] Open
Abstract
The human genome contains microRNAs (miRNAs), small noncoding RNAs that orchestrate a number of physiologic processes through regulation of gene expression. Burgeoning evidence suggests that dysregulation of miRNAs may promote disease progression and cancer pathogenesis. Virus-encoded miRNAs, exhibiting unique molecular signatures and functions, have been increasingly recognized as contributors to viral cancer pathogenesis. A large segment of the existing knowledge in this area has been generated through characterization of miRNAs encoded by the human gamma-herpesviruses, including the Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies focusing on KSHV miRNAs have led to a better understanding of viral miRNA expression in human tumors, the identification of novel pathologic check points regulated by viral miRNAs, and new insights for viral miRNA interactions with cellular ("human") miRNAs. Elucidating the functional effects of inhibiting KSHV miRNAs has also provided a foundation for further translational efforts and consideration of clinical applications. This paper summarizes recent literature outlining mechanisms for KSHV miRNA regulation of cellular function and cancer-associated pathogenesis, as well as implications for interactions between KSHV and human miRNAs that may facilitate cancer progression. Finally, insights are offered for the clinical feasibility of targeting miRNAs as a therapeutic approach for viral cancers.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Key Laboratory of Arrhythmias, Ministry of Education, and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Andrew Jakymiw
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Victoria Findlay
- Department of Pathology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Chris Parsons
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Latent Kaposi's sarcoma-associated herpesvirus infection of monocytes downregulates expression of adaptive immune response costimulatory receptors and proinflammatory cytokines. J Virol 2012; 86:3916-23. [PMID: 22278234 DOI: 10.1128/jvi.06437-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection is associated with the development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. We report the establishment of a monocytic cell line latently infected with KSHV (KSHV-THP-1). We profiled viral and cytokine gene expression in the KSHV-THP-1 cells compared to that in uninfected THP-1 cells and found that several genes involved in the host immune response were downregulated during latent infection, including genes for CD80, CD86, and the cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Thus, KSHV minimizes its immunological signature by suppressing key immune response factors, enabling persistent infection and evasion from host detection.
Collapse
|