1
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
2
|
Harrison JJ, Nguyen W, Morgan MS, Tang B, Habarugira G, de Malmanche H, Freney ME, Modhiran N, Watterson D, Cox AL, Yan K, Yuen NKY, Bowman DH, Kirkland PD, Bielefeldt-Ohmann H, Suhrbier A, Hall RA, Rawle DJ, Hobson-Peters J. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. NPJ Vaccines 2024; 9:134. [PMID: 39085247 PMCID: PMC11291493 DOI: 10.1038/s41541-024-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.
Collapse
Affiliation(s)
- Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Mahali S Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Gervais Habarugira
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Nicholas K Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Dylan H Bowman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Peter D Kirkland
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia.
| |
Collapse
|
3
|
Hardisty G, Nicol MQ, Shaw DJ, Bennet ID, Bryson K, Ligertwood Y, Schwarze J, Beard PM, Hopkins J, Dutia BM. Latent gammaherpesvirus infection enhances type I IFN response and reduces virus spread in an influenza A virus co-infection model. J Gen Virol 2024; 105. [PMID: 38329395 DOI: 10.1099/jgv.0.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNβ and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.
Collapse
Affiliation(s)
- Gareth Hardisty
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian D Bennet
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Karen Bryson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BF, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
4
|
Mazzarella L, Santoro F, Ravasio R, Fumagalli V, Massa PE, Rodighiero S, Gavilán E, Romanenghi M, Duso BA, Bonetti E, Manganaro L, Pallavi R, Trastulli D, Pallavicini I, Gentile C, Monzani S, Leonardi T, Pasqualato S, Buttinelli G, Di Martino A, Fedele G, Schiavoni I, Stefanelli P, Meroni G, de Francesco R, Steinkuhler C, Fossati G, Iannacone M, Minucci S, Pelicci PG. Inhibition of the lysine demethylase LSD1 modulates the balance between inflammatory and antiviral responses against coronaviruses. Sci Signal 2023; 16:eade0326. [PMID: 38113337 DOI: 10.1126/scisignal.ade0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Santoro
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Paul E Massa
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gavilán
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno A Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lara Manganaro
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Gentile
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Monzani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Meroni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Raffaele de Francesco
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Christian Steinkuhler
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Gianluca Fossati
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biosciences, University of Milan, Milan 20123, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan 20122, Italy
| |
Collapse
|
5
|
Farrel A, Li P, Veenbergen S, Patel K, Maris JM, Leonard WJ. ROGUE: an R Shiny app for RNA sequencing analysis and biomarker discovery. BMC Bioinformatics 2023; 24:303. [PMID: 37516886 PMCID: PMC10386769 DOI: 10.1186/s12859-023-05420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. RESULTS Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny. RESEARCH chop.edu/ROGUE/ ), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. CONCLUSIONS User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.
Collapse
Affiliation(s)
- Alvin Farrel
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pediatric Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Bhaskar M, Mukherjee S, Basu A. Involvement of RIG-I Pathway in Neurotropic Virus-Induced Acute Flaccid Paralysis and Subsequent Spinal Motor Neuron Death. mBio 2021; 12:e0271221. [PMID: 34781742 PMCID: PMC8593677 DOI: 10.1128/mbio.02712-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Poliomyelitis-like illness is a common clinical manifestation of neurotropic viral infections. Functional loss and death of motor neurons often lead to reduced muscle tone and paralysis, causing persistent motor sequelae among disease survivors. Despite several reports demonstrating the molecular basis of encephalopathy, the pathogenesis behind virus-induced flaccid paralysis remained largely unknown. The present study for the first time aims to elucidate the mechanism responsible for limb paralysis by studying clinical isolates of Japanese encephalitis virus (JEV) and Chandipura virus (CHPV) responsible for causing acute flaccid paralysis (AFP) in vast regions of Southeast Asia and the Indian subcontinent. An experimental model for studying virus-induced AFP was generated by intraperitoneal injection of 10-day-old BALB/c mice. Progressive decline in motor performance of infected animals was observed, with paralysis being correlated with death of motor neurons (MNs). Furthermore, we demonstrated that upon infection, MNs undergo an extrinsic apoptotic pathway in a RIG-I-dependent fashion via transcription factors pIRF-3 and pIRF-7. Both gene-silencing experiments using specific RIG-I-short interfering RNA and in vivo morpholino abrogated cellular apoptosis, validating the important role of pattern recognition receptor (PRR) RIG-I in MN death. Hence, from our experimental observations, we hypothesize that host innate response plays a significant role in deterioration of motor functioning upon neurotropic virus infections. IMPORTANCE Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
7
|
Two Interferon-Stimulated Response Elements Cooperatively Regulate Interferon-Stimulated Gene Expression in West Nile Virus-Infected IFNAR -/- Mouse Embryo Fibroblasts. J Virol 2021; 95:e0104021. [PMID: 34495694 DOI: 10.1128/jvi.01040-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a subset of interferon-stimulated genes (ISGs) upregulated by West Nile virus (WNV) infection in wild-type mouse embryo fibroblasts (MEFs) after viral proteins had inhibited type I interferon (IFN)-mediated JAK-STAT signaling and also in WNV-infected RIG-I-/-, MDA5-/-, STAT1-/-, STAT2-/-, IFNAR-/-, IRF3-/-, IRF7-/-, and IRF3/7-/- MEFs. In this study, ISG upregulation by WNV infection in IFNAR-/- MEFs was confirmed by transcriptome sequencing (RNA-seq). ISG upregulation by WNV infection was inhibited in RIG-I/MDA5-/- MEFs. ISGs were upregulated in IRF1-/- and IRF5-/- MEFs but only minimally upregulated in IRF3/5/7-/- MEFs, suggesting redundant IRF involvement. We previously showed that a single proximal interferon-stimulated response element (ISRE) in the Oas1a and Oas1b promoters bound the ISGF3 complex after type I IFN treatment. In this study, we used wild-type and mutant promoter luciferase reporter constructs to identify critical regions in the Oas1b and Ifit1 promoters for gene activation in infected IFNAR-/- MEFs. Two ISREs were required in both promoters. Mutation of these ISREs in an Ifit1 promoter DNA probe reduced in vitro complex formation with infected nuclear extracts. An NF-κB inhibitor decreased Ifit1 promoter activity in cells and in vitro complex formation. IRF3 and p50 promoter binding was detected by chromatin immunoprecipitation (ChIP) for upregulated ISGs with two proximal ISREs. The data indicate that ISREs function cooperatively to upregulate the expression of some ISGs when type I IFN signaling is absent, with the binding complex consisting of IRF3, IRF5, and/or IRF7 and an NF-κB component(s) as well as other, as-yet-unknown factors. IMPORTANCE Type I IFN signaling in mammalian cells induces formation of the ISGF3 transcription factor complex, which binds to interferon stimulated response elements (ISREs) in the promoters of interferon-stimulated genes (ISGs) in the cell nucleus. Flavivirus proteins counteract type I IFN signaling by preventing either the formation or nuclear localization of ISGF3. A subset of ISRE-regulated ISGs was still induced in West Nile virus (WNV)-infected mouse embryo fibroblasts (MEFs), indicating that cells have an alternative mechanism for activating these ISGs. In this study, cellular components involved in this ISG upregulation mechanism were identified using gene knockout MEFs and ChIP, and critical promoter regions for gene activation were mapped using reporter assays. The data indicate a cooperative function between two ISREs and required binding of IRF3, IRF5, and/or IRF7 and an NF-κB component(s). Moreover, type I IFN signaling-independent ISG activation requires different additional promoter activation regions than type I IFN-dependent activation.
Collapse
|
8
|
McFadden MJ, McIntyre ABR, Mourelatos H, Abell NS, Gokhale NS, Ipas H, Xhemalçe B, Mason CE, Horner SM. Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 2021; 34:108798. [PMID: 33657363 PMCID: PMC7981787 DOI: 10.1016/j.celrep.2021.108798] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Type I interferons (IFNs) induce hundreds of IFN-stimulated genes (ISGs) in response to viral infection. Induction of these ISGs must be regulated for an efficient and controlled antiviral response, but post-transcriptional controls of these genes have not been well defined. Here, we identify a role for the RNA base modification N6-methyladenosine (m6A) in the regulation of ISGs. Using ribosome profiling and quantitative mass spectrometry, coupled with m6A-immunoprecipitation and sequencing, we identify a subset of ISGs, including IFITM1, whose translation is enhanced by m6A and the m6A methyltransferase proteins METTL3 and METTL14. We further determine that the m6A reader YTHDF1 increases the expression of IFITM1 in an m6A-binding-dependent manner. Importantly, we find that the m6A methyltransferase complex promotes the antiviral activity of type I IFN. Thus, these studies identify m6A as having a role in post-transcriptional control of ISG translation during the type I IFN response for antiviral restriction.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10021, USA
| | - Haralambos Mourelatos
- Weill Cornell/Rockefeller/Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Nathan S Abell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hélène Ipas
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Redant V, Favoreel HW, Dallmeier K, Van Campe W, De Regge N. Efficient control of Japanese encephalitis virus in the central nervous system of infected pigs occurs in the absence of a pronounced inflammatory immune response. J Neuroinflammation 2020; 17:315. [PMID: 33097065 PMCID: PMC7585311 DOI: 10.1186/s12974-020-01974-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. JEV infection of mice and humans can lead to an uncontrolled inflammatory response in the central nervous system (CNS), resulting in a detrimental outcome. Pigs act as important amplification and reservoir hosts, and JEV infection of pigs is mostly subclinical. Information on virus spread in the CNS and immune responses controlling JEV infection in the CNS of pigs, however remains scarce. Methods Nine-week-old pigs were inoculated intranasal or intradermal with a relevant dose of 105 TCID50 of JEV genotype 3 Nakayama strain. Clinical signs were assessed daily, and viral spread was followed by RT-qPCR. mRNA expression profiles were determined to study immune responses in the CNS. Results Besides a delay of 2 days to reach the peak viremia upon intranasal compared to intradermal inoculation, the overall virus spread via both inoculation routes was highly similar. JEV appearance in lymphoid and visceral organs was in line with a blood-borne JEV dissemination. JEV showed a particular tropism to the CNS but without the induction of neurological signs. JEV entry in the CNS probably occurred via different hematogenous and neuronal pathways, but replication in the brain was mostly efficiently suppressed and associated with a type I IFN-independent activation of OAS1 expression. In the olfactory bulb and thalamus, where JEV replication was not completely controlled by this mechanism, a short but strong induction of chemokine gene expression was detected. An increased IFNy expression was simultaneously observed, probably originating from infiltrating T cells, correlating with a fast suppression of JEV replication. The chemokine response was however not associated with the induction of a strong inflammatory response, nor was an induction of the NLRP3 inflammasome observed. Conclusions These findings indicate that an adequate antiviral response and an attenuated inflammatory response contribute to a favorable outcome of JEV infection in pigs and help to explain the limited neurological disease compared to other hosts. We show that the NLRP3 inflammasome, a key mediator of neurologic disease in mice, is not upregulated in pigs, further supporting its important role in JEV infections.
Collapse
Affiliation(s)
- Valerie Redant
- Operational Direction Infectious Diseases in Animals, Unit of Enzootic, Vector-borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180, Brussels, Belgium
| | - Herman W Favoreel
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kai Dallmeier
- Rega Institute for Medical Research, Department of Microbiology & Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Willem Van Campe
- Experimental Animal Center, Sciensano, Kerklaan 68, 1830, Machelen, Belgium
| | - Nick De Regge
- Operational Direction Infectious Diseases in Animals, Unit of Enzootic, Vector-borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180, Brussels, Belgium.
| |
Collapse
|
10
|
Kim M, Lee JE, Cho H, Jung HG, Lee W, Seo HY, Lee SH, Ahn DG, Kim SJ, Yu JW, Oh JW. Antiviral efficacy of orally delivered neoagarohexaose, a nonconventional TLR4 agonist, against norovirus infection in mice. Biomaterials 2020; 263:120391. [PMID: 32977259 DOI: 10.1016/j.biomaterials.2020.120391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
The neoagarohexaose (NA6) is an oligosaccharide that is derived from agarose, the major component of red algae cell walls, by enzymatic hydrolysis. Here we show that NA6 is a noncanonical Toll-like receptor 4 (TLR4) agonist with antiviral activity against norovirus. Its TLR4 activation was dependent on myeloid differentiation factor 2 (MD2) and cluster of differentiation 14 (CD14), leading to interferon-β (IFN-β) and tumor necrosis factor-α (TNF-α) production. This effect was abolished by TLR4 knockdown or knockout in murine macrophages. NA6 inhibited murine norovirus (MNV) replication with an EC50 of 1.5 μM in RAW264.7 cells. It also lowered viral RNA titer in a human hepatocellular carcinoma Huh7-derived cell line harboring a human norovirus subgenomic replicon. The antiviral activity of NA6 was mainly attributed to IFN-β produced through the TLR4-TRIF signaling pathway. NA6-induced TNF-α, which had little effect on norovirus replication per se, primed macrophages to mount greater antiviral innate immune responses when IFN signaling was activated. NA6 boosted the induction of IFN-β in MNV-infected RAW264.7 cells and upregulated IFN-regulatory factor-1, an IFN-stimulated gene. NA6 induced IFN-β expression in the distal ileum with Peyer's patches and oral administration of NA6 reduced MNV loads through activation of TLR4 signaling, highlighting its potential contribution to protective antiviral innate immunity against norovirus.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Eun Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Wooseong Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soung-Hoon Lee
- CK Biotechnology Inc, Engineering Research Park, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
11
|
Gao Y, Vasic R, Song Y, Teng R, Liu C, Gbyli R, Biancon G, Nelakanti R, Lobben K, Kudo E, Liu W, Ardasheva A, Fu X, Wang X, Joshi P, Lee V, Dura B, Viero G, Iwasaki A, Fan R, Xiao A, Flavell RA, Li HB, Tebaldi T, Halene S. m 6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity 2020; 52:1007-1021.e8. [PMID: 32497523 PMCID: PMC7408742 DOI: 10.1016/j.immuni.2020.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.
Collapse
Affiliation(s)
- Yimeng Gao
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Radovan Vasic
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rhea Teng
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chengyang Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rana Gbyli
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Giulia Biancon
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kirsten Lobben
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eriko Kudo
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anastasia Ardasheva
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoying Fu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaman Wang
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Poorval Joshi
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Veronica Lee
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Burak Dura
- Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Povo Trento 38123, Italy
| | - Akiko Iwasaki
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rong Fan
- Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Andrew Xiao
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Toma Tebaldi
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Colmant AMG, Bielefeldt-Ohmann H, Vet LJ, O’Brien CA, Bowen RA, Hartwig AE, Davis S, Piyasena TBH, Habarugira G, Harrison JJ, Hobson-Peters J, Hall RA. NS4/5 mutations enhance flavivirus Bamaga virus infectivity and pathogenicity in vitro and in vivo. PLoS Negl Trop Dis 2020; 14:e0008166. [PMID: 32203536 PMCID: PMC7089401 DOI: 10.1371/journal.pntd.0008166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/23/2020] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus.
Collapse
Affiliation(s)
- Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J. Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Airn E. Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Davis
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, NT, Australia
| | - Thisun B. H. Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gervais Habarugira
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| |
Collapse
|
13
|
Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol 2019; 93:JVI.00978-19. [PMID: 31462573 DOI: 10.1128/jvi.00978-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus in China and Southeast Asia with features of rapid spread, an expanding host range, and cross-species transmission. The mechanisms of its infection and pathogenesis remain largely unclear. Here, we investigated the tropism of this arbovirus in peripheral blood mononuclear cells of specific-pathogen-free (SPF) ducks and SPF chickens and identified monocytes/macrophages as the key targets of TMUV infection. In vivo studies in SPF ducks and SPF chickens with monocyte/macrophage clearance demonstrated that the infection of monocytes/macrophages was crucial for viral replication, transmission, and pathogenesis. Further genome-wide transcriptome analyses of TMUV-infected chicken macrophages revealed that host antiviral innate immune barriers were the major targets of TMUV in macrophages. Despite the activation of major pattern recognition receptor signaling, the inductions of alpha interferon (IFN-α) and IFN-β were blocked by TMUV infection on transcription and translation levels, respectively. Meanwhile, TMUV inhibited host redox responses by repressing the transcription of genes encoding NADPH oxidase subunits and promoting Nrf2-mediated antioxidant responses. The recovery of either of the above-mentioned innate immune barriers was sufficient to suppress TMUV infection. Collectively, we identify an essential step of TMUV infection and reveal extensive subversion of host antiviral innate immune responses.IMPORTANCE Mosquito-borne flaviviruses include a group of pathogenic viruses that cause serious diseases in humans and animals, including dengue, West Nile, and Japanese encephalitis viruses. These flaviviruses are zoonotic and use animals, including birds, as amplifying and reservoir hosts. Avian Tembusu virus (TMUV) is an emerging mosquito-borne flavivirus that is pathogenic for many avian species and can infect cells derived from mammals and humans in vitro Although not currently pathogenic for primates, the infection of duck industry workers and the potential risk of TMUV infection in immunocompromised individuals have been highlighted. Thus, the prevention of TMUV in flocks is important for both avian and mammalian health. Our study reveals the escape of TMUV from the first line of the host defense system in the arthropod-borne transmission route of arboviruses, possibly helping to extend our understanding of flavivirus infection in birds and refine the design of anti-TMUV therapeutics.
Collapse
|
14
|
RNase L Antiviral Activity Is Not a Critical Component of the Oas1b-Mediated Flavivirus Resistance Phenotype. J Virol 2019; 93:JVI.00946-19. [PMID: 31462564 DOI: 10.1128/jvi.00946-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023] Open
Abstract
In mice, resistance to central nervous system (CNS) disease induced by members of the genus Flavivirus is conferred by an allele of the 2'-5' oligoadenylate synthetase 1b gene that encodes the inactive full-length protein (Oas1b-FL). The susceptibility allele encodes a C-terminally truncated protein (Oas1b-tr). We show that the efficiency of neuron infection in the brains of resistant and susceptible mice is similar after an intracranial inoculation of two flaviviruses, but amplification of viral proteins and double-stranded RNA (dsRNA) is inhibited in infected neurons in resistant mouse brains at later times. Active OAS proteins detect cytoplasmic dsRNA and synthesize short 2'-5'-linked oligoadenylates (2'-5'A) that interact with the latent endonuclease RNase L, causing it to dimerize and cleave single-stranded RNAs. To evaluate the contribution of RNase L to the resistance phenotype in vivo, we created a line of resistant RNase L-/- mice. Evidence of RNase L activation in infected RNase L+/+ mice was indicated by higher levels of viral RNA in the brains of infected RNase L-/- mice. Activation of type I interferon (IFN) signaling was detected in both resistant and susceptible brains, but Oas1a and Oas1b mRNA levels were lower in RNase L+/+ mice of both types, suggesting that activated RNase L also has a proflaviviral effect. Inhibition of virus replication was robust in resistant RNase L-/- mice, indicating that activated RNase L is not a critical factor in mediating this phenotype.IMPORTANCE The mouse genome encodes a family of Oas proteins that synthesize 2'-5'A in response to dsRNA. 2'-5'A activates the endonuclease RNase L to cleave single-stranded viral and cellular RNAs. The inactive, full-length Oas1b protein confers flavivirus-specific disease resistance. Although similar numbers of neurons were infected in resistant and susceptible brains after an intracranial virus infection, viral components amplified only in susceptible brains at later times. A line of resistant RNase L-/- mice was used to evaluate the contribution of RNase L to the resistance phenotype in vivo Activation of RNase L antiviral activity by flavivirus infection was indicated by increased viral RNA levels in the brains of RNase L-/- mice. Oas1a and Oas1b mRNA levels were higher in infected RNase L-/- mice, indicating that activated RNase L also have a proflaviviral affect. However, the resistance phenotype was equally robust in RNase L-/- and RNase L+/+ mice.
Collapse
|
15
|
Dehler CE, Lester K, Della Pelle G, Jouneau L, Houel A, Collins C, Dovgan T, Machat R, Zou J, Boudinot P, Martin SAM, Collet B. Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:465-475. [PMID: 31142600 PMCID: PMC6612602 DOI: 10.4049/jimmunol.1801376] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 01/17/2023]
Abstract
IFN belong to a group of cytokines specialized in the immunity to viruses. Upon viral infection, type I IFN is produced and alters the transcriptome of responding cells through induction of a set of IFN stimulated genes (ISGs) with regulatory or antiviral function, resulting in a cellular antiviral state. Fish genomes have both type I IFN and type II IFN (IFN-γ), but no type III (λ) IFN has been identified. Their receptors are not simple counterparts of the mammalian type I/II IFN receptors, because alternative chains are used in type I IFN receptors. The mechanisms of the downstream signaling remain partly undefined. In mammals, members of the signal transducer and activator of family of transcription factors are responsible for the transmission of the signal from cytokine receptors, and STAT2 is required for type I but not type II IFN signaling. In fish, its role in IFN signaling in fish remains unclear. We isolated a Chinook salmon (Oncorhynchus tshawytscha) cell line, GS2, with a stat2 gene knocked out by CRISPR/Cas9 genome editing. In this cell line, the induction of ISGs by stimulation with a recombinant type I IFN is completely obliterated as evidenced by comparative RNA-seq analysis of the transcriptome of GS2 and its parental counterpart, EC. Despite a complete absence of ISGs induction, the GS2 cell line has a remarkable ability to resist to viral infections. Therefore, other STAT2-independent pathways may be induced by the viral infection, illustrating the robustness and redundancy of the innate antiviral defenses in fish.
Collapse
Affiliation(s)
| | - Katherine Lester
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Giulia Della Pelle
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Armel Houel
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Catherine Collins
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Tatiana Dovgan
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Radek Machat
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Jun Zou
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | | | - Bertrand Collet
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
16
|
Liu Q, Rao Y, Tian M, Zhang S, Feng P. Modulation of Innate Immune Signaling Pathways by Herpesviruses. Viruses 2019; 11:E572. [PMID: 31234396 PMCID: PMC6630988 DOI: 10.3390/v11060572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses can be detected by pattern recognition receptors (PRRs), which then activate downstream adaptors, kinases and transcription factors (TFs) to induce the expression of interferons (IFNs) and inflammatory cytokines. IFNs further activate the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, inducing the expression of interferon-stimulated genes (ISGs). These signaling events constitute host innate immunity to defeat herpesvirus infection and replication. A hallmark of all herpesviruses is their ability to establish persistent infection in the presence of active immune response. To achieve this, herpesviruses have evolved multiple strategies to suppress or exploit host innate immune signaling pathways to facilitate their infection. This review summarizes the key host innate immune components and their regulation by herpesviruses during infection. Also we highlight unanswered questions and research gaps for future perspectives.
Collapse
Affiliation(s)
- Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Mao Tian
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Liao Y, Goraya MU, Yuan X, Zhang B, Chiu SH, Chen JL. Functional Involvement of Interferon-Inducible Transmembrane Proteins in Antiviral Immunity. Front Microbiol 2019; 10:1097. [PMID: 31156602 PMCID: PMC6532022 DOI: 10.3389/fmicb.2019.01097] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
Interferons (IFNs) play crucial roles in host defense against viral infections by inducing the expression of numerous IFN-stimulated genes (ISGs) that can activate host antiviral immunity. Interferon-inducible transmembrane proteins (IFITMs), a family of small transmembrane proteins, are critical ISG products. Compelling evidence has implicated that IFITMs can establish an innate immune state to eliminate pathogens efficiently. IFITM proteins can impede broad-spectrum viral infection through various mechanisms. It is generally believed that IFITMs can block the viral entry by suppressing viral membrane fusion. However, some findings indicated that IFITMs might also inhibit viral gene expression and viral protein synthesis and thereby impair viral replication. IFITMs may incorporate into virions during viral assembly and thus reduce the infectivity of nascent virions. The precise inhibitory mechanism of IFITMs on viral infection and replication still requires further exploration. In this review, we highlight the recent findings regarding critical roles of IFITMs in host-virus interaction. We also discuss the molecular mechanisms underlying their functions in antiviral responses.
Collapse
Affiliation(s)
- Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Yuan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoge Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shih-Hsin Chiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Manjunath S, Saxena S, Mishra B, Santra L, Sahu AR, Wani SA, Tiwari AK, Mishra BP, Singh RK, Janga SC, Kumar GR. Early transcriptome profile of goat peripheral blood mononuclear cells (PBMCs) infected with peste des petits ruminant's vaccine virus (Sungri/96) revealed induction of antiviral response in an interferon independent manner. Res Vet Sci 2019; 124:166-177. [PMID: 30903969 DOI: 10.1016/j.rvsc.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Sungri/96 vaccine strain is considered the most potent vaccine providing long-term immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory highlighted induction of robust antiviral response in an interferon independent manner at 48 h and 120 h post infection (p.i.). However, immune response at the earliest time point 6 h p.i. (time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus has not been investigated. This study was taken up to understand the global gene expression profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6 h post infection (p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. Interestingly, type I interferons (IFNα/β) were not differentially expressed at this time point as well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus infection was found to be highly upregulated. IL27, an important antiviral host immune factor was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed significant enrichment of immune system processes with 233 genes indicating initiation of immune defense response in host cells. Protein interaction network showed important innate immune molecules in the immune network with high connectivity. The study highlights important immune and antiviral genes at the earliest time point.
Collapse
Affiliation(s)
- Siddappa Manjunath
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Bina Mishra
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Lakshman Santra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sajad Ahmed Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sarath Chandra Janga
- School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA.
| | - Gandham Ravi Kumar
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad 500032, India.
| |
Collapse
|
19
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Portugal R, Leitão A, Martins C. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Vet Microbiol 2018. [PMID: 29519508 DOI: 10.1016/j.vetmic.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ASFV causes an important disease of domestic swine and wild boar. Currently no vaccine is available, highlighting the necessity to understand ASFV modulation of innate immune responses in natural host cells. With this aim, macrophage cultures enriched in SWC9 and CD163 differentiation markers were infected in parallel with high virulent ASFV/L60 and low virulent ASFV/NHV, the latter lacking MGF 360 and 505/530 genes associated with type I interferon (IFN I) control. IFN I production and signaling were studied after completion of the viral cycles. None of the viruses increased IFN I production in host cells, and accordingly, didn't cause activation of the central mediator of the pathway IRF3. However, upon stimulation by poly:IC treatment during infections, L60 and NHV similarly inhibited IFN I production. This didn't seem to depend on IRF3 modulation since its activation levels were not significantly decreased in L60 infection and were even increased in NHV's, in comparison to stimulated mock infections. The infections didn't evidently activate JAK-STAT pathway mediators STAT1 and STAT2, but did increase expression of interferon stimulated genes (ISGs), to higher levels in NHV than L60 infection. Interestingly, in presence of IFN-α, L60 but not NHV was able to decrease significantly the expression of some of the ISGs tested. Overall, both L60 and NHV were able to inhibit IFN I production in macrophages, through a mechanism not dependent on IRF3 modulation. The high virulent isolate showed however a more effective control of the downstream ISGs expression pathway.
Collapse
Affiliation(s)
- Raquel Portugal
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Alexandre Leitão
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Carlos Martins
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
21
|
Ingle H, Peterson ST, Baldridge MT. Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses 2018; 10:E46. [PMID: 29361691 PMCID: PMC5795459 DOI: 10.3390/v10010046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.
Collapse
Affiliation(s)
- Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Xie Y, He S, Wang J. MicroRNA-373 facilitates HSV-1 replication through suppression of type I IFN response by targeting IRF1. Biomed Pharmacother 2018; 97:1409-1416. [DOI: 10.1016/j.biopha.2017.11.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/23/2017] [Accepted: 11/10/2017] [Indexed: 01/31/2023] Open
|
23
|
Menicucci AR, Versteeg K, Woolsey C, Mire CE, Geisbert JB, Cross RW, Agans KN, Jankeel A, Geisbert TW, Messaoudi I. Transcriptome Analysis of Circulating Immune Cell Subsets Highlight the Role of Monocytes in Zaire Ebola Virus Makona Pathogenesis. Front Immunol 2017; 8:1372. [PMID: 29123522 PMCID: PMC5662559 DOI: 10.3389/fimmu.2017.01372] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022] Open
Abstract
Existing models of Ebola virus disease (EVD) suggest antigen-presenting cells are initial targets of Zaire ebolavirus (ZEBOV). In vitro studies have shown that ZEBOV infection of monocytes and macrophages results in the production of inflammatory mediators, which may cause lymphocyte apoptosis. However, these findings have not been corroborated by in vivo studies. In this study, we report the first longitudinal analysis of transcriptional changes in purified monocytes, T-cells, and B-cells isolated from cynomolgus macaques following infection with ZEBOV-Makona. Our data reveal monocytes as one of the major immune cell subsets that supports ZEBOV replication in vivo. In addition, we report a marked increase in the transcription of genes involved in inflammation, coagulation, and vascular disease within monocytes, suggesting that monocytes contribute to EVD manifestations. Further, genes important for antigen presentation and regulation of immunity were downregulated, potentially subverting development of adaptive immunity. In contrast, lymphocytes, which do not support ZEBOV replication, showed transcriptional changes limited to a small number of interferon-stimulated genes (ISGs) and a failure to upregulate genes associated with an antiviral effector immune response. Collectively, these data suggest that ZEBOV-infected monocytes play a significant role in ZEBOV-Makona pathogenesis and strategies to suppress virus replication or modify innate responses to infection in these cells should be a priority for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea R Menicucci
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Krista Versteeg
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Courtney Woolsey
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Chad E Mire
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Zhou J, Wang SQ, Wei JC, Zhang XM, Gao ZC, Liu K, Ma ZY, Chen PY, Zhou B. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus. Viruses 2017; 9:v9010005. [PMID: 28075421 PMCID: PMC5294974 DOI: 10.3390/v9010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Mx proteins are interferon (IFN)-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV) infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα) restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA), overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shi-Qi Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Xiao-Min Zhang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhi-Can Gao
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Zhi-Yong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Pu-Yan Chen
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bin Zhou
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Jang H, Ngunjiri JM, Lee CW. Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens. PLoS One 2016; 11:e0156603. [PMID: 27257989 PMCID: PMC4892592 DOI: 10.1371/journal.pone.0156603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon (IFN) responses in chicken embryonic fibroblast cells. In this study, we investigated the relationship between induction of IFN and IFN-stimulated gene responses in vivo and the immunogenicity and protective efficacy of NS1-truncated LAIV. Our data demonstrates that accelerated antibody induction and protective efficacy of NS1-truncated LAIV correlates well with upregulation of IFN-stimulated genes. Further, through oral administration of recombinant chicken IFN alpha in drinking water, we provide direct evidence that type I IFN can promote rapid induction of adaptive immune responses and protective efficacy of influenza vaccine in chickens.
Collapse
Affiliation(s)
- Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - John M. Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- * E-mail: (JMN); (CWL)
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail: (JMN); (CWL)
| |
Collapse
|
26
|
Wang W, Xu L, Brandsma JH, Wang Y, Hakim MS, Zhou X, Yin Y, Fuhler GM, van der Laan LJW, van der Woude CJ, Sprengers D, Metselaar HJ, Smits R, Poot RA, Peppelenbosch MP, Pan Q. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV. Sci Rep 2016; 6:25482. [PMID: 27150018 PMCID: PMC4858707 DOI: 10.1038/srep25482] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/19/2016] [Indexed: 01/05/2023] Open
Abstract
IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Yijin Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands.,Department of Microbiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Xinying Zhou
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| |
Collapse
|
27
|
Lin JD, Feng N, Sen A, Balan M, Tseng HC, McElrath C, Smirnov SV, Peng J, Yasukawa LL, Durbin RK, Durbin JE, Greenberg HB, Kotenko SV. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. PLoS Pathog 2016; 12:e1005600. [PMID: 27128797 PMCID: PMC4851417 DOI: 10.1371/journal.ppat.1005600] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets of target cells coordinately regulate antiviral defenses against heterologous or homologous rotaviruses with substantially different effectiveness. Two distinct families of interferons (IFNs), type I (IFN-α/β) and type III (IFN-λ) IFNs, are quickly produced in response to virus infection and engage distinct receptors to invoke shared rapid and broad-spectrum antiviral mechanisms against invading pathogens. However, the relative importance of type I and type III IFNs in protecting different organ systems against specific viruses or distinct strains of an individual virus remains to be fully explored. Here we demonstrated in suckling mice that neither type I nor type III IFNs are effective in blocking intestinal replication of murine rotavirus, rather, viral clearance is dependent upon adaptive immune responses. In contrast, both IFN types cooperate to control intestinal replication and extra-intestinal spread of simian rotavirus in neonatal mice. Unexpectedly, we found that although intestinal epithelial cells (IECs) respond to both types of IFNs in neonatal mice, responsiveness of IECs to type I IFNs, but not type III IFNs, is diminished in adult mice. Transcriptional analysis showed that both types of IFN receptors induced overlapping intestinal antiviral responses, which were abrogated only when both receptor types were deleted. Overall, these findings reveal a well-coordinated spatial and temporal regulation of antiviral defenses by type I and type III IFNs in the gastrointestinal tract that varies significantly depending on the viral strain examined.
Collapse
Affiliation(s)
- Jian-Da Lin
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Ningguo Feng
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Adrish Sen
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Murugabaskar Balan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Hsiang-Chi Tseng
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Constance McElrath
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Sergey V. Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Jianya Peng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Linda L. Yasukawa
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Russell K. Durbin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Joan E. Durbin
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Harry B. Greenberg
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail: (HBG); (SVK)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- * E-mail: (HBG); (SVK)
| |
Collapse
|
28
|
Huang X, Yue Y, Li D, Zhao Y, Qiu L, Chen J, Pan Y, Xi J, Wang X, Sun Q, Li Q. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. Sci Rep 2016; 6:22303. [PMID: 26923481 PMCID: PMC4770412 DOI: 10.1038/srep22303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 12/25/2022] Open
Abstract
Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies.
Collapse
Affiliation(s)
- Xinwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming 650101, PR China
| | - Yaofei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Duo Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| |
Collapse
|
29
|
Abstract
New interferons (IFNs) include members of the type I IFN family, such as IFN epsilon (IFNε), IFN tau, IFN omega, and IFN kappa, as well as the type III IFN family, also known as the IFN lambdas. By comparison the classical or ‘old’ IFNs comprise the 14 subtypes of IFN alpha and IFN beta, which are all members of the type I IFN family, as well as type II IFN gamma. In this article, we examine the new IFNs and specifically discuss their discovery, comparative structures, functions in physiology and disease, the signaling pathways they initiate, and their regulatory controls. We highlight IFNε that was discovered in our laboratory and characterized for its role in protecting the female reproductive tract from infections.
Collapse
|
30
|
Odendall C, Kagan JC. The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol 2015; 12:47-52. [PMID: 25771505 PMCID: PMC4470718 DOI: 10.1016/j.coviro.2015.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFNs) were long considered to be the sole IFN species produced by virus-infected cells until the discovery of type III IFNs (IFNλs), decades later. Like type I IFNs, type III IFNs are induced by and protect against viral infections, leading to the initial conclusion that the two IFN species are identical in regulation and biological functions. However, the two systems differ in the tissue expression of their receptor, resulting in different roles in vivo. The unique nature of IFNλs has been further demonstrated by recent studies revealing differences in the regulation of type I and III IFN expression, and how these proteins elicit specific cellular responses. This review focuses on the distinctive features of type III IFNs in antiviral innate immunity.
Collapse
Affiliation(s)
- Charlotte Odendall
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Jacquelin B, Petitjean G, Kunkel D, Liovat AS, Jochems SP, Rogers KA, Ploquin MJ, Madec Y, Barré-Sinoussi F, Dereuddre-Bosquet N, Lebon P, Le Grand R, Villinger F, Müller-Trutwin M. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog 2014; 10:e1004241. [PMID: 24991927 PMCID: PMC4081777 DOI: 10.1371/journal.ppat.1004241] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products. Chronic inflammation is considered as directly involved in AIDS pathogenesis. The role of IFN-α as a driving force of chronic inflammation is under debate. Natural hosts of SIV, such as African green monkeys (AGMs), avoid chronic inflammation. We show for the first time that NK cells are strongly activated during acute SIVagm infection. This further demonstrates that AGMs mount a strong early innate immune response. Myeloid and plasmacytoid dendritic cells (mDCs and pDCs) homed to lymph nodes; however mDCs showed a stronger maturation profile than pDCs. Monitoring of cytokine profiles in plasma suggests that the control of inflammation in AGMs is starting earlier than previously considered, weeks before the end of the acute infection. We tested whether the capacity to control inflammation depends on the levels of IFN-α produced. When treated with high doses of IFN-α during acute SIVagm infection, AGMs did not show increase of immune activation or signs of disease progression. Our study provides evidence that the control of inflammation in SIVagm infection is not the consequence of weaker IFN-α levels. These data indicate that the sustained interferon-stimulated gene induction and chronic inflammation in HIV/SIVmac infections is driven by factors other than IFN-α.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Gaël Petitjean
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Désirée Kunkel
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Anne-Sophie Liovat
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Simon P. Jochems
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Kenneth A. Rogers
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mickaël J. Ploquin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | | | | | - Pierre Lebon
- Saint-Vincent de Paul Hospital & Paris Descartes University, Paris, France
| | - Roger Le Grand
- CEA, Division of Immuno-Virology, DSV, iMETI, Fontenay-aux-Roses, France
| | - François Villinger
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | |
Collapse
|
32
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
33
|
Liu K, Liao X, Zhou B, Yao H, Fan S, Chen P, Miao D. Porcine alpha interferon inhibit Japanese encephalitis virus replication by different ISGs in vitro. Res Vet Sci 2013; 95:950-6. [DOI: 10.1016/j.rvsc.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/01/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
34
|
Zebrafish ISG15 exerts a strong antiviral activity against RNA and DNA viruses and regulates the interferon response. J Virol 2013; 87:10025-36. [PMID: 23824820 DOI: 10.1128/jvi.01294-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ISG15, a 15-kDa interferon-induced protein that participates in antiviral defenses of mammals, is highly conserved among vertebrates. In fish, as in mammals, viral infection and interferon treatment induce isg15 expression. The two ubiquitin-like domains of ISG15 and the presence of a consensus LRLRGG sequence in the C-terminal region, which is required for the covalent conjugation to a substrate protein, are also conserved in fish. Our data demonstrate that overexpression of zebrafish ISG15 (zf-ISG15) in EPC cells is sufficient to inhibit viral infection by RNA viruses belonging to the genera Novirhabdovirus and Birnavirus and by DNA viruses of the genus Iridovirus. In coexpression experiments with IHNV proteins, we demonstrate specific ISGylation of phosphoprotein and nonvirion protein. Mutation of the glycine residues in the consensus LRLRGG motif abolishes zf-ISG15 conjugation to these proteins and the cellular protection against viral infection, thus connecting ISGylation and ISG15-dependent viral restriction. Additionally, zf-ISG15 overexpression triggers induction of the rig-I and viperin genes as well as, to a lesser extent, the IFN gene. Overall, our data demonstrate the antiviral effect of a fish ISG15 protein, revealing the conservation among vertebrates of an ISGylation mechanism likely directed against viruses. Furthermore, our findings indicate that zf-ISG15 affects the IFN system at several levels, and its study shall shed further light on the evolution of the complex regulation of the innate antiviral response in vertebrate cells.
Collapse
|
35
|
A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio 2013; 4:e00385-13. [PMID: 23781071 PMCID: PMC3684836 DOI: 10.1128/mbio.00385-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The type I interferon (IFN) signaling pathway restricts infection of many divergent families of RNA and DNA viruses by inducing hundreds of IFN-stimulated genes (ISGs), some of which have direct antiviral activity. We screened 813 short hairpin RNA (shRNA) constructs targeting 245 human ISGs using a flow cytometry approach to identify genes that modulated infection of West Nile virus (WNV) in IFN-β-treated human cells. Thirty ISGs with inhibitory effects against WNV were identified, including several novel genes that had antiviral activity against related and unrelated positive-strand RNA viruses. We also defined one ISG, activating signal cointegrator complex 3 (ASCC3), which functioned as a negative regulator of the host defense response. Silencing of ASCC3 resulted in upregulation of multiple antiviral ISGs, which correlated with inhibition of infection of several positive-strand RNA viruses. Reciprocally, ectopic expression of human ASCC3 or mouse Ascc3 resulted in downregulation of ISGs and increased viral infection. Mechanism-of-action and RNA sequencing studies revealed that ASCC3 functions to modulate ISG expression in an IRF-3- and IRF-7-dependent manner. Compared to prior ectopic ISG expression studies, our shRNA screen identified novel ISGs that restrict infection of WNV and other viruses and defined a new counterregulatory ISG, ASCC3, which tempers cell-intrinsic immunity. West Nile virus (WNV) is a mosquito-transmitted virus that continues to pose a threat to public health. Innate immune responses, especially those downstream of type I interferon (IFN) signaling, are critical for controlling virus infection and spread. We performed a genetic screen using a gene silencing approach and identified 30 interferon-stimulated genes (ISGs) that contributed to the host antiviral response against WNV. As part of this screen, we also identified a novel negative regulatory protein, ASCC3, which dampens expression of ISGs, including those with antiviral or proinflammatory activity. In summary, our studies define a series of heretofore-uncharacterized ISGs with antiviral effects against multiple viruses or counterregulatory effects that temper IFN signaling and likely minimize immune-mediated pathology.
Collapse
|
36
|
Increased early RNA replication by chimeric West Nile virus W956IC leads to IPS-1-mediated activation of NF-κB and insufficient virus-mediated counteraction of the resulting canonical type I interferon signaling. J Virol 2013; 87:7952-65. [PMID: 23678179 DOI: 10.1128/jvi.02842-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although infections with "natural" West Nile virus (WNV) and the chimeric W956IC WNV infectious clone virus produce comparable peak virus yields in type I interferon (IFN) response-deficient BHK cells, W956IC infection produces higher levels of "unprotected" viral RNA at early times after infection. Analysis of infections with these two viruses in IFN-competent cells showed that W956IC activated NF-κB, induced higher levels of IFN-β, and produced lower virus yields than WNV strain Eg101. IPS-1 was required for both increased induction of IFN-β and decreased yields of W956IC. In Eg101-infected cells, phospho-STAT1/STAT2 nuclear translocation was blocked at all times analyzed, while some phospho-STAT1/STAT2 nuclear translocation was still detected at 8 h after infection in W956IC-infected mouse embryonic fibroblasts (MEFs), and early viral protein levels were lower in these cells. A set of additional chimeras was made by replacing various W956IC gene regions with the Eg101 equivalents. As reported previously, for three of these chimeras, the low early RNA phenotype of Eg101 was restored in BHK cells. Analysis of infections with two of these chimeric viruses in MEFs detected lower early viral RNA levels, higher early viral protein levels, lower early IFN-β levels, and higher virus yields similar to those seen after Eg101 infection. The data suggest that replicase protein interactions directly or indirectly regulate genome switching between replication and translation at early times in favor of translation to minimize NF-κB activation and IFN induction by decreasing the amount of unprotected viral RNA, to produce sufficient viral protein to block canonical type I IFN signaling, and to efficiently remodel cell membranes for exponential genome amplification.
Collapse
|
37
|
Diamond MS, Gale M. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 2012; 33:522-30. [PMID: 22726607 DOI: 10.1016/j.it.2012.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 12/25/2022]
Abstract
West Nile virus (WNV) is an enveloped positive-stranded RNA virus that has emerged over the past decade in North America to cause epidemics of meningitis, encephalitis, and acute flaccid paralysis in humans. WNV has broad species specificity, and replicates efficiently in many cell types, including those of the innate immune and central nervous systems. Recent studies have defined the pathogen recognition receptor (PRR) and signaling pathways by which WNV is detected, and several effector mechanisms that contribute to protective cell-intrinsic immunity. This review focuses on recent advances in identifying the host sensors that detect WNV, the adaptor molecules and signaling pathways that regulate the induction of interferon (IFN)-dependent defenses, and the proteins that limit WNV replication, spread, and disease pathogenesis.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|