1
|
Zeng YJ, Hsu MK, Cai JR, Wang HY. A strategy of novel molecular hydrogen-producing antioxidative auxiliary system improves virus production in cell bioreactor. Sci Rep 2024; 14:4092. [PMID: 38374429 PMCID: PMC10876984 DOI: 10.1038/s41598-024-54847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.
Collapse
Affiliation(s)
- Yu-Jing Zeng
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Min-Kung Hsu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Animal Biologics Pilot Production Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Innovative Bioproducts Technical Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Jia-Rong Cai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
2
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
3
|
Gu H, Liu Y, Zhao Y, Qu H, Li Y, Ahmed AA, Liu HY, Hu P, Cai D. Hepatic Anti-Oxidative Genes CAT and GPX4 Are Epigenetically Modulated by RORγ/NRF2 in Alphacoronavirus-Exposed Piglets. Antioxidants (Basel) 2023; 12:1305. [PMID: 37372035 DOI: 10.3390/antiox12061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
As a member of alpha-coronaviruses, PEDV could lead to severe diarrhea and dehydration in newborn piglets. Given that lipid peroxides in the liver are key mediators of cell proliferation and death, the role and regulation of endogenous lipid peroxide metabolism in response to coronavirus infection need to be illuminated. The enzymatic activities of SOD, CAT, mitochondrial complex-I, complex-III, and complex-V, along with the glutathione and ATP contents, were significantly decreased in the liver of PEDV piglets. In contrast, the lipid peroxidation biomarkers, malondialdehyde, and ROS were markedly elevated. Moreover, we found that the peroxisome metabolism was inhibited by the PEDV infection using transcriptome analysis. These down-regulated anti-oxidative genes, including GPX4, CAT, SOD1, SOD2, GCLC, and SLC7A11, were further validated by qRT-PCR and immunoblotting. Because the nuclear receptor RORγ-driven MVA pathway is critical for LPO, we provided new evidence that RORγ also controlled the genes CAT and GPX4 involved in peroxisome metabolism in the PEDV piglets. We found that RORγ directly binds to these two genes using ChIP-seq and ChIP-qPCR analysis, where PEDV strongly repressed the binding enrichments. The occupancies of histone active marks such as H3K9/27ac and H3K4me1/2, together with active co-factor p300 and polymerase II at the locus of CAT and GPX4, were significantly decreased. Importantly, PEDV infection disrupted the physical association between RORγ and NRF2, facilitating the down-regulation of the CAT and GPX4 genes at the transcriptional levels. RORγ is a potential factor in modulating the CAT and GPX4 gene expressions in the liver of PEDV piglets by interacting with NRF2 and histone modifications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A Ahmed
- Biomedical Research Institute, Darfur University College, Nyala 56022, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
4
|
Au TY, Wiśniewski OW, Benjamin S, Kubicki T, Dytfeld D, Gil L. G6PD deficiency-does it alter the course of COVID-19 infections? Ann Hematol 2023:10.1007/s00277-023-05164-y. [PMID: 36905446 PMCID: PMC10006571 DOI: 10.1007/s00277-023-05164-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/18/2022] [Indexed: 03/12/2023]
Abstract
Despite the existence of well-founded data around the relationship between reactive oxygen species (ROS) and glucose-6-phosphate dehydrogenase (G6PD), current research around G6PD-deficient patients with viral infections, and limitations as a result of their condition, are inadequate. Here, we analyze existing data around immunological risks, complications, and consequences of this disease, particularly in relation to COVID-19 infections and treatment. The relationship between G6PD deficiency and elevated ROS leading to increased viral load suggests that these patients may confer heightened infectivity. Additionally, worsened prognoses and more severe complications of infection may be realized in class I G6PD-deficient individuals. Though more research is demanded on the topic, preliminary studies suggest that antioxidative therapy which reduces ROS levels in these patients could prove beneficial in the treatment of viral infections in G6PD-deficient individuals.
Collapse
Affiliation(s)
- Tsz Yuen Au
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | | | - Shamiram Benjamin
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Tadeusz Kubicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Dytfeld
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
5
|
Zhang Q, Li P, Li H, Yi D, Guo S, Wang L, Zhao D, Wang C, Wu T, Hou Y. Multifaceted Effects and Mechanisms of N-Acetylcysteine on Intestinal Injury in a Porcine Epidemic Diarrhea Virus-Infected Porcine Model. Mol Nutr Food Res 2022; 66:e2200369. [PMID: 36321532 DOI: 10.1002/mnfr.202200369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study investigates the potential effects of N-acetylcysteine (NAC) on intestinal injury in a porcine epidemic diarrhea virus (PEDV)-infected porcine model. METHODS AND RESULTS Thirty-two piglets are randomly assigned to one of four groups: the control, PEDV, NAC, and NAC+PEDV. Piglets in the NAC+PEDV group are orally administrated with NAC (100 mg (kg·BW)-1 day-1 ) for 4 consecutive days after 2 days of PEDV infection. The results show that NAC administration decreases the diarrhea rate and improves intestinal morphology. The concentration of diamine oxidase and intestinal fatty-acid binding protein, as well as IL-1β, IL-8, and TNF-α in the plasma, is decreased by NAC. Intriguingly, NAC administration significantly increases the viral load in the jejunum and ileum and down-regulates the expression of interferon-related genes. Microarray and proteomic analyses show that the differentially expressed genes/proteins between NAC+PEDV and PEDV groups are highly enriched in substance transport. Furthermore, aquaporin 8/10 expression is significantly increased by NAC upon PEDV infection. CONCLUSION NAC administration alleviates PEDV-induced intestinal injury by inhibiting inflammatory responses and improving substance transport, but promotes viral replication by inhibiting interferon signaling. These results suggest NAC exhibits multifaceted effects upon PEDV infection, and thus caution is required when using NAC as a dietary supplement to prevent viral infection.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Hanbo Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
6
|
Porcine Circovirus 2 Activates the PERK-Reactive Oxygen Species Axis To Induce p53 Phosphorylation with Subsequent Cell Cycle Arrest at S Phase in Favor of Its Replication. J Virol 2022; 96:e0127422. [PMID: 36300938 PMCID: PMC9683002 DOI: 10.1128/jvi.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coinfections or noninfectious triggers have long been considered to potentiate PCV2 infection, leading to manifestation of PCVAD. The triggering mechanisms remain largely unknown.
Collapse
|
7
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
8
|
Feng H, Fu J, Zhang B, Xue T, Liu C. A Novel Virus-Like Agent Originated From Genome Rearrangement of Porcine Circovirus Type 2 (PCV2) Enhances PCV2 Replication and Regulates Intracellular Redox Status In Vitro. Front Cell Infect Microbiol 2022; 12:855920. [PMID: 35493731 PMCID: PMC9043654 DOI: 10.3389/fcimb.2022.855920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023] Open
Abstract
Genome rearrangement occurs to porcine circovirus type 2 (PCV2) during in vitro and in vivo infections, and a number of rearranged PCV2 genomes have been isolated and characterized. This study was conducted to investigate the role of the rearranged PCV2 (rPCV2) in PCV2 replication and the biological effect of rPCV2 in host cells. Two whole rPCV2 genome sequences (358 nt and 1125 nt in length) were synthesized and recombinant plasmids pBSK(+)-rPCV2 (pBSK(+)-1125 and pBSK(+)-358) were constructed. A novel virus-like agent (rPCV2-1125) was rescued by in vitro transfection of porcine kidney cell line (PK-15) and porcine alveolar macrophage 3D4/21 cells. The data indicate that rPCV2-1125 significantly enhanced PCV2 replication in vitro. Furthermore, rPCV2-1125 led to oxidative stress in host cells, as indicated by decreased intracellular glutathione (GSH) and total superoxide dismutase (SOD) activities, as well as increased malondialdehyde (MDA) levels. These results provide new insights into genome rearrangement of PCV2 and will contribute to future studies of PCV2 replication and associated mechanisms.
Collapse
Affiliation(s)
- Huicheng Feng
- School of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Zhang
- School of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, Shandong, China
- *Correspondence: Chuanmin Liu, ; Tao Xue,
| | - Chuanmin Liu
- School of Pharmacy, Linyi University, Linyi, Shandong, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Chuanmin Liu, ; Tao Xue,
| |
Collapse
|
9
|
Zhang Y, Zhang X, Dai K, Zhu M, Liang Z, Pan J, Zhang Z, Xue R, Cao G, Hu X, Gong C. Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol 2022; 194:223-232. [PMID: 34875309 DOI: 10.1016/j.ijbiomac.2021.11.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Bombyx mori cypovirus (BmCPV), a member of the family Reoviridae, is a model of Cypovirus, has a 10 segmented double-stranded RNA genome. However, so far, only one viral small peptide vSP27 with negative regulation on viral infection was identified; the mechanisms underlying host-BmCPV interaction are still unknown. Here, we identified that vSP27 was translated from a BmCPV derived circular RNA (circRNA-vSP27). Subsequently, results showed that vSP27 induced generation of ROS activated the NF-κB signaling pathway, induced the expression of antimicrobial peptides, and suppressed BmCPV infection. On the other hand, we identified a nuclear protein Akirin that could hijack vSP27, positively regulate the NF-κB pathway, and lead to inhibiting the viral infection. Altogether, our data suggested that BmCPV derived circRNA-vSP27 with small peptide translation activity may be employed by the host immunity in defense against the BmCPV infection.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Su L, Gao Y, Zhang M, Liu Z, Lin Q, Gong L, Guo J, Chen L, An T, Chen J. Andrographolide and Its Derivative Potassium Dehydrographolide Succinate Suppress PRRSV Replication in Primary and Established Cells via Differential Mechanisms of Action. Virol Sin 2021; 36:1626-1643. [PMID: 34704222 DOI: 10.1007/s12250-021-00455-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause significant economic loss worldwide and remains a serious threat to the pork industry. Currently, vaccination strategies provide limited protection against PRRSV infection, and consequently, new antiviral strategies are urgently required. Andrographolide (Andro) and its derivative potassium dehydrographolide succinate (PDS) have been used clinically in China and other Asian countries as therapies for inflammation-related diseases, including bacterial and viral infections, for decades. Here, we demonstrate that Andro and PDS exhibit robust activity against PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages (PAMs). The two compounds exhibited broad-spectrum inhibitory activities in vitro against clinically circulating type 2 PRRSV GD-HD, XH-GD, and NADC30-like HNhx strains in China. The EC50 values of Andro against three tested PRRSV strain infections in Marc-145 cells ranged from 11.7 to 15.3 μmol/L, with selectivity indexes ranging from 8.3 to 10.8, while the EC50 values of PDS ranged from 57.1 to 85.4 μmol/L, with selectivity indexes ranging from 344 to 515. Mechanistically, the anti-PRRSV activity of the two compounds is closely associated with their potent suppression on NF-κB activation and enhanced oxidative stress induced by PRRSV infection. Further mechanistic investigations revealed that PDS, but not Andro, is able to directly interact with PRRSV particles. Taken together, our findings suggest that Andro and PDS are promising PRRSV inhibitors in vitro and deserves further in vivo studies in swine.
Collapse
Affiliation(s)
- Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yarou Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Gong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianying Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lixia Chen
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Lv Q, Wang T, Liu S, Zhu Y. Porcine circovirus type 2 exploits cap to inhibit PKR activation through interaction with Hsp40. Vet Microbiol 2020; 252:108929. [PMID: 33254057 DOI: 10.1016/j.vetmic.2020.108929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Porcine circovirus type 2 is the main pathogen of porcine circovirus disease, which has caused enormous economic losses to the pig industry worldwide. The PKR signaling pathway is important for the cellular antiviral response, but its role in the process of PCV2 infection is unknown. In this study, we first found that dsRNA was produced and that PKR was activated in PCV2 infection. However, interestingly, the activation of PKR was inhibited when the Cap protein was exogenously expressed in PAMs, and this inhibition was reversed by the expression of DNAJC7. The interaction between Cap and DNAJC7 was confirmed by laser confocal microscopy, coimmunoprecipitation and GST pull-down, and it was found that PCV2 infection or the expression of Cap protein could induce DNAJC7 to migrate to the nucleus and release P58IPK, an inhibitor of PKR activation. Downregulating the expression of DNAJC7 by a specific inhibitor or recombinant lentivirus-mediated shRNA, inhibited the replication of the PCV2 genome and the production of virions, which was consistent with the increase of DNAJC7 expression in multiple tissues of weaned piglets infected with PCV2. These data indicate that although PKR was activated by PCV2 infection, the activation was inhibited by Cap through an interaction with DNAJC7. These results help to understand the molecular mechanism of immune escape after PCV2 infection.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China.
| |
Collapse
|
12
|
Wang QH, Kuang N, Hu WY, Yin D, Wei YY, Hu TJ. The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies. J Vet Sci 2020; 21:e61. [PMID: 32735098 PMCID: PMC7402940 DOI: 10.4142/jvs.2020.21.e61] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. Objectives The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. Methods Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. Results PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. Conclusions PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.
Collapse
Affiliation(s)
- Qiu Hua Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Na Kuang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Wen Yue Hu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Yin
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ting Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
13
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Xu Y, Zheng J, Sun P, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H, Sun N. Cepharanthine and Curcumin inhibited mitochondrial apoptosis induced by PCV2. BMC Vet Res 2020; 16:345. [PMID: 32948186 PMCID: PMC7499946 DOI: 10.1186/s12917-020-02568-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an immunosuppressive pathogen with high prevalence rate in pig farms. It has caused serious economic losses to the global pig industry. Due to the rapid mutation of PCV2 strain and co-infection of different genotypes, vaccination could not eradicate the infection of PCV2. It is necessary to screen and develop effective new compounds and explore their anti-apoptotic mechanism. The 13 natural compounds were purchased, with a clear plant origin, chemical structure and content and specific biological activities. Results The maximum no-cytotoxic concentration (MNTC) and 50% cytotoxic concentration (CC50) of 13 tested compounds were obtained by the cytopathologic effect (CPE) assay and (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in PK-15 cells. The results of qPCR and Western blot showed that, compared with the PCV2 infected group, the expression of Cap in Paeonol (0.4 mg/mL and 0.2 mg/mL), Cepharanthine (0.003 mg/mL, 0.0015 mg/mL and 0.00075 mg/mL) and Curcumin (0.02 mg/mL, 0.001 mg/mL and 0.005 mg/mL) treated groups were significantly lowered in a dose-dependent manner. The results of Annexin V-FITC/PI, JC-1, Western blot and ROS analysis showed that the expression of cleaved caspase-3 and Bax were up-regulated Bcl-2 was down-regulated in Cepharanthine or Curcumin treated groups, while ROS and MMP value were decreased at different degrees and the apoptosis rate was reduced. In this study, Ribavirin was used as a positive control. Conclusions Paeonol, Cepharanthine and Curcumin have significant antiviral effect. And the PCV2-induced Mitochondrial apoptosis was mainly remitted by Cepharanthine and Curcumin.
Collapse
Affiliation(s)
- Yinlan Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiangang Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panpan Sun
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
15
|
Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020; 9:E659. [PMID: 32722164 PMCID: PMC7463602 DOI: 10.3390/antiox9080659] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Nrf2-Keap1-ARE pathway is the principal regulator of antioxidant and phase II detoxification genes. Its activation increases the expression of antioxidant and cytoprotective proteins, protecting cells against infections. Nrf2 modulates virus-induced oxidative stress, ROS generation, and disease pathogenesis, which are vital in the viral life cycle. During respiratory viral infections, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an inflammatory process, and oxidative stress of the epithelium lining cells activate the transcription factor Nrf2, which protects cells from oxidative stress and inflammation. Nrf2 reduces angiotensin-converting enzyme 2 (ACE2) receptors expression in respiratory epithelial cells. SARS-CoV2 has a high affinity for ACE2 that works as receptors for coronavirus surface spike glycoprotein, facilitating viral entry. Disease severity may also be modulated by pre-existing conditions, such as impaired immune response, obesity, and age, where decreased level of Nrf2 is a common feature. Consequently, Nrf2 activators may increase Nrf2 levels and enhance antiviral mediators' expression, which could initiate an "antiviral state", priming cells against viral infection. Therefore, this hypothesis paper describes the use of flavonoid supplements combined with vitamin D3 to activate Nrf2, which may be a potential target to prevent and/or decrease SARS-CoV-2 infection severity, reducing oxidative stress and inflammation, enhancing innate immunity, and downregulating ACE2 receptors.
Collapse
Affiliation(s)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
16
|
Xu W, Zhao T, Xiao H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:400. [PMID: 32625169 PMCID: PMC7311749 DOI: 10.3389/fendo.2020.00400] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.
Collapse
Affiliation(s)
| | | | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Zhang Y, Zhang X, Liang Z, Dai K, Zhu M, Zhang M, Pan J, Xue R, Cao G, Tang J, Song X, Hu X, Gong C. Interleukin-17 suppresses grass carp reovirus infection in Ctenopharyngodon idellus kidney cells by activating NF-κB signaling. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2020; 520:734969. [PMID: 32287459 PMCID: PMC7112052 DOI: 10.1016/j.aquaculture.2020.734969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
The grass carp accounts for a large proportion of aquacultural production in China, but the hemorrhagic disease caused by grass carp reovirus (GCRV) infection often causes huge economic losses to the industry. Interleukin 17 (IL-17) is an important cytokine that plays a critical role in the inflammatory and immune responses. Although IL-17 family members have been extensively studied in mammals, our knowledge of the activity of IL-17 proteins in teleosts in response to viral infection is still limited. In this study, the role of IL-17 in GCRV infection and its mechanism were investigated. The expression levels of IL-17AF1, IL-17AF2, and IL-17AF3 in Ctenopharyngodon idella kidney (CIK) cells gradually increased from 6 h after infection with GCRV. The nuclear translocation of p65, which acts in the NF-κB signaling pathway, was also increased by GCRV infection. The overexpression of IL-17AF1, IL-17AF2, or IL-17AF3 also promoted the nuclear translocation of p65 and the levels of phospho-IκBα in CIK cells, and reduced the expression of the viral structural protein VP7. An NF-κB signal inhibitor abolished the inhibition of GCRV infection by IL-17 proteins. These results suggested that the NF-κB signaling pathway was activated by the overexpression of IL-17 proteins, resulting in the inhibition of viral infection. In conclusion, in this study, we demonstrated that IL-17AF1, IL-17AF2, and IL-17AF3 acted as immune cytokines, exerting an antiviral effect by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kun Dai
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingtian Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation. Viruses 2020; 12:v12030289. [PMID: 32155766 PMCID: PMC7150875 DOI: 10.3390/v12030289] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dynamics is essential for the maintenance of cell homeostasis. Previous studies have shown that porcine circovirus 2 (PCV2) infection decreases the mitochondrial membrane potential and causes the elevation of reactive oxygen species (ROS), which may ultimately lead to mitochondrial apoptosis. However, whether PCV2 induce mitophagy remains unknown. Here we show that PCV2-induced mitophagy in PK-15 cells via Drp1 phosphorylation and PINK1/Parkin activation. PCV2 infection enhanced the phosphorylation of Drp1 and its subsequent translocation to mitochondria. PCV2-induced Drp1 phosphorylation could be suppressed by specific CDK1 inhibitor RO-3306, suggesting CDK1 as its possible upstream molecule. PCV2 infection increased the amount of ROS, up-regulated PINK1 expression, and stimulated recruitment of Parkin to mitochondria. N-acetyl-L-cysteine (NAC) markedly decreased PCV2-induced ROS, down-regulated Drp1 phosphorylation, and lessened PINK1 expression and mitochondrial accumulation of Parkin. Inhibition of Drp1 by mitochondrial division inhibitor-1 Mdivi-1 or RNA silencing not only resulted in the reduction of ROS and PINK1, improved mitochondrial mass and mitochondrial membrane potential, and decreased mitochondrial translocation of Parkin, but also led to reduced apoptotic responses. Together, our study shows that ROS induction due to PCV2 infection is responsible for the activation of Drp1 and the subsequent mitophagic and mitochondrial apoptotic responses.
Collapse
|
19
|
Rajesh JB, Rajkhowa S, Dimri U, Prasad H, Mohan NH, Hmar L, Sarma K, Chethan GE, Behera P, Jaganmohanarao G, Behera S, Zosangpuii. Haemato-biochemical alterations and oxidative stress associated with naturally occurring porcine circovirus2 infection in pigs. Trop Anim Health Prod 2020; 52:2243-2250. [PMID: 32125595 DOI: 10.1007/s11250-020-02247-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Porcine circovirus2 (PCV2) infection in pigs is one of the major causes of economic loss to the farmers in terms of low production, slow growth and increase post-weaning mortality rate. The effect of PCV2 infection on haemogram, serum biochemical profile and oxidant/anti-oxidant status is not well established in pigs. In the present study, haemogram, serum biochemical profile and oxidant/anti-oxidant status were assessed in pigs confirmed positive for PCV2 infections as evidenced by commercially available enzyme-linked immunosorbent assay kit (n = 151) and polymerase chain reaction (PCR) (n = 42) among a total of 306 number of pigs included in the study. Non-infected healthy pigs (n = 6) served as healthy control. The total erythrocyte count (TEC), haemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), differential leukocyte count (DLC) and thrombocyte count were measured. The levels of total protein, albumin, globulin, total bilirubin, direct bilirubin, blood urea nitrogen (BUN), creatinine and glucose and enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT) and alkaline phosphatase (ALP) were measured. Oxidative stress indicators such as plasma malondialdehyde (MDA) and total anti-oxidant activity (TAOA) were measured using commercially available kits. The mean values of TLC, lymphocytes and thrombocyte count were significantly (P < 0.05) low in PCV2-infected pigs. The levels of globulin, AST, GGT, BUN and creatinine were significantly increased (P < 0.05) whereas levels of albumin and glucose significantly (P < 0.05) decreased in PCV2-infected pigs. The significant increase (P < 0.05) in MDA level and significant decrease (P < 0.05) in TAOA level were noticed in PCV2-infected animals as compared with healthy control. The present study supports immunosuppression, possible multiple organ damage and oxidative stress associated with naturally occurring PCV2 infection in pigs. Timely vaccination and managemental practices can reduce PCV2 infection in farms. In spite of many research studies, there is still paucity of detailed systemic study on haemato-biochemical alteration and oxidative stress associated with PCV2 infection.
Collapse
Affiliation(s)
- J B Rajesh
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India.
| | - S Rajkhowa
- Indian Council for Agricultural Research-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - U Dimri
- Division of Medicine, Indian Council for Agricultural Research-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H Prasad
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - N H Mohan
- Indian Council for Agricultural Research-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - L Hmar
- All India Coordinated Research Project on Pigs, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - K Sarma
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - G E Chethan
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - P Behera
- Department of Veterinary Biochemistry and Physiology, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - G Jaganmohanarao
- Department of Veterinary Biochemistry and Physiology, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - S Behera
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| | - Zosangpuii
- All India Coordinated Research Project on Pigs, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, Mizoram, 796015, India
| |
Collapse
|
20
|
Veskoukis AS. Redox signaling and antioxidant defense in pathogenic microorganisms: a link to disease and putative therapy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Abstract
Phytotherapy, or herbalism, is defined as the usage of plants or herbs as medication to treat or prevent diseases in human and animals. The usage is gaining more attention among medical practitioners as well as large-scale livestock producers. A number of reports have shown the positive effects of herbal extracts as an antiviral agent used in animal feed or as a prophylaxis and remedy. Besides being a cheaper and safer alternative, the use of herbs may reduce the incidence of drug resistance and may modulate the immune system in preventing viral-related diseases. In this chapter, the antiviral effects of several herbs and their extracts against viruses in terms of the mechanism of action in targeting viral replication steps, the effects in the host and the application in animals will be discussed. The information given may aid in improving the health and increase the production of animals.
Collapse
|
22
|
Sreekanth GP, Panaampon J, Suttitheptumrong A, Chuncharunee A, Bootkunha J, Yenchitsomanus PT, Limjindaporn T. Drug repurposing of N-acetyl cysteine as antiviral against dengue virus infection. Antiviral Res 2019; 166:42-55. [PMID: 30928439 DOI: 10.1016/j.antiviral.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023]
Abstract
Liver injury is one of the hallmark features of severe dengue virus (DENV) infection since DENV can replicate in the liver and induce hepatocytes to undergo apoptosis. N-acetyl cysteine (NAC), which is a clinically-used drug for treating acetaminophen toxicity, was found to benefit patients with DENV-induced liver injury; however, its mechanism of action remains unclear. Accordingly, our aim was to repurpose NAC in the preclinical studies to investigate its mechanism of action. Time of addition experiments in HepG2 cells elucidated effectiveness of NAC to reduce infectious virion at pre-, during- and post infection. In DENV-infected mice, NAC improved DENV-associated clinical manifestations, including leucopenia and thrombocytopenia, and reduced liver injury and hepatocyte apoptosis. Interestingly, we discovered that NAC significantly reduced DENV production in HepG2 cells and in liver of DENV-infected mice by induction of antiviral responses via interferon signaling. NAC treatment in DENV-infected mice helped to maintain antioxidant enzymes and redox balance in the liver. Therefore, NAC reduces DENV production and oxidative damage to ameliorate DENV-induced liver injury. Taken together, these findings suggest the novel therapeutic potential of NAC in DENV-induced liver injury and recommend evaluating its efficacy and safety in humans with DENV-induced liver injury.
Collapse
Affiliation(s)
- Gopinathan Pillai Sreekanth
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jutatip Panaampon
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aroonroong Suttitheptumrong
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aporn Chuncharunee
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jintana Bootkunha
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Thawornchai Limjindaporn
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
23
|
Porcine Circovirus Type 2 Induces ORF3-Independent Mitochondrial Apoptosis via PERK Activation and Elevation of Cytosolic Calcium. J Virol 2019; 93:JVI.01784-18. [PMID: 30651358 DOI: 10.1128/jvi.01784-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/29/2018] [Indexed: 01/27/2023] Open
Abstract
Our previous studies demonstrated that porcine circovirus type 2 (PCV2) triggers an unfolded protein response (UPR) in porcine kidney PK-15 cells by activating the protein kinase R-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α) pathway of endoplasmic reticulum (ER) stress, which in turn facilitates viral replication (Y. Zhou et al., Viruses 8:e56, 2016, https://doi.org/10.3390/v8020056; Y. Zhou et al., J Zhejiang Univ Sci B 18:316-323, 2017, https://doi.org/10.1631/jzus.B1600208). PCV2 is found to cause oxidative stress and upregulation of cytoplasmic Ca2+ levels. The virus is reported to employ its open reading frame 3 (ORF3) to induce apoptosis. We wondered whether and how PCV2-induced UPR would lead to apoptosis independent of ORF3. Using an ORF3-deficient PCV2 mutant (ΔORF3), apoptotic responses in infected PK-15 and porcine alveolar macrophage (PAM) cells were still apparent, although lower than in the parental PCV2 strain. We hypothesized that apoptosis induced by ΔORF3 might result from the UPR. We found that ΔORF3-induced apoptosis was significantly reduced when the infected cells were treated with the selective PERK blocker GSK2606414 (GSK) or the general ER stress attenuator 4-phenylbutyrate (4-PBA). Such treatments also ameliorated elevation of cytoplasmic Ca2+ and reactive oxygen species (ROS) levels in PK-15 and PAM cells, two predisposing factors for apoptosis via disruption of the ER-mitochondrion units. Treatment of ΔORF3-infected cells with GSK and 4-PBA also decreased the mitochondrial Ca2+ load and increased the mitochondrial membrane potential (MMP). With transient expression of the structural protein capsid (Cap) in combination with PERK silencing, we found that Cap induced MMP collapse and mitochondrial apoptosis could result from the UPR and elevation of Ca2+ and ROS levels, which were inhibitable by downregulation of PERK. We propose that PCV2-driven ER stress is Cap dependent and could lead to mitochondrial apoptotic responses independent of ORF3 via perturbation of intracellular Ca2+ homeostasis and accumulation of ROS.IMPORTANCE PCV2 encodes protein ORF3, a putative protein with proapoptotic activity. Our early studies showed that PCV2 infection triggers ER stress via selective activation of the PERK pathway, a branch of the ER stress pathways, in permissive cells for enhanced replication and infection increased cytosolic Ca2+ and ROS levels. Here we clearly show that PCV2 infection or Cap expression induces ORF3-independent apoptosis via increased cytosolic and mitochondrial Ca2+ levels and cellular ROS levels as a result of activation of the PERK pathway.
Collapse
|
24
|
Zhai N, Liu K, Li H, Liu Z, Wang H, Korolchuk VI, Carroll B, Pan C, Gan F, Huang K, Chen X. PCV2 replication promoted by oxidative stress is dependent on the regulation of autophagy on apoptosis. Vet Res 2019; 50:19. [PMID: 30836990 PMCID: PMC6399867 DOI: 10.1186/s13567-019-0637-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an economically important swine pathogen but some extra trigger factors are required for the development of PCV2-associated diseases. By evaluating cap protein expression, viral DNA copies and the number of infected cells, the present study further confirmed that oxidative stress can promote PCV2 replication. The results showed that oxidative stress induced autophagy in PCV2-infected PK15 cells. Blocking autophagy with inhibitor 3-methyladenine or ATG5-specific siRNA significantly inhibited oxidative stress-promoted PCV2 replication. Importantly, autophagy inhibition significantly increased apoptosis in oxidative stress-treated PK15 cells. Suppression of apoptosis by benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone in conditions of autophagy inhibition restored PCV2 replication. Taken together, autophagy protected host cells against potential apoptosis and then contributed to PCV2 replication promotion caused by oxidative stress. Our findings can partly explain the pathogenic mechanism of PCV2 related to the oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Bernadette Carroll
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.,School of Biochemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Dissecting clinical outcome of porcine circovirus type 2 with in vivo derived transcriptomic signatures of host tissue responses. BMC Genomics 2018; 19:831. [PMID: 30458705 PMCID: PMC6247532 DOI: 10.1186/s12864-018-5217-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Background Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause often devastating disease manifestations in pig populations with major economic implications. How PCV2 establishes subclinical persistence and why certain individuals progress to lethal lymphoid depletion remain to be elucidated. Results Here we present PorSignDB, a gene signature database describing in vivo porcine tissue physiology that we generated from a large compendium of in vivo transcriptional profiles and that we subsequently leveraged for deciphering the distinct physiological states underlying PCV2-affected lymph nodes. This systems genomics approach indicated that subclinical PCV2 infections suppress a myeloid leukocyte mediated immune response. However, in contrast an inflammatory myeloid cell activation is promoted in PCV2 patients with clinical manifestations. Functional genomics further uncovered STAT3 as a druggable PCV2 host factor candidate. Moreover, IL-2 supplementation of primary lymphocytes enabled ex vivo study of PCV2 replication in its target cell, the lymphoblast. Conclusion Our systematic dissection of the mechanistic basis of PCV2 reveals that subclinical and clinical PCV2 display two diametrically opposed immunotranscriptomic recalibrations that represent distinct physiological states in vivo, which suggests a paradigm shift in this field. Finally, our PorSignDB signature database is publicly available as a community resource (http://www.vetvirology.ugent.be/PorSignDB/, included in Gene Sets from Community Contributors http://software.broadinstitute.org/gsea/msigdb/contributed_genesets.jsp) and provides systems biologists with a valuable tool for catalyzing studies of human and veterinary disease. Finally, a primary porcine lymphoblast cell culture system paves the way for unraveling the impact of host genetics on PCV2 replication. Electronic supplementary material The online version of this article (10.1186/s12864-018-5217-5) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Chen HL, Tan HL, Yang J, Wei YY, Hu TJ. Sargassum polysaccharide inhibits inflammatory response in PCV2 infected-RAW264.7 cells by regulating histone acetylation. Carbohydr Polym 2018; 200:633-640. [PMID: 30177210 DOI: 10.1016/j.carbpol.2018.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Toxic inflammatory response is frequently introduced upon virus infection. In this study, RAW264.7 cells were infected with porcine circovirus type 2 (PCV2) and treated with Sargassum polysaccharide SP. It was found that PCV2 infection induced increased significant inflammation response represented with increased secretion of inflammatory cytokines, corresponding with promoted HAT activity, inhibited HDAC activity, elevated HDAC1 mRNA levels, and up-regulated acetylation levels of H3 and H4 in RAW264.7 cells. SP treatment significantly inhibited the increase of inflammatory cytokines, HAT activity and the acetylation of histones, but dramatically increased the HDAC activity and the expression of HDAC1. From these results, SP might be able to protect immune cells from virus induced damages through inhibiting the inflammatory responds by maintaining an equilibrium between the activity of HATs and HDACs which contributes to an appropriate level of histone acetylation.
Collapse
Affiliation(s)
- Hai-Lan Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hong-Lian Tan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
27
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
28
|
Li R, Narita R, Ouda R, Kimura C, Nishimura H, Yatagai M, Fujita T, Watanabe T. Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Adv 2018; 8:35888-35896. [PMID: 35558500 PMCID: PMC9088284 DOI: 10.1039/c8ra07096b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/13/2018] [Indexed: 01/26/2023] Open
Abstract
The pyrolysis product, wood vinegar (WV), from Japanese larch exhibited strong antiviral activity against the encephalomycarditis virus (EMCV). Catechol, 3-methyl-, 4-methyl-, 4-ethyl-, and 3-methoxycatechol, and 2-methyl-1,4-benzenediol were identified as the major antiviral compounds. The viral inhibition ability of these compounds was affected by the structure and position of the substituent group attached to the aromatic skeleton. The IC50 of catechol was 0.67 mg mL-1 and those of its derivatives were <0.40 mg mL-1. Methyl and ethyl substitution in the para position relative to a hydroxyl group obviously increased the antiviral activities. The mode of antiviral action was investigated by adding catechol derivatives at different times of the viral life cycle. It was found that direct inactivations of EMCV by these compounds were the major pathway for the antiviral activity. The effect of catechol derivatives on the host immune system was studied by quantification of Il6 and Ifnb1 expression levels. Increased Il6 expression levels indicate NF-κB activation by reactive oxygen species from auto-oxidations of catechol derivatives, which is also a possible antiviral route. The present research provides indices for production of potent antiviral agents form lignocellulose biomass.
Collapse
Affiliation(s)
- Ruibo Li
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | - Ryo Narita
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Ryota Ouda
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Chihiro Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | - Hiroshi Nishimura
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Takashi Fujita
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
29
|
Crystal Structure of the Dimerized N Terminus of Porcine Circovirus Type 2 Replicase Protein Reveals a Novel Antiviral Interface. J Virol 2018; 92:JVI.00724-18. [PMID: 29976661 DOI: 10.1128/jvi.00724-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023] Open
Abstract
Two replicase (Rep) proteins, Rep and Rep', are encoded by porcine circovirus (PCV) ORF1; Rep is a full ORF1 transcript, and Rep' is a truncated transcript generated by splicing. These two proteins are crucial for the rolling-circle replication (RCR) of PCV. The N-terminal sequences of Rep and Rep' are identical and interact to form homo- or heterodimers. The three types of dimers perform different functions during replication. A structural examination of the interfacing termini has not been performed. In this study, a crystal structure of dimerized Rep protein N termini was resolved at 2.7 Å. The dimerized protein was maintained by nine intermolecular hydrogen bonds and 15 pairs of hydrophobic interactions. The amino acid residue Ile37 participates in 11 of the hydrophobic interactions, mostly with its side chain. To find the predominant sites for protein dimerization and virus replication, a series of mutant proteins and virus replicons were generated by alanine substitution. Of all the single amino acid substitutions, the mutation at Ile37 showed the greatest effect on protein dimerization and virus replication. A double mutation at Leu35 and Ile37 almost eliminated protein dimerization and had the greatest negative effect on virus replication. These studies demonstrate that Leu35 and Ile37 are the most important residues for protein dimerization and are crucial for virus replication. Our results also show that PCV replication can be decreased by disrupting the dimerization of Rep or Rep' at the N terminus, suggesting that the structural interface responsible for dimerization offers a promising antiviral target.IMPORTANCE Porcine circovirus type 2 (PCV2) is one of the most economically damaging pathogens affecting the swine industry. Although vaccines have been available for more than 10 years, the virus still remains prevalent. More effective strategies for disease prevention are clearly required. The Rep and Rep' proteins of the virus have identical N-terminal regions that interact with each other, allowing the formation of homo- or heterodimers. The heterodimer has crucial functions during different stages of viral replication. Here, we resolved the crystal structure of the Rep (Rep') dimerization domain. The individual residues involved in the intermolecular interaction were visualized in the protein structure, and several interactions were verified by mutant analysis. Our studies show that disrupting the interaction decreases viral replication, thus revealing a new target for the design of antiviral agents.
Collapse
|
30
|
Qian G, Liu D, Hu J, Gan F, Hou L, Zhai N, Chen X, Huang K. SeMet attenuates OTA-induced PCV2 replication promotion by inhibiting autophagy by activating the AKT/mTOR signaling pathway. Vet Res 2018; 49:15. [PMID: 29439710 PMCID: PMC5812231 DOI: 10.1186/s13567-018-0508-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. PCV2 replication could be promoted by low doses of ochratoxin A (OTA) as in our previous study and selenium has been shown to attenuate PCV2 replication. However, the underlying mechanism remains unclear. The aim of the study was to investigate the effects of selenomethionine (SeMet), the major component of organic selenium, on OTA-induced PCV2 replication promotion and its potential mechanism. The present study demonstrates that OTA could promote PCV2 replication as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. In addition, OTA could activate autophagy as indicated by up-regulated light chain 3 (LC3)-II and autophagy-related protein 5 expressions and autophagosome formation. Further, OTA could down-regulate p-AKT and p-mTOR expressions and OTA-induced autophagy was inhibited when insulin was applied. SeMet at 2, 4 and 6 μM had significant inhibiting effects against OTA-induced PCV2 replication promotion. Furthermore, SeMet could attenuate OTA-induced autophagy and up-regulate OTA-induced p-AKT and p-mTOR expression inhibition. Rapamycin, an inhibitor of AKT/mTOR, could reverse the effects of SeMet on OTA-induced autophagy and the PCV2 replication promotion. In conclusion, SeMet could block OTA-induced PCV2 replication promotion by inhibiting autophagy by activating the AKT/mTOR pathway. Therefore, SeMet supplementation could be an effective prophylactic strategy against PCV2 infections and autophagy may be a potential marker to develop novel anti-PCV2 drugs.
Collapse
Affiliation(s)
- Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junfa Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
31
|
Gan F, Hu Z, Huang Y, Xue H, Huang D, Qian G, Hu J, Chen X, Wang T, Huang K. Overexpression of pig selenoprotein S blocks OTA-induced promotion of PCV2 replication by inhibiting oxidative stress and p38 phosphorylation in PK15 cells. Oncotarget 2018; 7:20469-85. [PMID: 26943035 PMCID: PMC4991468 DOI: 10.18632/oncotarget.7814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/20/2016] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary cause of porcine circovirus disease, and ochratoxin A (OTA)-induced oxidative stress promotes PCV2 replication. In humans, selenoprotein S (SelS) has antioxidant ability, but it is unclear whether SelS affects viral infection. Here, we stably transfected PK15 cells with pig pCDNA3.1-SelS to overexpress SelS. Selenium (Se) at 2 or 4 μM and SelS overexpression blocked the OTA-induced increases of PCV2 DNA copy number and infected cell numbers. SelS overexpression also increased glutathione (GSH), NF-E2-related factor 2 (Nrf2) mRNA, and γ-glutamyl-cysteine synthetase mRNA levels; decreased reactive oxygen species (ROS) levels; and inhibited p38 phosphorylation in PCV2-infected PK15 cells, regardless of OTA treatment. Buthionine sulfoximine reversed all of the above SelS-induced changes. siRNA-mediated SelS knockdown decreased Nrf2 mRNA and GSH levels, increased ROS levels, and promoted PCV2 replication in OTA-treated PK15 cells. These data indicate that pig SelS blocks OTA-induced promotion of PCV2 replication by inhibiting the oxidative stress and p38 phosphorylation in PK15 cells.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Hongxia Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Junfa Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
32
|
Yang H, Chen X, Jiang C, He K, Hu Y. Antiviral and Immunoregulatory Role Against PCV2 in Vivo of Chinese Herbal Medicinal Ingredients. J Vet Res 2017; 61:405-410. [PMID: 29978102 PMCID: PMC5937337 DOI: 10.1515/jvetres-2017-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction The aim of the research was to investigate the antiviral and immunoregulatory effects of saikosaponin A, saikosaponin D, Panax notoginseng saponins, notoginsenoside R1, and anemoside B4 saponins commonly found in Chinese herbal medicines. Material and Methods control mice were challenged intramuscularly (im) with 0.2 mL of porcine circovirus 2 (PCV2) solution containing 107 TCID50 of the virus/mL. Mice of high-, middle-, and low-dose saponin groups were initially challenged im with 0.2 mL of PCV2 solution and three days later treated intraperitoneally (ip) with one of five saponins at one of three doses (10, 5, or 1 mg/kg b.w.). In the drug control group, mice were dosed ip with 10 mg/kg b.w. of a given saponin, and mice in a blank control group were administered the same volume of normal saline. Results The results revealed that the saponins could reduce the incidence and severity of PCV2-induced immunopathological damage, e.g. body temperature elevation, weight loss, anaemia, and internal organ swelling. In addition, it was seen that the saponins could affect the immunoglobulin levels and protein absorption. Conclusion The data suggested that the saponins might effectively regulate immune responses.
Collapse
Affiliation(s)
- Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
33
|
Liu D, Xu J, Qian G, Hamid M, Gan F, Chen X, Huang K. Selenizing astragalus polysaccharide attenuates PCV2 replication promotion caused by oxidative stress through autophagy inhibition via PI3K/AKT activation. Int J Biol Macromol 2017; 108:350-359. [PMID: 29217185 DOI: 10.1016/j.ijbiomac.2017.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that oxidative stress could promote the porcine circovirus type 2 (PCV2) replication, and astragalus polysaccharide (APS)/selenium could suppress PCV2 replication. However, whether selenizing astragalus polysaccharide (sAPS) provides protection against oxidative stress-induced PCV2 replication promotion and the mechanism involved remain unclear. The present study aimed to explore the mechanism of the PCV2 replication promotion induced by oxidative stress and a novel pharmacotherapeutic approach involving the regulation of autophagy of sAPS. Our results showed that H2O2 promoted PCV2 replication via enhancing autophagy by using 3-methyladenine (3-MA) and autophagy-related gene 5 (ATG5) knockdown. Sodium selenite, APS, the mixture of sodium selenite and APS, and sAPS significantly inhibited H2O2-induced PCV2 replication promotion, respectively. Among these, sAPS exerted maximal inhibitory effect. sAPS could also significantly inhibit autophagy activated by H2O2 and increase the Akt and mTOR phosphorylation. Moreover, LY294002, the specific phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor, significantly alleviated the effects of sAPS on autophagy and PCV2 replication. Taken together, we conclude that H2O2 promotes PCV2 replication by inducing autophagy and sAPS attenuates the PCV2 replication promotion through autophagy inhibition via PI3K/AKT activation.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jing Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Mohammed Hamid
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
34
|
Fu YF, Jiang LH, Zhao WD, Xi-Nan M, Huang SQ, Yang J, Hu TJ, Chen HL. Immunomodulatory and antioxidant effects of total flavonoids of Spatholobus suberectus Dunn on PCV2 infected mice. Sci Rep 2017; 7:8676. [PMID: 28819143 PMCID: PMC5561176 DOI: 10.1038/s41598-017-09340-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/17/2017] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of virus infection and antioxidants are becoming promising candidates as therapeutic agents. This study is designed to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on oxidative stress in mice induced by porcine circovirus type 2 (PCV2) infection. The PCV2 infection leads to significant decrease in thymus and spleen indices, elevation of xanthine oxidase (XOD) and myeloperoxidase (MPO) activities, reduction in GSH level and GSH to GSSG ratio and decline of superoxide dismutase (SOD) activity, indicating the formation of immunosuppression and oxidative stress. TFSD treatment recovered the alteration of viscera index, antioxidant content and activities of oxidative-associated enzymes to a level similar to control. Our findings suggested that PCV2 induced immunosuppression and oxidative stress in mice and TFSD might be able to protect animals from virus infection via regulation of immune function and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Yuan-Fang Fu
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Li-He Jiang
- Department of Occupational Health, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.,Guangxi Key laboratory of Metabolic Diseases Research, Guilin 181st Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Wei-Dan Zhao
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Meng Xi-Nan
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shi-Qi Huang
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Jian Yang
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Ting-Jun Hu
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Hai-Lan Chen
- Animal Science and Technological College, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
35
|
Kim HO, Yeom M, Kim J, Kukreja A, Na W, Choi J, Kang A, Yun D, Lim JW, Song D, Haam S. Reactive Oxygen Species-Regulating Polymersome as an Antiviral Agent against Influenza Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700818. [PMID: 28692767 DOI: 10.1002/smll.201700818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) produced during mitochondrial oxidative phosphorylation play an important role as signal messengers in the immune system and also regulate signal transduction. ROS production, initiated as a consequence of microbial invasion, if generated at high levels, induces activation of the MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase) pathway to promote cell survival and proliferation. However, viruses hijack the host cells' pathways, causing biphasic activation of the MEK/ERK cascade. Thus, regulation of ROS leads to concomitant inhibition of virus replication. In the present study, poly(aniline-co-pyrrole) polymerized nanoregulators (PASomes) to regulate intracellular ROS levels are synthesized, exploiting their oxidizing-reducing characteristics. Poly(aniline-co-pyrrole) embedded within an amphiphilic methoxy polyethylene glycol-block-polyphenylalanine copolymer (mPEG-b-pPhe) are used. It is demonstrated that the PASomes are water soluble, biocompatible, and could control ROS levels successfully in vitro, inhibiting viral replication and cell death. Furthermore, the effects of homopolymerized nanoregulators (polypyrrole assembled with mPEG-b-pPhe or polyaniline assembled with mPEG-b-pPhe) are compared with those of the PASomes. Consequently, it is confirmed that the PASomes can regulate intracellular ROS levels successfully and suppress viral infection, thereby increasing the cell survival rate.
Collapse
Affiliation(s)
- Hyun-Ouk Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minjoo Yeom
- Department of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Jihye Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Aastha Kukreja
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- Department of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Jihye Choi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aram Kang
- Department of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Dayeon Yun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Daesub Song
- Department of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
36
|
Liu L, Tu X, Shen YF, Chen WC, Zhu B, Wang GX. The replication of spring viraemia of carp virus can be regulated by reactive oxygen species and NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2017; 67:211-217. [PMID: 28602749 DOI: 10.1016/j.fsi.2017.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Different viruses could induced ROS generation to alter intracellular redox state in the host cells, and unbalanced redox state was suggested to have various effects on viral replication. In this study, we investigated the influence of reactive oxygen species (ROS) on replication of spring viraemia of carp virus (SVCV) in fish cells. After SVCV infection, there existed a time-dependent increase in ROS generation. The present results revealed that antioxidant N-acetyl-l-cysteine (NAC) resulted in a lower ROS levels and increased SVCV replication in EPC cell. In contrast, a GSH synthesis inhibitor buthionine sulfoximine (BSO) induced ROS generation and decreased SVCV replication. In addition, activation of NF-κB suppressed SVCV replication by using two inhibitors of cytokine-induced IκBα phosphorylation. More importantly, enhancement of the activity of NF-κB was found in BSO treatment, which indicated that dropped SVCV replication likely occurred via ROS activation of NF-κB. Overall, our results revealed that the SVCV infection and replication could generate ROS and be affected by the redox state, where this progression was associated with the alteration in NF-κB pathway induced by oxidative stress.
Collapse
Affiliation(s)
- Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao Tu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Yu-Feng Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Wei-Chao Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Qian G, Liu D, Hu J, Gan F, Hou L, Chen X, Huang K. Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication. Cell Death Dis 2017; 8:e2909. [PMID: 28661479 PMCID: PMC5520947 DOI: 10.1038/cddis.2017.303] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium. Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. Recently, we reported that low doses of OTA promoted PCV2 replication in vitro and in vivo, but the underlying mechanism needed further investigation. The present studies further confirmed OTA-induced PCV2 replication promotion as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. Our studies also showed that OTA induced autophagy in PK-15 cells, as assessed by the markedly increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, autophagy-related protein 5 (ATG5), and Beclin-1 and the accumulation of green fluorescent protein (GFP)-LC3 dots. OTA induced complete autophagic flux, which was detected by monitoring p62 degradation and LC3-II turnover using immunoblotting. Inhibition of autophagy by 3-methylademine (3-MA) and chloroquine (CQ) significantly attenuated OTA-induced PCV2 replication promotion. The observed phenomenon was further confirmed by the knock-down of ATG5 or Beclin-1 by specific siRNA. Further studies showed that N-acetyl-L-cysteine (NAC), an ROS scavenger could block autophagy induced by OTA, indicating that ROS may be involved in the regulation of OTA-induced autophagy. Furthermore, we observed significant increases in OTA concentrations in lung, spleen, kidney, liver and inguinal lymph nodes (ILN) and bronchial lymph nodes (BLN) of pigs fed 75 and 150 μg/kg OTA compared with controls in vivo. Administration of 75 μg/kg OTA significantly increased PCV2 replication and autophagy in the lung, spleen, kidney and BLN of pigs. Taken together, it could be concluded that OTA-induced autophagy in vitro and in vivo promotes PCV2 replication.
Collapse
Affiliation(s)
- Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Junfa Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
38
|
Effect of total flavonoids of Spatholobus suberectus Dunn on PCV2 induced oxidative stress in RAW264.7 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:244. [PMID: 28464928 PMCID: PMC5414385 DOI: 10.1186/s12906-017-1764-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/28/2017] [Indexed: 01/30/2023]
Abstract
Background This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on PCV2 induced oxidative stress in RAW264.7 cells. Methods Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits. Results PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to a level similar to control. Conclusion Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic drug for reactive oxygen-associated pathologies.
Collapse
|
39
|
Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 2017; 7:17492-507. [PMID: 26883107 PMCID: PMC4951228 DOI: 10.18632/oncotarget.7362] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 01/02/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yu Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Delong Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
40
|
Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro. Sci Rep 2017; 7:40440. [PMID: 28071725 PMCID: PMC5223157 DOI: 10.1038/srep40440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022] Open
Abstract
This study explored the effects of Astragalus polysaccharide (APS) on porcine circovirus type 2 (PCV2) infections and its mechanism in vivo and vitro. First, fifty 2-week-old mice were randomly divided into five groups: a group without PCV2 infection and groups with PCV2 infections at 0, 100, 200 or 400 mg/kg APS treatments. The trial lasted for 28 days. The results showed that APS treatments at 200 and 400 mg/kg reduced the pathological injury of tissues, inhibited PCV2 infection and decreased glucose-regulated protein 78 (GRP78) and GADD153/CHOP gene mRNA and protein expression significantly (P < 0.05). Second, a study on endoplasmic reticulum stress mechanism was carried out in PK15 cells. APS treatments at 15 and 45 μg/mL significantly reduced PCV2 infection and GRP78 mRNA and protein expression (P < 0.05). Tunicamycin supplementation increased GRP78 mRNA and protein expression and significantly attenuated the APS-induced inhibition of PCV2 infection (P < 0.05). Tauroursodeoxycholic acid supplementation decreased GRP78 mRNA and protein expression and significantly inhibited PCV2 infection (P < 0.05). In addition, fifty 2-week-old mice were randomly divided into five groups: Con, PCV2, APS + PCV2, TM + PCV2 and TM + APS + PCV2. The results were similar to those in PK15 cells. Taken together, it could be concluded that APS suppresses PCV2 infection by inhibiting endoplasmic reticulum stress.
Collapse
|
41
|
Shao J, Huang J, Guo Y, Li L, Liu X, Chen X, Yuan J. Up-regulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of SVCV. FISH & SHELLFISH IMMUNOLOGY 2016; 58:474-482. [PMID: 27693327 DOI: 10.1016/j.fsi.2016.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 09/11/2016] [Indexed: 05/18/2023]
Abstract
Generation of reactive oxygen species (ROS) and failure to maintain an appropriate redox balance contribute to viral pathogenesis. Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor that plays a pivotal role in maintaining intracellular homoeostasis and coping with invasive pathogens by coordinately activating a series of cytoprotective genes. Previous studies indicated that the transcription and expression levels of Nrf2 were up-regulated in SVCV-infected EPC cells with the unknown mechanism(s). In this study, the interactions between the Nrf2-ARE signalling pathway and SVCV replication were investigated, which demonstrated that SVCV infection induced accumulation of ROS as well as protein carbonyl groups and 8-OHdG, accompanied by the up-regulation of Nrf2 and its downstream genes. At the same time, the activation of Nrf2 with D, l-sulforaphane (SFN) and CDDO-Me could repress the replication of SVCV, and knockdown of Nrf2 by siRNA could promote the replication of SVCV. Taken together, these observations indicate that the Nrf2-ARE signal pathway activates a passive defensive response upon SVCV infection. The conclusions presented here suggest that targeting the Nrf2 pathway has potential for combating SVCV infection.
Collapse
Affiliation(s)
- Junhui Shao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jiang Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yana Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
42
|
Royer E, Barbé F, Guillou D, Rousselière Y, Chevaux E. Development of an oxidative stress model in weaned pigs highlighting plasma biomarkers' specificity to stress inducers1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- E. Royer
- Pôle Techniques d'Elevage, IFIP-Institut du Porc, Toulouse, France
| | - F. Barbé
- Research and Development Department, Lallemand SAS, Blagnac, France
| | - D. Guillou
- Research and Development Department, Lallemand SAS, Blagnac, France
| | - Y. Rousselière
- Pôle Techniques d'Elevage, IFIP-Institut du Porc, Toulouse, France
| | - E. Chevaux
- Research and Development Department, Lallemand SAS, Blagnac, France
| |
Collapse
|
43
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary infectious agent of PCV-associated disease (PCVAD) in swine. ORF4 protein is a newly identified viral protein of PCV2 and is involved in virus-induced apoptosis. However, the molecular mechanisms of ORF4 protein regulation of apoptosis remain unclear, especially given there is no information regarding any cellular partners of the ORF4 protein. Here, we have utilized the yeast two-hybrid assay and identified four host proteins (FHC, SNRPN, COX8A and Lamin C) interacting with the ORF4 protein. Specially, FHC was chosen for further characterization due to its important role in apoptosis. GST pull-down, subcellular co-location and co-immunoprecipitation assays confirmed that the PCV2 ORF4 protein indeed interacted with the heavy-chain ferritin, which is an interesting clue that will allow us to determine the role of the ORF4 protein in apoptosis.
Collapse
|
44
|
Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci Rep 2016; 6:24401. [PMID: 27080155 PMCID: PMC4832146 DOI: 10.1038/srep24401] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/29/2016] [Indexed: 12/01/2022] Open
Abstract
The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings.
Collapse
|
45
|
Lv Q, Guo K, Zhang G, Zhang Y. The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction. J Gen Virol 2016; 97:1636-1646. [PMID: 27030984 DOI: 10.1099/jgv.0.000472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary aetiological agent of porcine circovirus-associated disease in swine. The mechanism of PCV2 pathogenesis remains largely unknown. A newly identified viral protein of PCV2, ORF4, has been suggested to be involved in virus-induced apoptosis. However, there is still no information regarding the molecular mechanism by which ORF4 regulates apoptosis. In this study, we reveal that a physical interaction between the PCV2 ORF4 protein and ferritin heavy chain (FHC) in the cytoplasm of host cells reduced the cellular concentration of FHC. The ORF4-mediated reduction of FHC inhibited reactive oxygen species accumulation in PCV2-infected cells. Consequently, the ORF4 protein inhibited apoptosis in host cells. This may be the first report to describe the mechanism of ORF4 cytoprotection against apoptosis during the early stages of PCV2 infection.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Guangfang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
46
|
Chen M, Han J, Zhang Y, Duan D, Zhang S. Porcine circovirus type 2 induces type I interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro. Res Vet Sci 2015; 104:188-94. [PMID: 26850559 DOI: 10.1016/j.rvsc.2015.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
Abstract
Type I interferon (IFN-I) plays important roles in host antiviral responses. The interferon regulatory factor (IRF) and NF-κB transcription factors are thought to be important in the processes of viral secretion and triggering of interferon production. Recently, studies have shown that porcine circovirus type 2 (PCV2) can induce IFN-I production in vivo and in vitro, but the mechanisms underlying the production of PAMs infected with PCV2 remains unknown. Treatment of these cells with BAY11-7082, an inhibitor of NF-κB activation, allowed us to study the secretion of IFN-α and IFN-β in PAMs infected with PCV2. We found that IFN-α expression was induced following virus infection of PAMs. Notably, even after inhibitor treatment of PAMs infected with PCV2, secretion of IFN-α was significantly higher (P<0.05) compared with the PCV2 infection alone group. Our findings suggest that NF-κB plays a minor role in PCV2-induced type I interferon responses. To further characterize the signaling pathway that drives IFN-I expression in PAMs in response to PCV2, we used siRNA to silence the expression of Myeloid differentiation factor 88 (MyD88) and study the role of MyD88-IKKα-IRF signaling in IFN-I production in PAMs induced by PCV2. Our findings show that PCV2 induced IFN-α mRNA transcription, which is associated with the activities of MyD88, IRF7, and IRF3. Thus, PCV2 can induce IFN-I transcription via the MyD88-IKKα-IRF signaling axis.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Junyuan Han
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yaqun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Dianning Duan
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
47
|
Yan Y, Xin A, Liu Q, Huang H, Shao Z, Zang Y, Chen L, Sun Y, Gao H. Induction of ROS generation and NF-κB activation in MARC-145 cells by a novel porcine reproductive and respiratory syndrome virus in Southwest of China isolate. BMC Vet Res 2015; 11:232. [PMID: 26358082 PMCID: PMC4565009 DOI: 10.1186/s12917-015-0480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of an economically important swine disease that has devastated the swine industry since the late 1980s. The aim of the present study was to investigate the interaction between reactive oxygen species (ROS) and NF-κB by PRRSV infection. Results We isolated the local strain of PRRSV from southwest China, designated YN-2011, then sequenced and analyzed the genome. YN-2011 was then used to evaluate the interaction of ROS and NF-κB. In PRRSV infected MARC-145 cells, there was a time-dependent increase in ROS and Maleic Dialdehyde (MDA). Accordingly, NF-κB activation was also increased as PRRSV infection progressed. Degradation of IκB mRNA was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα significantly suppressed NF-κB induced by PRRSV. Conclusions The results indicate that the generation of ROS is involved in PRRSV replication and this progression is associated with the alteration in NF-κB activity induced by ROS. These results should extend our better understanding the interaction between PRRSV and host MARC-145 cells. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0480-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulin Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People's Republic of China.
| | - Aiguo Xin
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China.
| | - Qian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Hui Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Zhiyong Shao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Yating Zang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Ling Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Yongke Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Hong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
48
|
Xue H, Gan F, Zhang Z, Hu J, Chen X, Huang K. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. Int J Biol Macromol 2015; 81:22-30. [PMID: 26226456 DOI: 10.1016/j.ijbiomac.2015.07.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection.
Collapse
Affiliation(s)
- Hongxia Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Zheqian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Junfa Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
49
|
Chen X, Shi X, Gan F, Huang D, Huang K. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Vet Res 2015; 46:32. [PMID: 25879878 PMCID: PMC4363047 DOI: 10.1186/s13567-015-0168-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/03/2015] [Indexed: 11/15/2022] Open
Abstract
Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.
Collapse
Affiliation(s)
- Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Xiuli Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Da Huang
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
50
|
Gan F, Zhang Z, Hu Z, Hesketh J, Xue H, Chen X, Hao S, Huang Y, Cole Ezea P, Parveen F, Huang K. Ochratoxin A promotes porcine circovirus type 2 replication in vitro and in vivo. Free Radic Biol Med 2015; 80:33-47. [PMID: 25542137 PMCID: PMC7126689 DOI: 10.1016/j.freeradbiomed.2014.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin in animals and humans. Porcine circovirus-associated disease (PCVAD), including porcine dermatitis and nephropathy syndrome, is a worldwide swine disease. To date, little is known concerning the relationship between OTA and porcine circovirus type 2 (PCV2), the primary causative agent of PCVAD. The effects of OTA on PCV2 replication and their mechanisms were investigated in vitro and in vivo. The results in vitro showed that low doses of OTA significantly increased PCV2 DNA copies and the number of infected cells. Maximum effects were observed at 0.05 μg/ml OTA. The results in vivo showed that PCV2 replication was significantly increased in serum and tissues of pigs fed 75 μg/kg OTA compared with the control group and pigs fed 150 μg/kg OTA. In addition, low doses of OTA significantly depleted reduced glutathione and mRNA expression of NF-E2-related factor 2 and γ-glutamylcysteine synthetase; increased reactive oxygen species, oxidants, and malondialdehyde; and induced p38 and ERK1/2 phosphorylation in PK15 cells. Adding N-acetyl-L-cysteine reversed the changes induced by OTA. Knockdown of p38 and ERK1/2 by their respective specific siRNAs or inhibition of p38 and ERK1/2 phosphorylation by their respective inhibitors (SB203580 and U0126) eliminated the increase in PCV2 replication induced by OTA. These data indicate that low doses of OTA promoted PCV2 replication in vitro and in vivo via the oxidative stress-mediated p38/ERK1/2 MAPK signaling pathway. This suggests that low doses of OTA are potentially harmful to animals, as they enhance virus replication, and partly explains why the morbidity and severity of PCVAD vary significantly in different pig farms.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zheqian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hongxia Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shu Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Patience Cole Ezea
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Fahmida Parveen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|