1
|
Vuorio A, Budowle B, Raal F, Kovanen PT. Statins for the prevention of cardiovascular events associated with avian influenza: the COVID-19 pandemic as a reference. Ann Med 2024; 56:2390166. [PMID: 39152892 PMCID: PMC11332304 DOI: 10.1080/07853890.2024.2390166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 08/19/2024] Open
Abstract
There is growing concern that the severe respiratory disease in birds (avian influenza or 'bird flu') caused by the H5N1 influenza virus, might potentially spread more widely to humans and cause a pandemic. Here we discuss clinical issues related to human infections by the highly pathogenic H5N1 subtype of the avian influenza A virus and make a clinical comparison with recent information obtained from studies of SARS-CoV-2 infection. Firstly, we consider the potential increase in cardiovascular events in humans infected with the H5N1 virus. Like SARS-CoV-2 infection, H5N1 infection may result in endothelial dysfunction and the associated procoagulant and prothrombotic state, and via this mechanism, the infection can potentially increase cardiovascular morbidity, especially in vulnerable individuals with pre-existing cardiovascular disease. Secondly, we discuss the potential beneficial role of statin use, both in the prophylaxis and the treatment of individuals with influenza A(H5N1), as was found favorable for the treatment of COVID-19 caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alpo Vuorio
- Mehiläinen, Airport Health Center, Vantaa, Finland
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Frederick Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Wu F, Wang C, Li S, Ye Y, Cui M, Liu Y, Jiang S, Qian J, Yuan J, Shu Y, Sun C. Association between Statins Administration and Influenza Susceptibility: A Systematic Review and Meta-Analysis of Longitudinal Studies. Viruses 2024; 16:278. [PMID: 38400053 PMCID: PMC10893112 DOI: 10.3390/v16020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies reported that the association between statins use and influenza infection was contradictory. A systematic review and meta-analysis of longitudinal studies were performed to determine the association between statins use and influenza susceptibility. The literature search was conducted in PubMed, Embase, and Web of Science, from each database's inception to 21 May 2023. The fixed effect model and random effects model were used for data synthesis. In our study, a total of 1,472,239 statins users and 1,486,881 statins non-users from five articles were included. The pooled risk ratio (RR) of all included participants was 1.05 (95% CI: 1.03-1.07), and there were still significant differences after adjusting for vaccination status. Of note, RR values in statins users were 1.06 (95% CI: 1.03-1.08) in people aged ≥60 years old and 1.05 (95% CI: 1.03-1.07) in participant groups with a higher proportion of females. Administration of statins might be associated with an increased risk of influenza infection, especially among females and elderly people. For those people using statins, we should pay more attention to surveillance of their health conditions and take measures to prevent influenza infection.
Collapse
Affiliation(s)
- Fan Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Shunran Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Ying Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Yajie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Shiqiang Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Jun Qian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Yuelong Shu
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 514400, China
| |
Collapse
|
3
|
Eichberg J, Maiworm E, Oberpaul M, Czudai-Matwich V, Lüddecke T, Vilcinskas A, Hardes K. Antiviral Potential of Natural Resources against Influenza Virus Infections. Viruses 2022; 14:v14112452. [PMID: 36366550 PMCID: PMC9693975 DOI: 10.3390/v14112452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Influenza is a severe contagious disease caused by influenza A and B viruses. The WHO estimates that annual outbreaks lead to 3-5 million severe infections of which approximately 10% lead to the death of the patient. While vaccination is the cornerstone of prevention, antiviral drugs represent the most important treatment option of acute infections. Only two classes of drugs are currently approved for the treatment of influenza in numerous countries: M2 channel blockers and neuraminidase inhibitors. In some countries, additional compounds such as the recently developed cap-dependent endonuclease inhibitor baloxavir marboxil or the polymerase inhibitor favipiravir are available. However, many of these compounds suffer from poor efficacy, if not applied early after infection. Furthermore, many influenza strains have developed resistances and lost susceptibility to these compounds. As a result, there is an urgent need to develop new anti-influenza drugs against a broad spectrum of subtypes. Natural products have made an important contribution to the development of new lead structures, particularly in the field of infectious diseases. Therefore, this article aims to review the research on the identification of novel lead structures isolated from natural resources suitable to treat influenza infections.
Collapse
Affiliation(s)
- Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Volker Czudai-Matwich
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
4
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
6
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
9
|
Mechanick JI, Rosenson RS, Pinney SP, Mancini DM, Narula J, Fuster V. Coronavirus and Cardiometabolic Syndrome: JACC Focus Seminar. J Am Coll Cardiol 2020; 76:2024-2035. [PMID: 33092738 PMCID: PMC7571973 DOI: 10.1016/j.jacc.2020.07.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic exposes unexpected cardiovascular vulnerabilities and the need to improve cardiometabolic health. Four cardiometabolic drivers-abnormal adiposity, dysglycemia, dyslipidemia, and hypertension-are examined in the context of COVID-19. Specific recommendations are provided for lifestyle change, despite social distancing restrictions, and pharmacotherapy, particularly for those with diabetes. Inpatient recommendations emphasize diligent and exclusive use of insulin to avert hyperglycemia in the face of hypercytokinemia and potential islet cell injury. Continuation of statins is advised, but initiating statin therapy to treat COVID-19 is as yet unsubstantiated by the evidence. The central role of the renin-angiotensin system is discussed. Research, knowledge, and practice gaps are analyzed with the intent to motivate prompt action. An emerging model of COVID-related cardiometabolic syndrome encompassing events before, during the acute phase, and subsequently in the chronic phase is presented to guide preventive measures and improve overall cardiometabolic health so future viral pandemics confer less threat.
Collapse
Affiliation(s)
- Jeffrey I Mechanick
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Robert S Rosenson
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean P Pinney
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M Mancini
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Front Immunol 2019; 10:531. [PMID: 30941148 PMCID: PMC6434107 DOI: 10.3389/fimmu.2019.00531] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza viruses still constitute a real public health problem today. To cope with the emergence of new circulating strains, but also the emergence of resistant strains to classic antivirals, it is necessary to develop new antiviral approaches. This review summarizes the state-of-the-art of current antiviral options against influenza infection, with a particular focus on the recent advances of anti-influenza drug repurposing strategies and their potential therapeutic, regulatory and economic benefits. The review will illustrate the multiple ways to reposition molecules for the treatment of influenza, from adventitious discovery to in silico-based screening. These novel antiviral molecules, many of which targeting the host cell, in combination with conventional antiviral agents targeting the virus, will ideally enter the clinics and reinforce the therapeutic arsenal to combat influenza virus infections.
Collapse
|
11
|
Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res 2018; 150:202-216. [PMID: 29325970 PMCID: PMC5801167 DOI: 10.1016/j.antiviral.2018.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
Abstract
A severe inflammatory immune response with hypercytokinemia occurs in patients hospitalized with severe influenza, such as avian influenza A(H5N1), A(H7N9), and seasonal A(H1N1)pdm09 virus infections. The role of immunomodulatory therapy is unclear as there have been limited published data based on randomized controlled trials (RCTs). Passive immunotherapy such as convalescent plasma and hyperimmune globulin have some studies demonstrating benefit when administered as an adjunctive therapy for severe influenza. Triple combination of oseltamivir, clarithromycin, and naproxen for severe influenza has one study supporting its use, and confirmatory studies would be of great interest. Likewise, confirmatory studies of sirolimus without concomitant corticosteroid therapy should be explored as a research priority. Other agents with potential immunomodulating effects, including non-immune intravenous immunoglobulin, N-acetylcysteine, acute use of statins, macrolides, pamidronate, nitazoxanide, chloroquine, antiC5a antibody, interferons, human mesenchymal stromal cells, mycophenolic acid, peroxisome proliferator-activated receptors agonists, non-steroidal anti-inflammatory agents, mesalazine, herbal medicine, and the role of plasmapheresis and hemoperfusion as rescue therapy have supportive preclinical or observational clinical data, and deserve more investigation preferably by RCTs. Systemic corticosteroids administered in high dose may increase the risk of mortality and morbidity in patients with severe influenza and should not be used, while the clinical utility of low dose systemic corticosteroids requires further investigation.
Collapse
Affiliation(s)
- David S Hui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Nelson Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Division of Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Paul K Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - John H Beigel
- Leidos Biomedical Research Inc, Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Mc Mahon A, Martin-Loeches I. The pharmacological management of severe influenza infection - 'existing and emerging therapies'. Expert Rev Clin Pharmacol 2016; 10:81-95. [PMID: 27797595 DOI: 10.1080/17512433.2017.1255550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Over the last century several influenza outbreaks have traversed the globe, most recently the influenza A(H1N1) 2009 pandemic. On each occasion, a highly contagious, virulent pathogen has emerged, leading to significant morbidity and mortality amongst those affected. Areas covered: Early antiviral therapy and supportive care is the mainstay of treatment. Treatment should be started as soon as possible and not delayed for the results of diagnostic testing. Whilst oseltamivir is still the first choice, in case of treatment failure, oseltamivir resistance should be considered, particularly in immunosuppressed patients. Here we review the antivirals currently used for management of influenza and explore a number of investigational agents that may emerge as effective antivirals including parenteral agents, combination antiviral therapy and novel agents in order to adequately target influenza virulence. Expert Commentary: New tools for rapid diagnosis and susceptible strains will help if a patient is not improving because of a resistant strain or an inadequate immune response. Further randomized control trials will be conducted to investigate the use of new antivirals and co-adjuvant therapies that will help to elucidate the process of immune modulation, particularly in immunocompetent patients.
Collapse
Affiliation(s)
- Aisling Mc Mahon
- a Multidisciplinary Intensive Care Research Organization (MICRO) , St James's University Hospital , Dublin , Ireland
| | - Ignacio Martin-Loeches
- a Multidisciplinary Intensive Care Research Organization (MICRO) , St James's University Hospital , Dublin , Ireland.,b Department of Clinical Medicine , Trinity College, Welcome Trust-HRB Clinical Research Facility, St Jame's Hospital , Dublin , Ireland
| |
Collapse
|
13
|
Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice. J Virol 2016; 90:9931-9941. [PMID: 27558428 DOI: 10.1128/jvi.01188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.
Collapse
|
14
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
15
|
Pawelek KA, Dor D, Salmeron C, Handel A. Within-Host Models of High and Low Pathogenic Influenza Virus Infections: The Role of Macrophages. PLoS One 2016; 11:e0150568. [PMID: 26918620 PMCID: PMC4769220 DOI: 10.1371/journal.pone.0150568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
The World Health Organization identifies influenza as a major public health problem. While the strains commonly circulating in humans usually do not cause severe pathogenicity in healthy adults, some strains that have infected humans, such as H5N1, can cause high morbidity and mortality. Based on the severity of the disease, influenza viruses are sometimes categorized as either being highly pathogenic (HP) or having low pathogenicity (LP). The reasons why some strains are LP and others HP are not fully understood. While there are likely multiple mechanisms of interaction between the virus and the immune response that determine LP versus HP outcomes, we focus here on one component, namely macrophages (MP). There is some evidence that MP may both help fight the infection and become productively infected with HP influenza viruses. We developed mathematical models for influenza infections which explicitly included the dynamics and action of MP. We fit these models to viral load and macrophage count data from experimental infections of mice with LP and HP strains. Our results suggest that MP may not only help fight an influenza infection but may contribute to virus production in infections with HP viruses. We also explored the impact of combination therapies with antivirals and anti-inflammatory drugs on HP infections. Our study suggests a possible mechanism of MP in determining HP versus LP outcomes, and how different interventions might affect infection dynamics.
Collapse
Affiliation(s)
- Kasia A. Pawelek
- Department of Mathematics and Computational Science, University of South Carolina Beaufort, Bluffton, South Carolina, United States of America
| | - Daniel Dor
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, South Carolina, United States of America
| | - Cristian Salmeron
- Department of Mathematics and Computational Science, University of South Carolina Beaufort, Bluffton, South Carolina, United States of America
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
16
|
Hui KPY, Kuok DIT, Kang SSR, Li HS, Ng MMT, Bui CHT, Peiris JSM, Chan RWY, Chan MCW. Modulation of sterol biosynthesis regulates viral replication and cytokine production in influenza A virus infected human alveolar epithelial cells. Antiviral Res 2015; 119:1-7. [PMID: 25882623 DOI: 10.1016/j.antiviral.2015.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/18/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
Highly pathogenic H5N1 viruses continue to transmit zoonotically, with mortality higher than 60%, and pose a pandemic threat. Antivirals remain the primary choice for treating H5N1 diseases and have their limitations. Encouraging findings highlight the beneficial effects of combined treatment of host targeting agents with immune-modulatory activities. This study evaluated the undefined roles of sterol metabolic pathway in viral replication and cytokine induction by H5N1 virus in human alveolar epithelial cells. The suppression of the sterol biosynthesis by Simvastatin in human alveolar epithelial cells led to reduction of virus replication and cytokine production by H5N1 virus. We further dissected the antiviral role of different regulators of the sterol metabolism, we showed that Zometa, FPT inhibitor III, but not GGTI-2133 had anti-viral activities against both H5N1 and H1N1 viruses. More importantly, FPT inhibitor III treatment significantly suppressed cytokine production by H5N1 virus infected alveolar epithelial cells. Since both viral replication itself and the effects of viral hyper-induction of cytokines contribute to the immunopathology of severe H5N1 disease, our findings highlights the therapeutic potential of FPT inhibitor III for severe human H5N1 diseases. Furthermore, our study is the first to dissect the roles of different steps in the sterol metabolic pathway in H5N1 virus replication and cytokine production.
Collapse
Affiliation(s)
- Kenrie P Y Hui
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Denise I T Kuok
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sara S R Kang
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hung-Sing Li
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Mandy M T Ng
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christine H T Bui
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Renee W Y Chan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Michael C W Chan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
17
|
Comparison of traditional intranasal and aerosol inhalation inoculation of mice with influenza A viruses. Virology 2015; 481:107-12. [PMID: 25771498 DOI: 10.1016/j.virol.2015.02.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
Intranasal instillation of virus in a liquid suspension (IN) is the most frequently employed method to inoculate small mammalian models with influenza virus, but does not reflect a natural route of exposure. In contrast, inoculation via aerosol inhalation (AR) more closely resembles human exposure to influenza virus. Studies in mice have yielded conflicting results regarding virulence induced by virus inoculated by these routes, and have not controlled for potential strain-specific differences, or examined contemporary influenza viruses and avian viruses with pandemic potential. We used a whole-body AR inoculation method to compare infectivity and disease progression of a highly pathogenic H5N1, a low pathogenic H7N9, and a 2009 H1N1 virus with traditional IN inoculation in the mouse model. Generally comparable levels of morbidity and mortality were observed with all viruses examined using either inoculation route, indicating that both IN and AR delivery are appropriate for murine studies investigating influenza virus pathogenicity.
Collapse
|
18
|
Manitsopoulos N, Orfanos SE, Kotanidou A, Nikitopoulou I, Siempos I, Magkou C, Dimopoulou I, Zakynthinos SG, Armaganidis A, Maniatis NA. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation. Respir Res 2015; 16:24. [PMID: 25848815 PMCID: PMC4336762 DOI: 10.1186/s12931-015-0173-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/17/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. METHODS Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. RESULTS Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. CONCLUSION High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.
Collapse
|
19
|
Lee N, Leo YS, Cao B, Chan PKS, Kyaw WM, Uyeki TM, Tam WWS, Cheung CSK, Yung IMH, Li H, Gu L, Liu Y, Liu Z, Qu J, Hui DSC. Neuraminidase inhibitors, superinfection and corticosteroids affect survival of influenza patients. Eur Respir J 2015; 45:1642-52. [PMID: 25573405 DOI: 10.1183/09031936.00169714] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/11/2014] [Indexed: 01/18/2023]
Abstract
We aimed to study factors influencing outcomes of adults hospitalised for seasonal and pandemic influenza. Individual-patient data from three Asian cohorts (Hong Kong, Singapore and Beijing; N=2649) were analysed. Adults hospitalised for laboratory-confirmed influenza (prospectively diagnosed) during 2008-2011 were studied. The primary outcome measure was 30-day survival. Multivariate Cox regression models (time-fixed and time-dependent) were used. Patients had high morbidity (respiratory/nonrespiratory complications in 68.4%, respiratory failure in 48.6%, pneumonia in 40.8% and bacterial superinfections in 10.8%) and mortality (5.9% at 30 days and 6.9% at 60 days). 75.2% received neuraminidase inhibitors (NAI) (73.8% received oseltamivir and 1.4% received peramivir/zanamivir; 44.5% of patients received NAI ≤2 days and 65.5% ≤5 days after onset of illness); 23.1% received systemic corticosteroids. There were fewer deaths among NAI-treated patients (5.3% versus 7.6%; p=0.032). NAI treatment was independently associated with survival (adjusted hazard ratio (HR) 0.28, 95% CI 0.19-0.43), adjusted for treatment-propensity score and patient characteristics. Superinfections increased (adjusted HR 2.18, 95% CI 1.52-3.11) and chronic statin use decreased (adjusted HR 0.44, 95% CI 0.23-0.84) death risks. Best survival was shown when treatment started within ≤2 days (adjusted HR 0.20, 95% CI 0.12-0.32), but there was benefit with treatment within 3-5 days (adjusted HR 0.35, 95% CI 0.21-0.58). Time-dependent analysis showed consistent results of NAI treatment (adjusted HR 0.39, 95% CI 0.27-0.57). Corticosteroids increased superinfection (9.7% versus 2.7%) and deaths when controlled for indications (adjusted HR 1.73, 95% CI 1.14-2.62). Early NAI treatment was associated with shorter length of stay in a subanalysis. NAI treatment may improve survival of hospitalised influenza patients; benefit is greatest from, but not limited to, treatment started within 2 days of illness. Superinfections and corticosteroids increase mortality. Antiviral and non-antiviral management strategies should be considered.
Collapse
Affiliation(s)
- Nelson Lee
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China. Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yee-Sin Leo
- Communicable Diseases Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Cao
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Paul K S Chan
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China. Dept of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - W M Kyaw
- Communicable Diseases Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wilson W S Tam
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Catherine S K Cheung
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Irene M H Yung
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Li
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Li Gu
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Yingmei Liu
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Zhenjia Liu
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Jiuxin Qu
- Dept of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - David S C Hui
- Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China. Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Mechanisms of action and efficacy of statins against influenza. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872370. [PMID: 25478576 PMCID: PMC4244940 DOI: 10.1155/2014/872370] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
Collapse
|
21
|
Xu L, Bao L, Li F, Gu S, Lv Q, Yuan J, Xu Y, Zhu H, Deng W, Li Y, Yao Y, Yu P, Gao Z, Qin C. Combinations of oseltamivir and fibrates prolong the mean survival time of mice infected with the lethal H7N9 influenza virus. J Gen Virol 2014; 96:46-51. [PMID: 25274854 DOI: 10.1099/vir.0.069799-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outbreak of human infections caused by the novel avian-origin H7N9 influenza viruses in China since March 2013 underscores the urgent need to find an effective treatment strategy against H7N9 infection in humans. In this study, we assessed the effectiveness of combinations of oseltamivir and two immunomodulators (simvastatin and fenofibrate) against H7N9 infection in a mouse model. Mice treated with oseltamivir plus fenofibrate exhibited the longest mean survival time, the largest reduction of viral titre in lung tissue, the highest levels of CD4(+) and CD8(+) T-lymphocytes, and the greatest decrease in pulmonary inflammation. Thus, the combination of oseltamivir plus fenofibrate improved the outcomes of mice infected with H7N9 virus by simultaneously reducing viral replication and normalizing the aberrant immune response. This drug combination should be considered in randomized controlled trials of treatments for H7N9 patients.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Songzhi Gu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Jing Yuan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Hua Zhu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Yanhong Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Yanfeng Yao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, PR China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, PR China
| |
Collapse
|
22
|
Abstract
Observational data suggest that the treatment of influenza infection with neuraminidase inhibitors decreases progression to more severe illness, especially when treatment is started soon after symptom onset. However, even early treatment might fail to prevent complications in some patients, particularly those infected with novel viruses such as the 2009 pandemic influenza A H1N1, avian influenza A H5N1 virus subtype, or the avian influenza A H7N9 virus subtype. Furthermore, treatment with one antiviral drug might promote the development of antiviral resistance, especially in immunocompromised hosts and critically ill patients. An obvious strategy to optimise antiviral therapy is to combine drugs with different modes of action. Because host immune responses to infection might also contribute to illness pathogenesis, improved outcomes might be gained from the combination of antiviral therapy with drugs that modulate the immune response in an infected individual. We review available data from preclinical and clinical studies of combination antiviral therapy and of combined antiviral-immunomodulator therapy for influenza. Early-stage data draw attention to several promising antiviral combinations with therapeutic potential in severe infections, but there remains a need to substantiate clinical benefit. Combination therapies with favourable experimental data need to be tested in carefully designed aclinical trials to assess their efficacy.
Collapse
|
23
|
Influenza virus A/Anhui/1/2013 (H7N9) replicates efficiently in the upper and lower respiratory tracts of cynomolgus macaques. mBio 2014; 5:mBio.01331-14. [PMID: 25118237 PMCID: PMC4145683 DOI: 10.1128/mbio.01331-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277–2285, 2013, doi:10.1056/NEJMoa1305584). Influenza A virus H7N9 emerged early in 2013, and human cases have continued to emerge since then. Although H7N9 virus-induced disease in humans is often very severe and even lethal, the majority of reported H7N9 cases occurred in older people and people with underlying medical conditions. To better understand the pathogenicity of this virus, healthy cynomolgus macaques were inoculated with influenza A virus H7N9. Cynomolgus macaques were used as a model because the receptor distribution for H7N9 virus in macaques was recently shown to be more similar to that in humans than that of other frequently used animal models. From comparison with previous studies, we conclude that the emerging H7N9 influenza virus was more pathogenic in cynomolgus macaques than seasonal influenza A viruses and most isolates of the pandemic H1N1 virus but less pathogenic than the 1918 Spanish influenza virus or highly pathogenic avian influenza (HPAI) H5N1 virus.
Collapse
|
24
|
Peng J, Zhang D, Ma Y, Wang G, Guo Z, Lu J. Protective effect of fluvastatin on influenza virus infection. Mol Med Rep 2014; 9:2221-6. [PMID: 24676773 DOI: 10.3892/mmr.2014.2076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and have pleiotropic effects. It has been suggested that statins may be a potential treatment during the next influenza pandemic. In a previous study we found that a statin/caffeine combination protects BALB/c mice against Influenza A, subtypes haemagglutinin type 5 and neuraminidase type 1 (H5N1), H3N2 and H1N1 infection. The effect of statins alone on influenza virus infection, however, is not known. In this study, it was investigated whether fluvastatin is capable of inhibiting influenza A virus replication in vitro. The results demonstrated that the synthesis of viral RNA and protein was affected by fluvastatin treatment. Virus production was markedly reduced when fluvastatin was administered simultaneously with the virus; however, a greater inhibition was observed when fluvastatin was added following viral adsorption. The selectivity index [SI; 50% cytotoxic concentration (CC50)/50% inhibition concentration (IC50)], however, was only 21. It was further demonstrated that fluvastatin protects host cells against influenza-induced inflammation by reducing the production of tumour necrosis factor-α, interleukin 8 and interferon γ. In conclusion, the results demonstrated that fluvastatin exerted a minor inhibitory effect on influenza virus infection, which involved anti-inflammatory activities.
Collapse
Affiliation(s)
- Jing Peng
- School of Public Health, State Ministry of Education, Key Laboratory of Tropical Diseases Control Research, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dingmei Zhang
- School of Public Health, State Ministry of Education, Key Laboratory of Tropical Diseases Control Research, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Ma
- School of Public Health, State Ministry of Education, Key Laboratory of Tropical Diseases Control Research, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guoling Wang
- Haizhu Center for Disease Control and Prevention, Guangzhou, Guangdong 510288, P.R. China
| | - Zhongmin Guo
- Experimental Animal Center, Sun Yat‑sen University, Guangzhou, Guangdong 510080, PR China
| | - Jiahai Lu
- School of Public Health, State Ministry of Education, Key Laboratory of Tropical Diseases Control Research, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
25
|
Treating influenza with statins and other immunomodulatory agents. Antiviral Res 2013; 99:417-35. [PMID: 23831494 DOI: 10.1016/j.antiviral.2013.06.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022]
Abstract
Statins not only reduce levels of LDL-cholesterol, they counteract the inflammatory changes associated with acute coronary syndrome and improve survival. Similarly, in patients hospitalized with laboratory-confirmed seasonal influenza, statin treatment is associated with a 41% reduction in 30-day mortality. Most patients of any age who are at increased risk of influenza mortality have chronic low-grade inflammation characteristic of metabolic syndrome. Moreover, differences in the immune responses of children and adults seem responsible for the low mortality in children and high mortality in adults seen in the 1918 influenza pandemic and in other acute infectious and non-infectious conditions. These differences probably reflect human evolutionary development. Thus the host response to influenza seems to be the major determinant of outcome. Outpatient statins are associated with reductions in hospitalizations and deaths due to sepsis and pneumonia. Inpatient statins are also associated with reductions in short-term pneumonia mortality. Other immunomodulatory agents--ACE inhibitors (ACEIs), angiotensin receptor blockers (ARBs), PPARγ and PPARα agonists (glitazones and fibrates) and AMPK agonists (metformin)--also reduce mortality in patients with pneumonia (ACEIs, ARBs) or in mouse models of influenza (PPAR and AMPK agonists). In experimental studies, treatment has not increased virus replication. Thus effective management of influenza may not always require targeting the virus with vaccines or antiviral agents. Clinical investigators, not systems biologists, have been the first to suggest that immunomodulatory agents might be used to treat influenza patients, but randomized controlled trials will be needed to provide convincing evidence that they work. To guide the choice of which agent(s) to study, we need new types of laboratory research in animal models and clinical and epidemiological research in patients with critical illness. These studies will have crucial implications for global public health. During the 2009 H1N1 influenza pandemic, timely and affordable supplies of vaccines and antiviral agents were unavailable to more than 90% of the world's people. In contrast, statins and other immunomodulatory agents are currently produced as inexpensive generics, global supplies are huge, and they would be available to treat patients in any country with a basic health care system on the first pandemic day. Treatment with statins and other immunomodulatory agents represents a new approach to reducing mortality caused by seasonal and pandemic influenza.
Collapse
|