1
|
Young AR, Stobart CC. Emergence, Tropism, Disease, and Treatment of Australian Bat Lyssavirus Infections in Humans. Vector Borne Zoonotic Dis 2023; 23:486-494. [PMID: 37335942 DOI: 10.1089/vbz.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Australian bat lyssavirus (ABLV) is a negative-sense, single-stranded RNA rhabdovirus capable of causing fatal acute encephalitis in humans with similar pathogenesis to its closest serologic relative, rabies virus (RABV). In this review, we describe emergence and classification of ABLV, its known virology, reservoirs, and hosts, as well as both the pathogenesis and treatment approaches currently employed for presumed infections. ABLV was first identified in New South Wales, Australia in 1996 and emerged in humans months later in Queensland, Australia. Only five known bat reservoirs, all of which fall within the Pteropus and Saccolaimus genera, have been identified to date. Although ABLV antigens have been identified in bats located outside of Australia, the three known human ABLV infections to date have occurred within Australia. As such, there remains a potential for ABLV to expand its presence within and beyond Australia. ABLV infections are currently treated as if they were RABV infections by administering neutralizing antibodies against RABV at the site of the wound and employing the rabies vaccine upon possible exposures. Due to its recent emergence, there is still much left unknown about ABLV, posing concerns with how to safely and effectively address current and future ABLV infections.
Collapse
Affiliation(s)
- Audrey R Young
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | | |
Collapse
|
2
|
Pseudotyped Viruses for Lyssavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:191-208. [PMID: 36920698 DOI: 10.1007/978-981-99-0113-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.
Collapse
|
3
|
Isolation and Characterization of Cross-Reactive Human Monoclonal Antibodies That Potently Neutralize Australian Bat Lyssavirus Variants and Other Phylogroup 1 Lyssaviruses. Viruses 2021; 13:v13030391. [PMID: 33804519 PMCID: PMC8001737 DOI: 10.3390/v13030391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Australian bat lyssavirus (ABLV) is a rhabdovirus that circulates in four species of pteropid bats (ABLVp) and the yellow-bellied sheath-tailed bat (ABLVs) in mainland Australia. In the three confirmed human cases of ABLV, rabies illness preceded fatality. As with rabies virus (RABV), post-exposure prophylaxis (PEP) for potential ABLV infections consists of wound cleansing, administration of the rabies vaccine and injection of rabies immunoglobulin (RIG) proximal to the wound. Despite the efficacy of PEP, the inaccessibility of human RIG (HRIG) in the developing world and the high immunogenicity of equine RIG (ERIG) has led to consideration of human monoclonal antibodies (hmAbs) as a passive immunization option that offers enhanced safety and specificity. Using a recombinant vesicular stomatitis virus (rVSV) expressing the glycoprotein (G) protein of ABLVs and phage display, we identified two hmAbs, A6 and F11, which completely neutralize ABLVs/ABLVp, and RABV at concentrations ranging from 0.39 and 6.25 µg/mL and 0.19 and 0.39 µg/mL respectively. A6 and F11 recognize overlapping epitopes in the lyssavirus G protein, effectively neutralizing phylogroup 1 lyssaviruses, while having little effect on phylogroup 2 and non-grouped diverse lyssaviruses. These results suggest that A6 and F11 could be effective therapeutic and diagnostic tools for phylogroup 1 lyssavirus infections.
Collapse
|
4
|
Si D, Marquess J, Donnan E, Harrower B, McCall B, Bennett S, Lambert S. Potential Exposures to Australian Bat Lyssavirus Notified in Queensland, Australia, 2009-2014. PLoS Negl Trop Dis 2016; 10:e0005227. [PMID: 28033365 PMCID: PMC5199083 DOI: 10.1371/journal.pntd.0005227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022] Open
Abstract
Background Australian bat lyssavirus (ABLV) belongs to the genus Lyssavirus which also includes classic rabies virus and the European lyssaviruses. To date, the only three known human ABLV cases, all fatal, have been reported from Queensland, Australia. ABLV is widely distributed in Australian bats, and any bite or scratch from an Australian bat is considered a potential exposure to ABLV. Methodology/Principal Findings Potential exposure to ABLV has been a notifiable condition in Queensland since 2005. We analysed notification data for potential exposures occurring between 2009 and 2014. There were 1,515 potential exposures to ABLV notified in Queensland, with an average annual notification rate of 5.6 per 100,000 population per year. The majority of notified individuals (96%) were potentially exposed to ABLV via bats, with a small number of cases potentially exposed via two ABLV infected horses and an ABLV infected human. The most common routes of potential exposure were through bat scratches (47%) or bites (37%), with less common routes being mucous membrane/broken skin exposure to bat saliva/brain tissue (2.2%). Intentional handling of bats by the general public was the major cause of potential exposures (56% of notifications). Examples of these potential exposures included people attempting to rescue bats caught in barbed wire fences/fruit tree netting, or attempting to remove bats from a home. Following potential exposures, 1,399 cases (92%) were recorded as having appropriate post-exposure prophylaxis (PEP) as defined in national guidelines, with the remainder having documentation of refusal or incomplete PEP. Up to a quarter of notifications occurred after two days from the potential exposure, but with some delays being more than three weeks. Of 393 bats available for testing during the reporting period, 20 (5.1%) had ABLV detected, including four species of megabats (all flying foxes) and one species of microbats (yellow-bellied sheathtail bat). Conclusions/Significance Public health strategies should address the strong motivation of some members of the public to help injured bats or bats in distress, by emphasising that their action may harm the bat and put themselves at risk of the fatal ABLV infection. Alternative messaging should include seeking advice from professional animal rescue groups, or in the event of human contact, public health units. Further efforts are required to ensure that when potential exposure occurs, timely reporting and appropriate post-exposure prophylaxis occur. Australian bat lyssavirus (ABLV), closely related to classic rabies virus, is widely distributed in bats in Australia. So far, the only three known human ABLV cases, all fatal, have been reported in Queensland, Australia. Any Australian bat-related injury (bite or scratch), or contact of bat saliva/neural tissue with eyes, mouth, nose, or broken skin of humans, is considered a potential exposure to ABLV. Use of timely, appropriate rabies vaccine and human rabies immunoglobulin is recommended to prevent fatal human ABLV disease. Based on notification data for potential exposures to ABLV in Queensland, we found that intentional handling of bats by the general public was the major cause of bat-related injuries; for example, people reported attempting to rescue bats caught in barbed wire fences or fruit tree netting, or attempting to remove bats from a home. This highlights a need to address the strong motivation of some members of the public to help injured bats or bats in distress and the lack of awareness of the risks of contact with or handling of bats, underscoring the importance of avoidance of bat handling by contacting vaccinated, experienced, and well-equipped professional animal rescue groups to deal with bats. There is a need to improve timeliness of notification to ensure immediate post-exposure management. Queensland Health bat testing results revealed the detection of ABLV in four common species of megabats (all flying foxes) and one species of microbats (yellow-bellied sheathtail bat), further reinforcing the message of avoiding all bat-related injuries. Once a potential exposure to ABLV occurs, immediate cleansing of wound (with soap and water for at least 5 minutes and application of povidone-iodine or alcohol) is required; and appropriate and timely rabies vaccine and human rabies immunoglobulin should be administered.
Collapse
Affiliation(s)
- Damin Si
- Communicable Diseases Branch, Queensland Health, Brisbane, Australia
- * E-mail:
| | - John Marquess
- Communicable Diseases Branch, Queensland Health, Brisbane, Australia
| | - Ellen Donnan
- Communicable Diseases Branch, Queensland Health, Brisbane, Australia
| | - Bruce Harrower
- Forensic and Scientific Services, Queensland Health, Brisbane, Australia
| | - Bradley McCall
- Metro South Public Health Unit, Metro South Hospital and Health Service, Queensland Health, Brisbane, Australia
| | - Sonya Bennett
- Communicable Diseases Branch, Queensland Health, Brisbane, Australia
| | - Stephen Lambert
- Communicable Diseases Branch, Queensland Health, Brisbane, Australia
- UQ Child Health Research Centre, School of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Mélade J, Wieseke N, Ramasindrazana B, Flores O, Lagadec E, Gomard Y, Goodman SM, Dellagi K, Pascalis H. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism. Sci Rep 2016; 6:23752. [PMID: 27068130 PMCID: PMC4828640 DOI: 10.1038/srep23752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/08/2016] [Indexed: 11/09/2022] Open
Abstract
An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats.
Collapse
Affiliation(s)
- Julien Mélade
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
| | - Nicolas Wieseke
- University of Leipzig, Department of Computer Science, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Beza Ramasindrazana
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
- Institut Pasteur de Madagascar, BP 1274 Ambohitrakely, Antananarivo 101, Madagascar
| | - Olivier Flores
- UMR C53 CIRAD, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, 7 chemin de l’IRAT, 97410 St Pierre, France
- Université de La Réunion, 15 Avenue René Cassin, 97400 Saint-Denis, France
| | - Erwan Lagadec
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
| | - Yann Gomard
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
| | - Steven M. Goodman
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
- Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA
| | - Koussay Dellagi
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
| | - Hervé Pascalis
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT “Processus Infectieux en Milieu Insulaire Tropical”, INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), IRD – BP 50172, 97492 Sainte-Clotilde, La Réunion, France
| |
Collapse
|
6
|
Shetty U, Phillips M, Francis JR, Walsh M. Paediatric Australian bat lyssavirus encephalomyelitis - sequential MRI appearances from symptom onset to death. Pediatr Radiol 2015; 45:1716-21. [PMID: 26081671 DOI: 10.1007/s00247-015-3371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Human infection with Australian bat lyssavirus is extremely rare. Here we present the craniospinal findings in a fatal case of Australian bat lyssavirus infection in an 8-year-old child. MRI plays a very important role, not only in the diagnostic work-up of Australian bat lyssavirus infection but also in the prognostic assessment.
Collapse
Affiliation(s)
- Umesh Shetty
- Mater Hospital and Lady Cilento Children's Hospital Medical Imaging Department, Raymond Terrace, Brisbane, Australia, , QLD, 4101.
| | - Mark Phillips
- Mater Hospital and Lady Cilento Children's Hospital Medical Imaging Department, Raymond Terrace, Brisbane, Australia, , QLD, 4101
| | - Joshua R Francis
- Department of Paediatrics, Royal Darwin Hospital, Darwin, Australia
| | - Mark Walsh
- Mater Hospital and Lady Cilento Children's Hospital Medical Imaging Department, Raymond Terrace, Brisbane, Australia, , QLD, 4101
| |
Collapse
|
7
|
Annand EJ, Reid PA. Clinical review of two fatal equine cases of infection with the insectivorous bat strain of Australian bat lyssavirus. Aust Vet J 2014; 92:324-32. [DOI: 10.1111/avj.12227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 12/01/2022]
Affiliation(s)
- EJ Annand
- Randwick Equine Centre; Sydney New South Wales Australia
| | - PA Reid
- Brisbane Queensland Australia
| |
Collapse
|
8
|
Weir DL, Laing ED, Smith IL, Wang LF, Broder CC. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5. Virol J 2014; 11:40. [PMID: 24576301 PMCID: PMC3946599 DOI: 10.1186/1743-422x-11-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022] Open
Abstract
Background Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. Methods ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Results Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. Conclusions The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.
Collapse
Affiliation(s)
| | | | | | | | - Christopher C Broder
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Weir DL, Annand EJ, Reid PA, Broder CC. Recent observations on Australian bat lyssavirus tropism and viral entry. Viruses 2014; 6:909-26. [PMID: 24556791 PMCID: PMC3939488 DOI: 10.3390/v6020909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/25/2014] [Accepted: 02/08/2014] [Indexed: 12/25/2022] Open
Abstract
Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen.
Collapse
Affiliation(s)
- Dawn L Weir
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Edward J Annand
- Equine Veterinary Surgeon, Randwick Equine Centre, Sydney 2031, Australia.
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland 4034, Australia.
| | - Christopher C Broder
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|