1
|
Shimojima M, Sugimoto S, Taniguchi S, Maeki T, Yoshikawa T, Kurosu T, Tajima S, Lim CK, Ebihara H. N-glycosylation of viral glycoprotein is a novel determinant for the tropism and virulence of highly pathogenic tick-borne bunyaviruses. PLoS Pathog 2024; 20:e1012348. [PMID: 39008518 PMCID: PMC11271937 DOI: 10.1371/journal.ppat.1012348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/25/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
2
|
Ji M, Hu J, Zhang D, Huang B, Xu S, Jiang N, Chen Y, Wang Y, Wu X, Wu Z. Inhibition of SFTSV replication in humanized mice by a subcutaneously administered anti-PD1 nanobody. EMBO Mol Med 2024; 16:575-595. [PMID: 38366162 PMCID: PMC10940662 DOI: 10.1038/s44321-024-00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jiaqian Hu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Doudou Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China.
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Sano K, Kimura M, Sataka A, Hasegawa H, Tani H, Suzuki T. Characterization of antibodies targeting severe fever with thrombocytopenia syndrome virus glycoprotein Gc. Arch Virol 2024; 169:40. [PMID: 38308735 DOI: 10.1007/s00705-024-05968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/07/2023] [Indexed: 02/05/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a hemorrhagic fever caused by SFTS virus (SFTSV), which is primarily found in East Asian countries. Despite its high mortality rate and increasing incidence, no vaccines or therapeutics have yet been approved for use against SFTS. Antibody drugs have shown promise in treating lethal infectious diseases that currently have no established treatments. In the case of SFTS, however, only a limited amount of research has been done on SFTSV-neutralizing antibodies targeting the transmembrane proteins Gn and Gc, which play critical roles in viral infection. This study focuses on the production and characterization of antibodies targeting the SFTSV Gc protein. Monoclonal antibodies against Gc were generated through immunization of mice, and their antiviral activity was evaluated. Three out of four anti-Gc antibody clones from this study demonstrated dose-dependent SFTSV neutralization activity, two of which exhibited a synergistic effect on the neutralization activity of the anti-Gn antibody clone Mab4-5. Further studies are necessary to identify key sites on the SFTSV glycoprotein and to develop novel agents as well as antibodies with diverse mechanisms of action against SFTSV.
Collapse
Affiliation(s)
- Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akiko Sataka
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
4
|
Kim D, Lai CJ, Cha I, Jung JU. Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses 2024; 16:128. [PMID: 38257828 PMCID: PMC10818334 DOI: 10.3390/v16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
SFTSV is an emerging tick-borne virus causing hemorrhagic fever with a case fatality rate (CFR) that can reach up to 27%. With endemic infection in East Asia and the recent spread of the vector tick to more than 20 states in the United States, the SFTSV outbreak is a globally growing public health concern. However, there is currently no targeted antiviral therapy or licensed vaccine against SFTSV. Considering the age-dependent SFTS pathogenesis and disease outcome, a sophisticated vaccine development approach is required to safeguard the elderly population from lethal SFTSV infection. Given the recent emergence of SFTSV, the establishment of animal models to study immunogenicity and protection from SFTS symptoms has only occurred recently. The latest research efforts have applied diverse vaccine development approaches-including live-attenuated vaccine, DNA vaccine, whole inactivated virus vaccine, viral vector vaccine, protein subunit vaccine, and mRNA vaccine-in the quest to develop a safe and effective vaccine against SFTSV. This review aims to outline the current progress in SFTSV vaccine development and suggest future directions to enhance the safety and efficacy of these vaccines, ensuring their suitability for clinical application.
Collapse
Affiliation(s)
- Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Inho Cha
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Xu H, Jian X, Wen Y, Xu M, Jin R, Wu X, Zhou F, Cao J, Xiao G, Peng K, Xie Y, Chen H, Zhang L. A nanoluciferase SFTSV for rapid screening antivirals and real-time visualization of virus infection in mice. EBioMedicine 2024; 99:104944. [PMID: 38176215 PMCID: PMC10806088 DOI: 10.1016/j.ebiom.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqin Jian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwei Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyuan Cao
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China.
| | | | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
6
|
Doores KJ. Humoral immunity to phlebovirus infection. Ann N Y Acad Sci 2023; 1530:23-31. [PMID: 37936483 PMCID: PMC10952791 DOI: 10.1111/nyas.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Phleboviruses are zoonotic pathogens found in parts of Africa, Asia, Europe, and North America and cause disease symptoms ranging from self-limiting febrile illness to severe disease, including hemorrhagic diathesis, encephalitis, and ocular pathologies. There are currently no approved preventative vaccines against phlebovirus infection or antivirals for the treatment of the disease. Here, we discuss the roles of neutralizing antibodies in phlebovirus infection, the antigenic targets present on the mature polyproteins Gn and Gc, progress in vaccine development, and the prospects of identifying conserved neutralizing epitopes across multiple phleboviruses. Further research in this area will pave the way for the rational design of pan-phlebovirus vaccines that will protect against both known phleboviruses but also newly emerging phleboviruses that may have pandemic potential.
Collapse
Affiliation(s)
- Katie J. Doores
- Department of Infectious Diseases, King's College LondonGuy's HospitalLondonUK
| |
Collapse
|
7
|
Chen L, Chen T, Li R, Xu Y, Xiong Y. Recent Advances in the Study of the Immune Escape Mechanism of SFTSV and Its Therapeutic Agents. Viruses 2023; 15:v15040940. [PMID: 37112920 PMCID: PMC10142331 DOI: 10.3390/v15040940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Sever fever with thrombocytopenia syndrome (SFTS) is a new infectious disease that has emerged in recent years and is widely distributed, highly contagious, and lethal, with a mortality rate of up to 30%, especially in people with immune system deficiencies and elderly patients. SFTS is an insidious, negative-stranded RNA virus that has a major public health impact worldwide. The development of a vaccine and the hunt for potent therapeutic drugs are crucial to the prevention and treatment of Bunyavirus infection because there is no particular treatment for SFTS. In this respect, investigating the mechanics of SFTS-host cell interactions is crucial for creating antiviral medications. In the present paper, we summarized the mechanism of interaction between SFTS and pattern recognition receptors, endogenous antiviral factors, inflammatory factors, and immune cells. Furthermore, we summarized the current therapeutic drugs used for SFTS treatment, aiming to provide a theoretical basis for the development of targets and drugs against SFTS.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yingshu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
8
|
Bost C, Hartlaub J, Pinho Dos Reis V, Strecker T, Seidah NG, Groschup MH, Diederich S, Fischer K. The proprotein convertase SKI-1/S1P is a critical host factor for Nairobi sheep disease virus infectivity. Virus Res 2023; 329:199099. [PMID: 36948228 DOI: 10.1016/j.virusres.2023.199099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.
Collapse
Affiliation(s)
- Caroline Bost
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Hartlaub
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas Strecker
- Institute for Virology, Philipps-University Marburg, Germany
| | - Nabil G Seidah
- Montreal Clinical Research Institute (IRCM), affiliated to the University of Montreal, Laboratory of Biochemical Neuroendocrinology, Montreal, Quebec H2W 1R7, Canada
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
9
|
Xia G, Sun S, Zhou S, Li L, Li X, Zou G, Huang C, Li J, Zhang Z. A new model for predicting the outcome and effectiveness of drug therapy in patients with severe fever with thrombocytopenia syndrome: A multicenter Chinese study. PLoS Negl Trop Dis 2023; 17:e0011158. [PMID: 36877734 PMCID: PMC10019728 DOI: 10.1371/journal.pntd.0011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/16/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND There are a few models for predicting the outcomes of patients with severe fever with thrombocytopenia syndrome (SFTS) based on single-center data, but clinicians need more reliable models based on multicenter data to predict the clinical outcomes and effectiveness of drug therapy. METHODOLOGY/PRINCIPAL FINDINGS This retrospective multicenter study analyzed data from 377 patients with SFTS, including a modeling group and a validation group. In the modeling group, the presence of neurologic symptoms was a strong predictor of mortality (odds ratio: 168). Based on neurologic symptoms and the joint indices score, which included age, gastrointestinal bleeding, and the SFTS virus viral load, patients were divided into double-positive, single-positive, and double-negative groups, which had mortality rates of 79.3%, 6.8%, and 0%, respectively. Validation using data on 216 cases from two other hospitals yielded similar results. A subgroup analysis revealed that ribavirin had a significant effect on mortality in the single-positive group (P = 0.006), but not in the double-positive or double-negative group. In the single-positive group, prompt antibiotic use was associated with reduced mortality (7.2% vs 47.4%, P < 0.001), even in individuals without significant granulocytopenia and infection, and early prophylaxis was associated with reduced mortality (9.0% vs. 22.8%, P = 0.008). The infected group included SFTS patients with pneumonia or sepsis, while the noninfected group included patients with no signs of infection. The white blood cell count and levels of C-reactive protein and procalcitonin differed significantly between the infection and non-infection groups (P = 0.020, P = 0.011, and P = 0.003, respectively), although the absolute difference in the medians were small. CONCLUSIONS/SIGNIFICANCE We developed a simple model to predict mortality in patients with SFTS. Our model may help to evaluate the effectiveness of drugs in these patients. In patients with severe SFTS, ribavirin and antibiotics may reduce mortality.
Collapse
Affiliation(s)
- Guomei Xia
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Sun
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shijun Zhou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Li
- Department of Infectious Diseases, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- * E-mail:
| |
Collapse
|
10
|
Susceptibility of Type I Interferon Receptor Knock-Out Mice to Heartland Bandavirus (HRTV) Infection and Efficacy of Favipiravir and Ribavirin in the Treatment of the Mice Infected with HRTV. Viruses 2022; 14:v14081668. [PMID: 36016290 PMCID: PMC9416051 DOI: 10.3390/v14081668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Heartland bandavirus (HRTV) is an emerging tick-borne virus that is distributed in the United States and that causes febrile illness with thrombocytopenia and leukocytopenia. It is genetically close to Dabie bandavirus, which is well known as severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV). The mortality rate of human HRTV infection is approximately 10%; however, neither approved anti-HRTV agents nor vaccines exist. An appropriate animal model should be developed to evaluate the efficacy of antiviral agents and vaccines against HRTV. The susceptibility of IFNAR−/− mice with HRTV infection was evaluated using subcutaneous, intraperitoneal, and retro-orbital inoculation routes. IFNAR−/− mice intraperitoneally infected with HRTV showed the most severe clinical signs, and the 50% lethal dose was 3.2 × 106 TCID50. Furthermore, to evaluate the utility of a novel lethal IFNAR−/− mice model, IFNAR−/− mice were orally administered favipiravir, ribavirin, or a solvent for 5 days immediately after a lethal dose of HRTV inoculation. The survival rates of the favipiravir-, ribavirin-, and solvent-administered mice were 100, 33, and 0%, respectively. The changes in bodyweights and HRTV RNA loads in the blood of favipiravir-treated IFNAR−/− mice were the lowest among the three groups, which suggests that favipiravir is a promising drug candidate for the treatment of patients with HRTV infection.
Collapse
|
11
|
Shimojima M, Sugimoto S, Umekita K, Onodera T, Sano K, Tani H, Takamatsu Y, Yoshikawa T, Kurosu T, Suzuki T, Takahashi Y, Ebihara H, Saijo M. Neutralizing mAbs against SFTS Virus Gn Protein Show Strong Therapeutic Effects in an SFTS Animal Model. Viruses 2022; 14:v14081665. [PMID: 36016286 PMCID: PMC9416629 DOI: 10.3390/v14081665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease with a high case fatality rate caused by the SFTS virus, and currently there are no approved specific treatments. Neutralizing monoclonal antibodies (mAbs) against the virus could be a therapeutic agent in SFTS treatment, but their development has not sufficiently been carried out. In the present study, mouse and human mAbs exposed to the viral envelope proteins Gn and Gc (16 clones each) were characterized in vitro and in vivo by using recombinant proteins, cell culture with viruses, and an SFTS animal model with IFNAR-/- mice. Neutralization activities against the recombinant vesicular stomatitis virus bearing SFTS virus Gn/Gc as envelope proteins were observed with three anti-Gn and six anti-Gc mAbs. Therapeutic activities were observed among anti-Gn, but not anti-Gc mAbs with neutralizing activities. These results propose an effective strategy to obtain promising therapeutic mAb candidates for SFTS treatment, and a necessity to reveal precise roles of the SFTS virus Gn/Gc proteins.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Correspondence: shimoji-@niid.go.jp (M.S.); (M.S.)
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Kunihiko Umekita
- Department of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.O.); (Y.T.)
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; ka-- (K.S.); (T.S.)
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama 939-0363, Japan;
| | - Yuki Takamatsu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; ka-- (K.S.); (T.S.)
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.O.); (Y.T.)
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Medical Affairs Department, Health and Welfare Bureau, Sapporo 060-0042, Japan
- Correspondence: shimoji-@niid.go.jp (M.S.); (M.S.)
| |
Collapse
|
12
|
Saijo M. Severe fever with thrombocytopenia syndrome, a viral hemorrhagic fever, endemic to Japan: achievements and directions to the future in the scientific and medical research. Jpn J Infect Dis 2022; 75:217-227. [PMID: 35354707 DOI: 10.7883/yoken.jjid.2021.851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel infectious disease, severe fever with thrombocytopenia syndrome (SFTS) caused by a novel bunyavirus, with high case fatality rate (CFR) was reported by Chinese scientists in 2011. The causative virus, Dabie bandavirus [former SFTS virus (SFTSV)] belonged to the Bandavirus genus (former Phlebovirus genus) of Phenuiviridae family (former Bunyaviridae family). SFTS was also reported to be endemic to South Korea and Japan in 2013. Humans are infected with SFTSV through bites by ticks such as Haemophysalis longicornis and Amblyomma testidinarium. However, it was reported that domesticated animals such as cats and dogs were also infected with SFTSV probably through tick bites in living environment and show the SFTS-like symptoms with high CFR. Furthermore, there have been the cases of SFTS patients, who were infected with SFTSV through close contacts with sick cats or dogs. The high CFR in patients with SFTS is approximately 30% in Japan. SFTSV is circulating in nature between some species of ticks and animals. There are always the risks of SFTSV infection for human populations living in the endemic areas. Therefore, development of specific therapies and vaccines is an urgent need to reduce the number of fatal SFTS patients.
Collapse
Affiliation(s)
- Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| |
Collapse
|
13
|
Bryden SR, Dunlop JI, Clarke AT, Fares M, Pingen M, Wu Y, Willett BJ, Patel AH, Gao GF, Kohl A, Brennan B. Exploration of immunological responses underpinning severe fever with thrombocytopenia syndrome virus infection reveals IL-6 as a therapeutic target in an immunocompromised mouse model. PNAS NEXUS 2022; 1:pgac024. [PMID: 35529317 PMCID: PMC9071185 DOI: 10.1093/pnasnexus/pgac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Dabie bandavirus (previously severe fever with thrombocytopenia syndrome virus; SFTSV), is an emerging tick-borne bunyavirus responsible for severe fever with thrombocytopenia syndrome (SFTS), a disease with high case fatality that is characterized by high fever, thrombocytopenia, and potentially lethal hemorrhagic manifestations. Currently, neither effective therapeutic strategies nor approved vaccines exist for SFTS. Therefore, there remains a pressing need to better understand the pathogenesis of the disease and to identify therapeutic strategies to ameliorate SFTS outcomes. Using a type I interferon (IFN)-deficient mouse model, we investigated the viral tropism, disease kinetics, and the role of the virulence factor nonstructural protein (NSs) in SFTS. Ly6C+ MHCII+ cells in the lymphatic tissues were identified as an important target cell for SFTSV. Advanced SFTS was characterized by significant migration of inflammatory leukocytes, notably neutrophils, into the lymph node and spleen, however, these cells were not required to orchestrate the disease phenotype. The development of SFTS was associated with significant upregulation of proinflammatory cytokines, including high levels of IFN-γ and IL-6 in the serum, lymph node, and spleen. Humoral immunity generated by inoculation with delNSs SFTSV was 100% protective. Importantly, NSs was critical to the inhibition of the host IFNɣ response or downstream IFN-stimulated gene production and allowed for the establishment of severe disease. Finally, therapeutic but not prophylactic use of anti-IL-6 antibodies significantly increased the survival of mice following SFTSV infection and, therefore, this treatment modality presents a novel therapeutic strategy for treating severe SFTS.
Collapse
Affiliation(s)
- Steven R Bryden
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - James I Dunlop
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Andrew T Clarke
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Mazigh Fares
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Marieke Pingen
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Brian J Willett
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Arvind H Patel
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology , Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Alain Kohl
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | | |
Collapse
|
14
|
Li JC, Zhao J, Li H, Fang LQ, Liu W. Epidemiology, clinical characteristics, and treatment of severe fever with thrombocytopenia syndrome. INFECTIOUS MEDICINE 2022; 1:40-49. [PMID: 38074982 PMCID: PMC10699716 DOI: 10.1016/j.imj.2021.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 02/23/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by a novel phlebovirus (SFTS virus, SFTSV) in the family Phenuiviridae of the order Bunyavirales. The disease causes a wide spectrum of clinical signs and symptoms, ranging from mild febrile disease accompanied by thrombocytopenia and/or leukocytopenia to hemorrhagic fever, encephalitis, multiple organ failure, and death. SFTS was first identified in China and was subsequently reported in South Korea and Japan. The case-fatality rate ranges from 2.7% to 45.7%. Older age has been consistently shown to be the most important predictor of adverse disease outcomes. Older age exacerbates disease mainly through dysregulation of host immune cells and uncontrolled inflammatory responses. Tick-to-human transmission is the primary route of human infection with SFTSV, and Haemaphysalis longicornis is the primary tick vector of SFTSV. Despite its high case-fatality rate, vaccines and antiviral therapies for SFTS are not currently available. The therapeutic efficacies of several antiviral agents against SFTSV are currently being evaluated. Ribavirin was initially identified as a potential antiviral therapy for SFTS but was subsequently found to inefficiently improve disease outcomes, especially among patients with high viral loads. Favipiravir (T705) decreased both time to clinical improvement and mortality when administered early in patients with low viral loads. Anti-inflammatory agents including corticosteroids have been proposed to play therapeutic roles. However, the efficacy of other therapeutic modalities, such as convalescent plasma, is not yet clear.
Collapse
Affiliation(s)
| | | | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| |
Collapse
|
15
|
Sun J, Min YQ, Li Y, Sun X, Deng F, Wang H, Ning YJ. Animal Model of Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2022; 12:797189. [PMID: 35087498 PMCID: PMC8787146 DOI: 10.3389/fmicb.2021.797189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.
Collapse
Affiliation(s)
- Jiawen Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yunjie Li
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Ashizawa H, Yamamoto K, Ashizawa N, Takeda K, Iwanaga N, Takazono T, Sakamoto N, Sumiyoshi M, Ide S, Umemura A, Yoshida M, Fukuda Y, Kobayashi T, Tashiro M, Tanaka T, Katoh S, Morimoto K, Ariyoshi K, Morimoto S, Tun MMN, Inoue S, Morita K, Kurihara S, Izumikawa K, Yanagihara K, Mukae H. Associations between Chest CT Abnormalities and Clinical Features in Patients with the Severe Fever with Thrombocytopenia Syndrome. Viruses 2022; 14:v14020279. [PMID: 35215872 PMCID: PMC8877260 DOI: 10.3390/v14020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus. It involves multiple organ systems, including the lungs. However, the significance of the lung involvement in SFTS remains unclear. In the present study, we aimed to investigate the relationship between the clinical findings and abnormalities noted in the chest computed tomography (CT) of patients with SFTS. The medical records of 22 confirmed SFTS patients hospitalized in five hospitals in Nagasaki, Japan, between April 2013 and September 2019, were reviewed retrospectively. Interstitial septal thickening and ground-glass opacity (GGO) were the most common findings in 15 (68.1%) and 12 (54.5%) patients, respectively, and lung GGOs were associated with fatalities. The SFTS patients with a GGO pattern were elderly, had a disturbance of the conscious and tachycardia, and had higher c-reactive protein levels at admission (p = 0.009, 0.006, 0.002, and 0.038, respectively). These results suggested that the GGO pattern in patients with SFTS displayed disseminated inflammation in multiple organs and that cardiac stress was linked to higher mortality. Chest CT evaluations may be useful for hospitalized patients with SFTS to predict their severity and as early triage for the need of intensive care.
Collapse
Affiliation(s)
- Hiroki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan; (H.A.); (H.M.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
- Correspondence:
| | - Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (M.T.); (T.T.); (K.I.)
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (M.T.); (T.T.); (K.I.)
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
| | - Makoto Sumiyoshi
- Department of Respiratory Medicine, Isahaya General Hospital, Isahaya 854-8501, Japan; (M.S.); (S.I.)
| | - Shotaro Ide
- Department of Respiratory Medicine, Isahaya General Hospital, Isahaya 854-8501, Japan; (M.S.); (S.I.)
| | - Asuka Umemura
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo 857-8511, Japan; (A.U.); (M.Y.); (Y.F.)
| | - Masataka Yoshida
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo 857-8511, Japan; (A.U.); (M.Y.); (Y.F.)
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo 857-8511, Japan; (A.U.); (M.Y.); (Y.F.)
| | - Tsutomu Kobayashi
- Department of Respiratory Medicine, Sasebo Chuo Hospital, Sasebo 857-1195, Japan;
| | - Masato Tashiro
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (M.T.); (T.T.); (K.I.)
| | - Takeshi Tanaka
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (M.T.); (T.T.); (K.I.)
| | - Shungo Katoh
- Department of General Internal Medicine, Nagasaki Rosai Hospital, Nagasaki 857-0134, Japan;
- Department of General Internal Medicine and Clinical Infectious Diseases, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Konosuke Morimoto
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.); (K.A.)
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.); (K.A.)
| | - Shimpei Morimoto
- Clinical Research Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan;
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (S.I.); (K.M.)
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (S.I.); (K.M.)
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (S.I.); (K.M.)
| | - Shintaro Kurihara
- Department of Medical Safety, Nagasaki University Hospital, Nagasaki 852-8102, Japan;
| | - Koichi Izumikawa
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (M.T.); (T.T.); (K.I.)
| | - Katzunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan;
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan; (H.A.); (H.M.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan; (N.A.); (K.T.); (N.I.); (T.T.); (N.S.)
| |
Collapse
|
17
|
Immunogenicity and protective efficacy of an inactivated SFTS vaccine candidate in mice. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Gao C, Yu Y, Wen C, Li Z, Sun M, Gao S, Lin S, Wang S, Zou P, Xing Z. Peptides derived from viral glycoprotein Gc Inhibit infection of severe fever with thrombocytopenia syndrome virus. Antiviral Res 2021; 194:105164. [PMID: 34411654 DOI: 10.1016/j.antiviral.2021.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease caused by a novel phlebovirus (SFTSV), characterized by fever, thrombocytopenia and leukocytopenia which lead to multiple organ failure with high mortality in severe cases. The SFTSV has spread rapidly in recent years and posed a serious threat to public health in endemic areas. However, specific antiviral therapeutics for SFTSV infection are rare. In this study, we demonstrated that two peptides, SGc1 and SGc8, derived from a hydrophobic region of the SFTSV glycoprotein Gc, could potently inhibit SFTSV replication in a dose-dependent manner without apparent cytotoxicity in various cell lines and with low immunogenicity and good stability. The IC50 (50% inhibition concentration) values for both peptides to inhibit 2 MOI of SFTSV infection were below 10 μM in L02, Vero and BHK21 cells. Mechanistically, SGc1 and SGc8 mainly inhibited viral entry at the early stage of the viral infection. Inhibition of SFTSV replication was specific by both peptides because no inhibitory effect was shown against other viruses including Zika virus and Enterovirus A71. Taken together, our results suggested that viral glycoprotein-derived SGc1 and SGc8 peptides have antiviral potential and warrant further assessment as an SFTSV-specific therapeutic.
Collapse
Affiliation(s)
- Chengfeng Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Yufeng Yu
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China.
| | - Chunxia Wen
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Zhifeng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Menghuai Sun
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shu Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shuhan Lin
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shenjiao Wang
- Department of Acute Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zheng Xing
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
19
|
Xu S, Jiang N, Nawaz W, Liu B, Zhang F, Liu Y, Wu X, Wu Z. Infection of humanized mice with a novel phlebovirus presented pathogenic features of severe fever with thrombocytopenia syndrome. PLoS Pathog 2021; 17:e1009587. [PMID: 33974679 PMCID: PMC8139491 DOI: 10.1371/journal.ppat.1009587] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne emerging phlebovirus with high mortality rates of 6.0 to 30%. SFTSV infection is characterized by high fever, thrombocytopenia, leukopenia, hemorrhage and multiple organ failures. Currently, specific therapies and vaccines remain elusive. Suitable small animal models are urgently needed to elucidate the pathogenesis and evaluate the potential drug and vaccine for SFTSV infection. Previous models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. Therefore, it is an urgent need to develop a small animal model for the investigation of SFTSV pathogenesis and evaluation of therapeutics. In the current report, we developed a SFTSV infection model based on the HuPBL-NCG mice that recapitulates many pathological characteristics of SFTSV infection in humans. Virus-induced histopathological changes were identified in spleen, lung, kidney, and liver. SFTSV was colocalized with macrophages in the spleen and liver, suggesting that the macrophages in the spleen and liver could be the principle target cells of SFTSV. In addition, histological analysis showed that the vascular endothelium integrity was severely disrupted upon viral infection along with depletion of platelets. In vitro cellular assays further revealed that SFTSV infection increased the vascular permeability of endothelial cells by promoting tyrosine phosphorylation and internalization of the adhesion molecule vascular endothelial (VE)–cadherin, a critical component of endothelial integrity. In addition, we found that both virus infection and pathogen-induced exuberant cytokine release dramatically contributed to the vascular endothelial injury. We elucidated the pathogenic mechanisms of hemorrhage syndrome and developed a humanized mouse model for SFTSV infection, which should be helpful for anti-SFTSV therapy and pathogenesis study. SFTSV is a novel bunyavirus that was identified in 2010 and endemic in China, Korea, Japan and Vietnam with expanding spatial incidents. SFTS is characterized by high case-fatality rates and currently has no effective therapeutics or vaccines. In previous study, models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. In the current study, we developed a humanized NCG mouse model for the study of SFTSV infection and elucidated the pathogenic mechanisms of hemorrhage syndrome with respect to apoptosis, membrane protein endocytosis and cytokine stimulation. The HuPBL-NCG model presented multiple organ pathologies that resemble those of human infection, which will be helpful for anti-SFTSV therapy and pathogenesis study.
Collapse
Affiliation(s)
- Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ye Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- * E-mail: (XW); (ZW)
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- * E-mail: (XW); (ZW)
| |
Collapse
|
20
|
Molecular Signatures of Inflammatory Profile and B-Cell Function in Patients with Severe Fever with Thrombocytopenia Syndrome. mBio 2021; 12:mBio.02583-20. [PMID: 33593977 PMCID: PMC8545090 DOI: 10.1128/mbio.02583-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dabie bandavirus (severe fever with thrombocytopenia syndrome virus [SFTSV]) induces an immunopathogenic disease with a high fatality rate; however, the mechanisms underlying its clinical manifestations are largely unknown. In this study, we applied targeted proteomics and single-cell transcriptomics to examine the differential immune landscape in SFTS patient blood. Serum immunoprofiling identified low-risk and high-risk clusters of SFTS patients based on inflammatory cytokine levels, which corresponded to disease severity. Single-cell transcriptomic analysis of SFTS patient peripheral blood mononuclear cells (PBMCs) at different infection stages showed pronounced expansion of B cells with alterations in B-cell subsets in fatal cases. Furthermore, plasma cells in which the interferon (IFN) pathway is downregulated were identified as the primary reservoir of SFTSV replication. This study identified not only the molecular signatures of serum inflammatory cytokines and B-cell lineage populations in SFTSV-induced fatalities but also plasma cells as the viral reservoir. Thus, this suggests that altered B-cell function is linked to lethality in SFTSV infections.
Collapse
|
21
|
Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development. NPJ Vaccines 2020; 5:111. [PMID: 33335100 PMCID: PMC7746727 DOI: 10.1038/s41541-020-00257-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emergent tick-borne bunyavirus first discovered in 2009 in China. SFTSV is a growing public health problem that may become more prominent owing to multiple competent tick-vectors and the expansion of human populations in areas where the vectors are found. Although tick-vectors of SFTSV are found in a wide geographic area, SFTS cases have only been reported from China, South Korea, Vietnam, and Japan. Patients with SFTS often present with high fever, leukopenia, and thrombocytopenia, and in some cases, symptoms can progress to severe outcomes, including hemorrhagic disease. Reported SFTSV case fatality rates range from ~5 to >30% depending on the region surveyed, with more severe disease reported in older individuals. Currently, treatment options for this viral infection remain mostly supportive as there are no licensed vaccines available and research is in the discovery stage. Animal models for SFTSV appear to recapitulate many facets of human disease, although none of the models mirror all clinical manifestations. There are insufficient data available on basic immunologic responses, the immune correlate(s) of protection, and the determinants of severe disease by SFTSV and related viruses. Many aspects of SFTSV virology and epidemiology are not fully understood, including a detailed understanding of the annual numbers of cases and the vertebrate host of the virus, so additional research on this disease is essential towards the development of vaccines and therapeutics.
Collapse
|
22
|
Lu QB, Li H, Jiang FC, Mao LL, Liu XS, Wang N, Zhou YY, Dai K, Yang ZD, Dong LY, Cui N, Zhang XA, Zhang SF, Zhang PH, Fang LQ, Liu W. The Differential Characteristics Between Severe Fever With Thrombocytopenia Syndrome and Hemorrhagic Fever With Renal Syndrome in the Endemic Regions. Open Forum Infect Dis 2020; 6:ofz477. [PMID: 32128325 PMCID: PMC7047964 DOI: 10.1093/ofid/ofz477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
An effective differentiation between severe fever with thrombocytopenia syndrome and hemorrhagic fever with renal syndrome was attained by a model considering patients’ age, mouse/tick contact, presence of blush, low back pain, diarrhea, enlarged lymph nodes, and white blood cell count.
Collapse
Affiliation(s)
- Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Fa-Chun Jiang
- Division of Infectious Disease, Qingdao Center for Disease Control and Prevention, Qingdao, People's Republic of China
| | - Ling-Ling Mao
- Liaoning Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Xue-Sheng Liu
- Liaoning Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Ning Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.,Department of Microbiology, Graduate School of Mudanjiang Normal University, Mudanjiang, People's Republic of China
| | - Yong-Yun Zhou
- China National Accreditation Service for Conformity Assessment, Beijing, People's Republic of China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Zhen-Dong Yang
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Xinyang, People's Republic of China
| | - Li-Yan Dong
- Division of Infectious Disease, Qingdao Center for Disease Control and Prevention, Qingdao, People's Republic of China
| | - Ning Cui
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Xinyang, People's Republic of China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| |
Collapse
|
23
|
Takayama-Ito M, Saijo M. Antiviral Drugs Against Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2020; 11:150. [PMID: 32117168 PMCID: PMC7026129 DOI: 10.3389/fmicb.2020.00150] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by SFTS virus (SFTSV), which is a novel bunyavirus. SFTSV was first isolated from patients who presented with fever, thrombocytopenia, leukocytopenia, and multiorgan dysfunction in China. Subsequently, it was found to be widely distributed in Southeast Asia (Korea, Japan, and Vietnam). SFTSV can be transmitted not only from ticks but also from domestic animals, companion animals, and humans. Because the case fatality rate of SFTS is high (6–30%), development of specific and effective treatment for SFTS is required. Studies of potential antiviral drugs for SFTS-specific therapy have been conducted on existing or newly discovered agents in vitro and in vivo, with ribavirin and favipiravir being the most promising candidates. While animal experiments and retrospective studies have demonstrated the limited efficacy of ribavirin, it was also speculated that ribavirin would be effective in patients with a viral load <1 × 106 copies/mL. Favipiravir showed higher efficacy than ribavirin against SFTSV in in vitro assays and greater efficacy in animal models, even administrated 3 days after the virus inoculation. Although clinical trials evaluating the efficacy of favipiravir in SFTS patients in Japan are underway, this has yet to be confirmed. Other drugs, including hexachlorophene, calcium channel blockers, 2′-fluoro-2′-deoxycytidine, caffeic acid, amodiaquine, and interferons, have also been evaluated for their inhibitory efficacy against SFTSV. Among them, calcium channel blockers are promising because in addition to their efficacy in vitro and in vivo, retrospective clinical data have indicated that nifedipine, one of the calcium channel blockers, reduced the case fatality rate by >5-fold. Although further research is necessary to develop SFTS-specific therapy, considerable progress has been achieved in this area. Here we summarize and discuss recent advances in antiviral drugs against SFTSV.
Collapse
Affiliation(s)
- Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
24
|
Cross-genotype protection of live-attenuated vaccine candidate for severe fever with thrombocytopenia syndrome virus in a ferret model. Proc Natl Acad Sci U S A 2019; 116:26900-26908. [PMID: 31818942 PMCID: PMC6936527 DOI: 10.1073/pnas.1914704116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging viral pathogen discovered in 2009. The virus is present in countries of East Asia and is transmitted through the bite of an infected Haemaphysalis longicornis tick. SFTSV disease is associated with high morbidity and is often fatal. Despite the incidence of disease, no antiviral therapy or vaccine has been approved for use. Here, we report and assess 2 live attenuated viruses as vaccine candidates in our recently described ferret model of infection. We show that the viruses caused no clinical disease or mortality in healthy animals. Immunized animals mounted a robust humoral immune response to a single dose of virus, and this response protected the animals from a lethal challenge. Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus classified within the Banyangvirus genus. SFTS disease has been reported throughout East Asia since 2009 and is characterized by high fever, thrombocytopenia, and leukopenia and has a 12 to 30% case fatality rate. Due to the recent emergence of SFTSV, there has been little time to conduct research into preventative measures aimed at combatting the virus. SFTSV is listed as one of the World Health Organization’s Prioritized Pathogens for research into antiviral therapeutics and vaccine development. Here, we report 2 attenuated recombinant SFTS viruses that induce a humoral immune response in immunized ferrets and confer complete cross-genotype protection to lethal challenge. Animals infected with rHB29NSsP102A or rHB2912aaNSs (both genotype D) had a reduced viral load in both serum and tissues and presented without high fever, thrombocytopenia, or mortality associated with infection. rHB29NSsP102A- or rHB2912aaNSs-immunized animals developed a robust anti-SFTSV immune response against cross-genotype isolates of SFTSV. This immune response was capable of neutralizing live virus in a focus-reduction neutralization test (FRNT) and was 100% protective against a cross-genotype lethal challenge with the CB1/2014 strain of SFTSV (genotype B). Thus, using our midsized, aged ferret infection model, we demonstrate 2 live attenuated vaccine candidates against the emerging pathogen SFTSV.
Collapse
|
25
|
Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets. Nat Commun 2019; 10:3836. [PMID: 31444366 PMCID: PMC6707330 DOI: 10.1038/s41467-019-11815-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Although the incidence of severe fever with thrombocytopenia syndrome virus (SFTSV) infection has increased from its discovery with a mortality rate of 10-20%, no effective vaccines are currently available. Here we describe the development of a SFTSV DNA vaccine, its immunogenicity, and its protective efficacy. Vaccine candidates induce both a neutralizing antibody response and multifunctional SFTSV-specific T cell response in mice and ferrets. When the vaccine efficacy is investigated in aged-ferrets that recapitulate fatal clinical symptoms, vaccinated ferrets are completely protected from lethal SFTSV challenge without developing any clinical signs. A serum transfer study reveals that anti-envelope antibodies play an important role in protective immunity. Our results suggest that Gn/Gc may be the most effective antigens for inducing protective immunity and non-envelope-specific T cell responses also can contribute to protection against SFTSV infection. This study provides important insights into the development of an effective vaccine, as well as corresponding immune parameters, to control SFTSV infection.
Collapse
|
26
|
Yu KM, Jeong HW, Park SJ, Kim YI, Yu MA, Kwon HI, Kim EH, Kim SM, Lee SH, Kim SG, Choi YK. Shedding and Transmission Modes of Severe Fever With Thrombocytopenia Syndrome Phlebovirus in a Ferret Model. Open Forum Infect Dis 2019; 6:ofz309. [PMID: 31375835 PMCID: PMC6677671 DOI: 10.1093/ofid/ofz309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although human-to-human transmission of severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) via direct contact with body fluids has been reported, the role of specific body fluids from SFTSV-infected hosts has not been investigated in detail. METHODS To demonstrate the virus transmission kinetics in SFTSV-infected hosts, we adapted the ferret infection model and evaluated the virus shedding periods, virus titers, and transmission modes from various specimens of infected ferrets. RESULTS Large amounts of infectious SFTSV are shed through nasal discharge, saliva, and urine from SFTSV-infected ferrets. Virus could be detected from 2 dpi and persisted until 12 dpi in these specimens, compared with the relatively short virus-shedding period in sera. Further, transmission studies revealed that SFTSV can be transmitted to close direct and indirect contact naïve animals through various mediums, especially through contact with serum and urine. Further, ferrets contacted with human urine specimens from SFTSV-positive patients were successfully infected with SFTSV, suggesting that urine specimens could be a source of SFTSV infection in humans. CONCLUSIONS Our results demonstrate that the SFTSV can be shed in various body fluids for more than 12 days and that these specimens could be a source for direct or indirect transmission through close personal contact.
Collapse
Affiliation(s)
- Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye-Won Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Ah Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Se-Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Hun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong-Gyu Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
27
|
Huang XY, Du YH, Wang HF, You AG, Li Y, Su J, Nie YF, Ma HX, Xu BL. Prevalence of severe fever with thrombocytopenia syndrome virus in animals in Henan Province, China. Infect Dis Poverty 2019; 8:56. [PMID: 31230595 PMCID: PMC6589873 DOI: 10.1186/s40249-019-0569-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV). SFTSV has been found in humans, ticks and animals, and SFTS has high mortality and increasing prevalence in East Asia. In the study, the samples (heart, liver, lung, kidney, spleen, brain tissue and serum) were collected from 374 domestic animals and 241 wild animals in Pingqiao District and Xinxian County of Xinyang in Henan Province, China. 275 (44.72%, 275/615) animals were positive for anti-SFTSV antibodies, the anti-SFTSV antibodies positive ratios of domestic and wild animals were 43.58% (163/374) and 46.47% (112/241), respectively. There was no significant difference in domestic and wild animals, but significant differences were detected among different species of animals (χ2 = 112.59, P < 0.0001). Among 615 animals, 105 (17.07%, 105/615) animals were positive for SFTSV RNA, and only one SFTSV strain was isolated from heart tissue of a yellow weasel. The phylogenetic analysis shows that the sequence from animals belonged to the same group with viral sequences obtained from humans. The animals maybe play a reservoir host in maintaining the life cycle of SFTSV in nature.
Collapse
Affiliation(s)
- Xue-Yong Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Yan-Hua Du
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Hai-Feng Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Ai-Guo You
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Jia Su
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi-Fei Nie
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Hong-Xia Ma
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Bian-Li Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China.
| |
Collapse
|
28
|
[Recent topics in the research field of severe fever with thrombocytopenia syndrome (SFTS)]. Uirusu 2019; 68:41-50. [PMID: 31105134 DOI: 10.2222/jsv.68.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Seven years have passed since the discovery of a novel infectious disease, severe fever with thrombocytopenia syndrome (SFTS) caused by a novel Phlebovirus, SFTS virus (SFTSV), in PR China. It was also confirmed that SFTS was endemic to Japan through an identification of a woman, who died of SFTSV infection in Yamaguchi prefecture in late 2012. Approximately 6 years have passed since the discovery of SFTS-endemicity in Japan. At present, SFTS is endemic to PR China, South Korea and western Japan. SFTSV is maintained between several species of ticks such as Haemaphysalis longicornis and wild and domestic animals in nature. Therefore, we cannot escape from the risk of being infected with SFTSV. Based on the similarity in the characteristics of the clinical symptoms including the high case fatality rate, mode of infection to humans, pathology and virology between SFTS and Crimean-Congo hemorrhagic fever (CCHF), SFTS should be classified as viral hemorrhagic fever. Although the time from the discovery of SFTS is still short, there have been many scientific reports on the epidemiological, clinical, and/or pathological, and virological studies on SFTS. Favipiravir was reported to show an efficacy in the prevention and treatment of SFTSV infections in an animal model. A clinical study to evaluate the efficacy of favipiravir in the treatment of SFTS patients has been initiated in Japan. Specific and effective treatment with antiviral drugs for and preventive measures of SFTS with vaccination shoued be developed through scientific, clinical, and basic research.
Collapse
|
29
|
Kim KH, Kim J, Ko M, Chun JY, Kim H, Kim S, Min JY, Park WB, Oh MD, Chung J. An anti-Gn glycoprotein antibody from a convalescent patient potently inhibits the infection of severe fever with thrombocytopenia syndrome virus. PLoS Pathog 2019; 15:e1007375. [PMID: 30707748 PMCID: PMC6380599 DOI: 10.1371/journal.ppat.1007375] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea that is characterized by severe hemorrhage and a high fatality rate. Currently, no specific vaccine or treatment has been approved for this disease. To develop a therapeutic agent for SFTS, we isolated antibodies from a phage-displayed antibody library that was constructed from a patient who recovered from SFTS virus (SFTSV) infection. One antibody, designated as Ab10, was reactive to the Gn envelope glycoprotein of SFTSV and protected host cells and A129 mice from infection in both in vitro and in vivo experiments. Notably, Ab10 protected 80% of mice, even when injected 5 days after inoculation with a lethal dose of SFTSV. Using cross-linker assisted mass spectrometry and alanine scanning, we located the non-linear epitope of Ab10 on the Gn glycoprotein domain II and an unstructured stem region, suggesting that Ab10 may inhibit a conformational alteration that is critical for cell membrane fusion between the virus and host cell. Ab10 reacted to recombinant Gn glycoprotein in Gangwon/Korea/2012, HB28, and SD4 strains. Additionally, based on its epitope, we predict that Ab10 binds the Gn glycoprotein in 247 of 272 SFTSV isolates previously reported. Together, these data suggest that Ab10 has potential to be developed into a therapeutic agent that could protect against more than 90% of reported SFTSV isolates. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea. The tick-borne virus that causes SFTS has infected more than 5,000 humans, with a 6.4% to 20.9% fatality rate. Currently, there are no prophylactic or therapeutic measures against this virus. Historically, antibodies from patients who recovered from viral infection have been used to treat new patients, and commercially available antiviral monoclonal antibodies have been developed. Palivizumab was approved for the prophylaxis of respiratory syncytial virus (RSV) infection, and ibalizumab-uiyk was recently approved for the treatment of human immunodeficiency virus (HIV)-infected patients. To develop an antiviral monoclonal antibody for SFTS patients, we selected 10 antibodies from a patient who recovered from SFTS and found that one antibody potently inhibited SFTS viral infection both in vitro and in animal studies. We mapped the binding site of this antibody on the SFTS virus, which allowed us to predict that this antibody could bind 247 out of the 272 SFTS virus isolates reported to date. We anticipate that this antibody could be developed into a therapeutic treatment against SFTS.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhee Kim
- Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Meehyun Ko
- Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - June Young Chun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyori Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Ji-Young Min
- Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Flint M, Chatterjee P, Lin DL, McMullan LK, Shrivastava-Ranjan P, Bergeron É, Lo MK, Welch SR, Nichol ST, Tai AW, Spiropoulou CF. A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat Commun 2019; 10:285. [PMID: 30655525 PMCID: PMC6336797 DOI: 10.1038/s41467-018-08135-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapies for Ebola virus infection. Here, to find potential therapeutic targets, we perform a screen for genes essential for Ebola virus (EBOV) infection. We identify GNPTAB, which encodes the α and β subunits of N-acetylglucosamine-1-phosphate transferase. We show that EBOV infection of a GNPTAB knockout cell line is impaired, and that this is reversed by reconstituting GNPTAB expression. Fibroblasts from patients with mucolipidosis II, a disorder associated with mutations in GNPTAB, are refractory to EBOV, whereas cells from their healthy parents support infection. Impaired infection correlates with loss of the expression of cathepsin B, known to be essential for EBOV entry. GNPTAB activity is dependent upon proteolytic cleavage by the SKI-1/S1P protease. Inhibiting this protease with the small-molecule PF-429242 blocks EBOV entry and infection. Disruption of GNPTAB function may represent a strategy for a host-targeted therapy for EBOV. Genetic screens are important tools to identify host factors associated with viral infections. Here, Flint et al. perform a genome-wide CRISPR screen using infectious Ebola virus (EBOV) and show that the host transferase GNPTAB is required for EBOV infection and a potential target for antiviral therapies
Collapse
Affiliation(s)
- Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - David L Lin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Andrew W Tai
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
31
|
Park SJ, Kim YI, Park A, Kwon HI, Kim EH, Si YJ, Song MS, Lee CH, Jung K, Shin WJ, Zeng J, Choi Y, Jung JU, Choi YK. Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nat Microbiol 2018; 4:438-446. [PMID: 30531978 DOI: 10.1038/s41564-018-0317-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023]
Abstract
Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV), listed in the most dangerous pathogens by the World Health Organization, has 12-30% fatality rates with a characteristic thrombocytopenia syndrome. With a majority of clinically diagnosed SFTSV patients older than ~50 years of age, age is a critical risk factor for SFTSV morbidity and mortality. Here, we report an age-dependent ferret model of SFTSV infection and pathogenesis that fully recapitulates the clinical manifestations of human infections. Whereas young adult ferrets (≤2 years of age) did not show any clinical symptoms and mortality, SFTSV-infected aged ferrets (≥4 years of age) demonstrated severe thrombocytopenia, reduced white blood cell counts and high fever with 93% mortality rate. Moreover, a significantly higher viral load was observed in aged ferrets. Transcriptome analysis of SFTSV-infected young ferrets revealed strong interferon-mediated anti-viral signalling, whereas inflammatory immune responses were markedly upregulated and persisted in aged ferrets. Thus, this immunocompetent age-dependent ferret model should be useful for anti-SFTSV therapy and vaccine development.
Collapse
Affiliation(s)
- Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Jae Si
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyle Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianxiong Zeng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea. .,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
32
|
Two Conserved Amino Acids within the NSs of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Are Essential for Anti-interferon Activity. J Virol 2018; 92:JVI.00706-18. [PMID: 30021900 DOI: 10.1128/jvi.00706-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023] Open
Abstract
The nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) sequesters TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures to inhibit the phosphorylation and nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3) and subsequent interferon beta (IFN-β) production. Although the C-terminal region of SFTSV NSs (NSs66-249) has been linked to the formation of NSs-induced cytoplasmic structures and inhibition of host IFN-β responses, the role of the N-terminal region in antagonizing host antiviral responses remains to be defined. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the SFTSV and heartland virus (HRTV) NSs are essential for suppression of IRF3 phosphorylation and IFN-β mRNA expression following infection with SFTSV or recombinant influenza virus lacking the NS1 gene. Surprisingly, formation of SFTSV/HRTV NSs-induced cytoplasmic structures is not essential for inhibition of host antiviral responses. Rather, an association between SFTSV/HRTV NSs and TBK1 is required for suppression of mitochondrial antiviral signaling protein (MAVS)-mediated activation of IFN-β promoter activity. Although SFTSV NSs did not prevent the ubiquitination of TBK1, it associates with TBK1 through its N-terminal kinase domain (residues 1 to 307) to block the autophosphorylation of TBK1. Furthermore, we found that both wild-type NSs and the 21/23A mutant (NSs in which residues at positions 21 and 23 were replaced with alanine) of SFTSV suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) secretion, suggesting that the importance of these residues is restricted to TBK1-dependent IFN signaling. Together, our findings strongly implicate the two conserved amino acids at positions 21 and 23 of SFTSV/HRTV NSs in the inhibition of host interferon responses.IMPORTANCE Recognition of viruses by host innate immune systems plays a critical role not only in providing resistance to viral infection but also in the initiation of antigen-specific adaptive immune responses against viruses. Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging infectious disease caused by the SFTS phlebovirus (SFTSV), a highly pathogenic tick-borne phlebovirus. The 294-amino-acid nonstructural protein (NSs) of SFTSV associates with TANK-binding kinase 1 (TBK1), a key regulator of host innate antiviral immunity, to inhibit interferon beta (IFN-β) production and enhance viral replication. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the NSs of SFTSV and heartland virus, another tick-borne phlebovirus, are essential for association with TBK1 and suppression of IFN-β production. Our results provide important insight into the molecular mechanisms by which SFTSV NSs helps to counteract host antiviral strategies.
Collapse
|
33
|
Saijo M. Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy. J Infect Chemother 2018; 24:773-781. [PMID: 30098914 DOI: 10.1016/j.jiac.2018.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) caused by SFTS virus (SFTSV), a novel phlebovirus, was reported to be endemic to central and northeastern PR China and was also to be endemic to South Korea and western Japan. SFTS is an emerging viral infection, which should be categorized as a viral hemorrhagic fever disease as Crimean-Congo hemorrhagic fever (CCHF) is caused by CCHF virus. SFTS is a tick-borne viral infection. SFTSV is maintained between several species of ticks and wild and domestic animals in nature. Patients with SFTS show symptoms of fever, general fatigue, and gastrointestinal symptoms such as bloody diarrhea. The severely ill SFTS patients usually show gastrointestinal hemorrhage and deteriorated consciousness. The case fatality rate of SFTS ranges from 5 to 40%. Pathological studies on SFTS have revealed that the mechanisms behind the high case fatality rate are virus infection-related hemophagocytic syndrome associated with cytokine storm, coagulopathy due to disseminated intravascular coagulation causing bleeding tendency, and multi-organ failure. Favipiravir was reported to show efficacy in the prevention and treatment of SFTSV infections in an animal model. A clinical study to evaluate the efficacy of favipiravir in the treatment of SFTS patients has been initiated in Japan. SFTSV is circulating in nature in PR China, Korea, and Japan, indicating that we cannot escape from the risk being infected with SFTSV. The development of specific therapy and preventive measures is a pressing issue requiring resolution to reduce the morbidity and mortality of SFTS patients.
Collapse
Affiliation(s)
- Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
34
|
RIG-I-Like Receptor and Toll-Like Receptor Signaling Pathways Cause Aberrant Production of Inflammatory Cytokines/Chemokines in a Severe Fever with Thrombocytopenia Syndrome Virus Infection Mouse Model. J Virol 2018; 92:JVI.02246-17. [PMID: 29643242 DOI: 10.1128/jvi.02246-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a tick-borne phlebovirus of the family Bunyaviridae, SFTS virus (SFTSV). Wild-type and type I interferon (IFN-I) receptor 1-deficient (IFNAR1-/-) mice have been established as nonlethal and lethal models of SFTSV infection, respectively. However, the mechanisms of IFN-I production in vivo and the factors causing the lethal disease are not well understood. Using bone marrow-chimeric mice, we found that IFN-I signaling in hematopoietic cells was essential for survival of lethal SFTSV infection. The disruption of IFN-I signaling in hematopoietic cells allowed an increase in viral loads in serum and produced an excess of multiple inflammatory cytokines and chemokines. The production of IFN-I and inflammatory cytokines was abolished by deletion of the signaling molecules IPS-1 and MyD88, essential for retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) and Toll-like receptor (TLR) signaling, respectively. However, IPS-1-/- MyD88-/- mice exhibited resistance to lethal SFTS with a moderate viral load in serum. Taken together, these results indicate that adequate activation of RLR and TLR signaling pathways under low to moderate levels of viremia contributed to survival through the IFN-I-dependent antiviral response during SFTSV infection, whereas overactivation of these signaling pathways under high levels of viremia resulted in abnormal induction of multiple inflammatory cytokines and chemokines, causing the lethal disease.IMPORTANCE SFTSV causes a severe infectious disease in humans, with a high fatality rate of 12 to 30%. To know the pathogenesis of the virus, we need to clarify the innate immune response as a front line of defense against viral infection. Here, we report that a lethal animal model showed abnormal induction of multiple inflammatory cytokines and chemokines by an uncontrolled innate immune response, which triggered the lethal SFTS. Our findings suggest a new strategy to target inflammatory humoral factors to treat patients with severe SFTS. Furthermore, this study may help the investigation of other tick-borne viruses.
Collapse
|
35
|
Shen S, Duan X, Wang B, Zhu L, Zhang Y, Zhang J, Wang J, Luo T, Kou C, Liu D, Lv C, Zhang L, Chang C, Su Z, Tang S, Qiao J, Moming A, Wang C, Abudurexiti A, Wang H, Hu Z, Zhang Y, Sun S, Deng F. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, is a potential pathogen. Emerg Microbes Infect 2018; 7:95. [PMID: 29802259 PMCID: PMC5970217 DOI: 10.1038/s41426-018-0093-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Tick-borne viral diseases have attracted much attention in recent years because of their increasing incidence and threat to human health. Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) and Heartland virus (HRTV) were recently identified as tick-borne phleboviruses (TBPVs) in Asia and the United States, respectively, and are associated with severe human diseases with similar clinical manifestations. In this study, we report the first identification and isolation of a novel TBPV named Guertu virus (GTV) from Dermacentor nuttalli ticks in Xinjiang Province, China, where TBPVs had not been previously discovered. Genome sequence and phylogenetic analyses showed that GTV is closely related to SFTSV and HRTV and was classified as a member of the genus Phlebovirus, family Phenuiviridae, order Bunyavirales. In vitro and in vivo investigations of the properties of GTV demonstrated that it was able to infect animal and human cell lines and can suppress type I interferon signaling, similar to SFTSV, that GTV nucleoprotein (NP) can rescue SFTSV replication by replacing SFTSV NP, and that GTV infection can cause pathological lesions in mice. Moreover, a serological survey identified antibodies against GTV from serum samples of individuals living in Guertu County, three of which contained neutralizing antibodies, suggesting that GTV can infect humans. Our findings suggested that this virus is a potential pathogen that poses a threat to animals and humans. Further studies and surveillance of GTV are recommended to be carried out in Xinjiang Province as well as in other locations.
Collapse
Affiliation(s)
- Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaomei Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Bo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liying Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jingyuan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Luo
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Chun Kou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Dan Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chuanwei Lv
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chenchen Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zhengyuan Su
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuang Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jie Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430061, China
| | - Abulimiti Moming
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cheng Wang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Abulikemu Abudurexiti
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujiang Zhang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
36
|
Park SY, Choi W, Chong YP, Park SW, Wang EB, Lee WJ, Jee Y, Kwon SW, Kim SH. Use of Plasma Therapy for Severe Fever with Thrombocytopenia Syndrome Encephalopathy. Emerg Infect Dis 2018; 22:1306-8. [PMID: 27315224 PMCID: PMC4918172 DOI: 10.3201/eid2207.151791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
37
|
Nishi K. [10. Preclinical Nuclear Medicine-Basics and Application to Disease]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74:1207-1211. [PMID: 30344218 DOI: 10.6009/jjrt.2018_jsrt_74.10.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University
| |
Collapse
|
38
|
Hu J, Li Z, Hong L, Bao C, Zhang Z, Zhang H, He H, Wang X, Liu W, Peng Z, Shi L, Zhu F. Preliminary fast diagnosis of severe fever with thrombocytopenia syndrome with clinical and epidemiological parameters. PLoS One 2017; 12:e0180256. [PMID: 28678811 PMCID: PMC5497983 DOI: 10.1371/journal.pone.0180256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/13/2017] [Indexed: 11/19/2022] Open
Abstract
Objectives To identify specific clinical and epidemiological parameters for clinical diagnosis of SFTSV infection with relatively higher accuracy. Methods 231 suspected cases of SFTS were reported by various medical institutions from 2011 to 2013 in Jiangsu Province, China. They were followed with SFTSV diagnosis tests and interview-administered questionnaires about demographic characteristics, clinical symptoms and epidemiological exposure factors. Univariate and multivariable logistic regression analysis were used to examine the diagnostic value of these parameters. Results SFTSV infection occurred only from April to October annually and usually in hilly areas of specific regions. Three prediction models of SFTSV infection were constructed. Model 3 with clinical and epidemiological parameters combined the benefits of both Model 1and Model 2, which was optimal and had an overall accuracy of 80.2%. Independent indicators for clinical diagnosis of SFTSV infection in Model 3 were as follows: lymphadenopathy (P = 0.01), leucopenia (P<0.01), age >50 years (P = 0.01), tick bites (P<0.01), raising domestic animals in the residential areas (P<0.01) and farming (P = 0.03). Conclusions Our results show that using a combination of clinical and epidemiological parameters may be a feasible strategy to provide preliminary fast diagnosis as differentiating SFTSV infection from SFTS-like diseases, thus reducing the risk of misdiagnosis.
Collapse
Affiliation(s)
- Jianli Hu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhifeng Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Lei Hong
- Department of Acute Infectious Disease Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
- * E-mail:
| | - Zhong Zhang
- Department of Acute Infectious Disease Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Hongying Zhang
- Department of Acute Infectious Disease Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Hao He
- Department of Disease Control and Prevention, Gulou District Center for Disease Control and Prevention, Nanjing, China
| | - Xiaochen Wang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wendong Liu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Limin Shi
- Department of Acute Infectious Disease Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Fengcai Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
39
|
Reynolds ES, Hart CE, Hermance ME, Brining DL, Thangamani S. An Overview of Animal Models for Arthropod-Borne Viruses. Comp Med 2017; 67:232-241. [PMID: 28662752 PMCID: PMC5482515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.
Collapse
Affiliation(s)
- Erin S Reynolds
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Charles E Hart
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Meghan E Hermance
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas L Brining
- Animal Resources Center, University of Texas Medical Branch, Galveston, Texas
| | - Saravanan Thangamani
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;,
| |
Collapse
|
40
|
Matsuno K, Orba Y, Maede-White K, Scott D, Feldmann F, Liang M, Ebihara H. Animal Models of Emerging Tick-Borne Phleboviruses: Determining Target Cells in a Lethal Model of SFTSV Infection. Front Microbiol 2017; 8:104. [PMID: 28194148 PMCID: PMC5276813 DOI: 10.3389/fmicb.2017.00104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
The pathogenesis of clinical manifestations caused by newly emerging tick-borne phleboviruses [i.e., Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV)], such as severe thrombocytopenia and lymphocytopenia, are not yet fully understood. In the present study, to establish an animal model mimicking the profile of fatal human cases, we examined the susceptibilities of adult mice from 12 strains, aged mice from two strains, and cynomolgus macaques to SFTSV and/or HRTV infections. However, none of these immunocompetent animals developed lethal diseases after infection with SFTSV or HRTV. Thus, we tested a lethal animal model of SFTSV infection using interferon-α/β receptor knock-out (IFNAR-/-) mice to identify the target cell(s) of virus infection, as well as lesions that are potentially associated with hematological changes. IbaI-positive macrophages and Pax5-positive immature B cells overlapped with SFTSV-positive cells in the spleen and lymph nodes of IFNAR-/- mice, and IbaI-SFTSV-double positive cells were also observed in the liver and kidney, thereby suggesting crucial roles for macrophages in the pathogenesis of SFTSV infection in mice. In the mandibular lymph nodes and spleens of infected mice, we observed extensive necrosis comprising B220-positive B cells, which may be associated with severe lymphocytopenia. The results of this study suggest a resemblance between the IFNAR-/- mouse model and lethal infections in humans, as well as roles for multiple cells during pathogenesis in mice.
Collapse
Affiliation(s)
- Keita Matsuno
- Molecular Virology and Host-Pathogen Interaction Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, HamiltonMT, USA; Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido UniversitySapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido UniversitySapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| | - Kimberly Maede-White
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Mifang Liang
- NHFPC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC Beijing, China
| | - Hideki Ebihara
- Molecular Virology and Host-Pathogen Interaction Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, HamiltonMT, USA; Department of Molecular Medicine, Mayo Clinic, RochesterMN, USA
| |
Collapse
|
41
|
Wang L, Zou Z, Hou C, Liu X, Jiang F, Yu H. Score risk model for predicting severe fever with thrombocytopenia syndrome mortality. BMC Infect Dis 2017; 17:42. [PMID: 28061758 PMCID: PMC5219703 DOI: 10.1186/s12879-016-2111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/10/2016] [Indexed: 02/02/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging epidemic infectious disease with high mortality in East Aisa, especially in China. To predict the prognosis of SFTS precisely is important in clinical practice. Methods From May 2013 to November 2015, 233 suspected SFTS patients were tested for SFTS virus using RT-PCR. Cox regression model was utilized to comfirm independent risk factors for mortality. A risk score model for mortality was constructed based on regression coefficient of risk factors. Log-rank test was used to evaluate the significance of this model. Results One hundred seventy-four patients were confirmed with SFTS, of which 40 patients died (23%). Baseline age, serum aspartate aminotransferase (AST) and serum creatinine (sCr) level were independent risk factors of mortality. The area under ROC curve (AUCs) of these parameters for predicting death were 0.771, 0.797 and 0.764, respectively. And hazard ratio (HR) were 1.128, 1.002 and 1.013, respectively. The cutoff value of the risk model was 10. AUC of the model for predicting mortality was 0.892, with sensitivity and specificity of 82.5 and 86.6%, respectively. Log-rank test indicated strong statistical significance (×2 = 88.35, p < 0.001). Conclusions This risk score model may be helpful to predicting the prognosis of SFTS patients.
Collapse
Affiliation(s)
- Li Wang
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China.
| | - Zhiqiang Zou
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China
| | - Chunguo Hou
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China
| | - Xiangzhong Liu
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China
| | - Fen Jiang
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China
| | - Hong Yu
- Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu district, Yantai, Shandong, 264001, China
| |
Collapse
|
42
|
Emergence of New Tickborne Infections. EMERGING ZOONOSES 2017. [PMCID: PMC7122411 DOI: 10.1007/978-3-319-50890-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Hayasaka D, Nishi K, Fuchigami T, Shiogama K, Onouchi T, Shimada S, Tsutsumi Y, Morita K. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model. Oncotarget 2016; 7:140-7. [PMID: 26700962 PMCID: PMC4807988 DOI: 10.18632/oncotarget.6645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan.,Leading Graduate School Program, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Kazuya Shiogama
- Department of Pathology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Takanori Onouchi
- Department of Pathology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Satoshi Shimada
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan.,Leading Graduate School Program, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Yutaka Tsutsumi
- Department of Pathology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan.,Leading Graduate School Program, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
44
|
Hayasaka D, Fuxun Y, Yoshikawa A, Posadas-Herrera G, Shimada S, Tun MMN, Agoh M, Morita K. Seroepidemiological evidence of severe fever with thrombocytopenia syndrome virus infections in wild boars in Nagasaki, Japan. Trop Med Health 2016; 44:6. [PMID: 27433125 PMCID: PMC4940765 DOI: 10.1186/s41182-016-0009-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease in East Asia. It is thought that the SFTS virus (SFTSV) circulates between ticks and animals in nature and that the virus is transmitted to humans by tick bites. SFTS is endemic to Nagasaki in western Japan; however, epidemiological information regarding SFTSV in Nagasaki is not known. In this study, we performed SFTSV IgG ELISAs and neutralization antibody assays for a seroepidemiological survey using samples from wild boars captured in six areas of Nagasaki. SFTSV seropositive animals were found in three areas. Our findings provide epidemiological information on the distribution of SFTSV in Nagasaki.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Leading Graduate School Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Yu Fuxun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Akira Yoshikawa
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Nagasaki Prefectural Institute for Environmental Research and Public Health, Omura, Nagasaki, 856-0026 Japan
| | - Guillermo Posadas-Herrera
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Present address: National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku Tokyo, 162-8640 Japan
| | - Satoshi Shimada
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Leading Graduate School Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masanobu Agoh
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Nagasaki Prefectural Institute for Environmental Research and Public Health, Omura, Nagasaki, 856-0026 Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Leading Graduate School Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
45
|
Shimada S, Aoki K, Nabeshima T, Fuxun Y, Kurosaki Y, Shiogama K, Onouchi T, Sakaguchi M, Fuchigami T, Ono H, Nishi K, Posadas-Herrera G, Uchida L, Takamatsu Y, Yasuda J, Tsutsumi Y, Fujita H, Morita K, Hayasaka D. Tofla virus: A newly identified Nairovirus of the Crimean-Congo hemorrhagic fever group isolated from ticks in Japan. Sci Rep 2016; 6:20213. [PMID: 26863911 PMCID: PMC4809068 DOI: 10.1038/srep20213] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/21/2015] [Indexed: 01/10/2023] Open
Abstract
Ixodid ticks transmit several important viral pathogens. We isolated a new virus (Tofla virus: TFLV) from Heamaphysalis flava and Heamaphysalis formsensis in Japan. The full-genome sequences revealed that TFLV belonged to the genus Nairovirus, family Bunyaviridae. Phylogenetic analyses and neutralization tests suggested that TFLV is closely related to the Hazara virus and that it is classified into the Crimean-Congo hemorrhagic fever group. TFLV caused lethal infection in IFNAR KO mice. The TFLV-infected mice exhibited a gastrointestinal disorder, and positron emission tomography-computed tomography images showed a significant uptake of (18)F-fluorodeoxyglucose in the intestinal tract. TFLV was able to infect and propagate in cultured cells of African green monkey-derived Vero E6 cells and human-derived SK-N-SH, T98-G and HEK-293 cells. Although TFLV infections in humans and animals are currently unknown, our findings may provide clues to understand the potential infectivity and to develop of pre-emptive countermeasures against this new tick-borne Nairovirus.
Collapse
Affiliation(s)
- Satoshi Shimada
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading graduate school program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kotaro Aoki
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | | | - Yu Fuxun
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kazuya Shiogama
- Department of Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takanori Onouchi
- Department of Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hokuto Ono
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Diseases Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | | | - Leo Uchida
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuki Takamatsu
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading graduate school program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yutaka Tsutsumi
- Department of Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiromi Fujita
- Mahara Institute of Medical Acarology, 56-3 korekuni Aratano-cho, Anan, Tokushima 779-1510, Japan
| | - Kouichi Morita
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading graduate school program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Daisuke Hayasaka
- Department of Virology, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading graduate school program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
46
|
Efficacy of T-705 (Favipiravir) in the Treatment of Infections with Lethal Severe Fever with Thrombocytopenia Syndrome Virus. mSphere 2016; 1:mSphere00061-15. [PMID: 27303697 PMCID: PMC4863605 DOI: 10.1128/msphere.00061-15] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is the causative agent of SFTS, an emerging hemorrhagic fever. This disease has a high case fatality rate and is endemic to China, South Korea, and Japan. Because there are currently no effective therapeutics for SFTS, potent and safe antivirals are needed for the treatment of SFTS. The inhibitory effect of T-705 (favipiravir) on the replication of SFTSV in Vero cells was evaluated. Mice lacking the type I interferon receptor (IFNAR(-/-)) were used as an in vivo lethal model for SFTSV infection. T-705, which has been licensed as an anti-influenza drug in Japan, inhibits SFTSV replication both in vitro and in vivo. T-705 inhibited replication of SFTSV in Vero cells by 5 log units, with a 50% inhibitory concentration (IC50) and IC90 of 6.0 µM and 22 µM, respectively. Intraperitoneal or oral administration of T-705 for 5 days to IFNAR(-/-) mice infected with lethal SFTSV significantly improved survival rates (100% survival) without causing body weight loss and reduced the viral load in the serum. Ribavirin also inhibited SFTSV replication. However, it was less effective than T-705 both in vitro and in vivo. A time-of-drug-addition study revealed that therapeutic T-705 treatment of SFTSV infection in IFNAR(-/-) mice was effective. These results suggest that T-705 is a promising candidate for the treatment of SFTS. IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV), is a recently identified emerging viral infectious disease. Despite the medical importance of this disease, there are currently neither vaccines nor effective therapeutics for SFTS. T-705, which is a pyrazine derivative, has shown broad antiviral activity against various RNA viruses. The present study demonstrated, for the first time to our knowledge, the efficacy of T-705 in treating SFTSV infection in a mouse lethal model. T-705 showed a high efficacy in the treatment of SFTSV infection in the mouse model, even when treatments were initiated after onset of the disease.
Collapse
|