1
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Xiang Y, Wang S, Huang H, Li X, Wei Y, Li H, Ji X. A novel endolysin from an Enterococcus faecalis phage and application. Microb Pathog 2024; 192:106689. [PMID: 38750777 DOI: 10.1016/j.micpath.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Collapse
Affiliation(s)
- Yingying Xiang
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Suping Wang
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Huang
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Xuelin Li
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Yunlin Wei
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Uskudar-Guclu A, Yalcin S. A novel Enterococcus faecalis bacteriophage Ef212: biological and genomic features. Int Microbiol 2024:10.1007/s10123-024-00547-1. [PMID: 38935199 DOI: 10.1007/s10123-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to isolate and characterize biological and genomic features of a phage infecting Enterococcus faecalis. The phage was isolated from environmental water and temperature and pH stability, one-step growth curve, and multiplicity of infection (MOI) were determined. Whole genome sequencing (WGS) and structural and functional annotations were performed. Its antibiofilm activity was also evaluated. The optimal MOI was 0.01, the latency period was 5 min, and the burst size was 202 plaque forming unit (PFU). High phage survival rates were observed at between pH 4-10 and temperatures between 4-50 °C. WGS and Transmission electron microscopy (TEM) showed that it was an Efquatrovirus representing siphovirus morphotype respectively. It was named as Enterococcus phage Ef212 and has a linear 40,690 bp double-stranded DNA with 45.3% G + C content (GenBank accession number: OR052631). BACPHLIP tool demonstrated that Enterococcus phage Ef212 is a lytic phage (88%). A total of 80 open reading frames (ORFs) were found and there were no antibiotic resistance genes, pathogenicity, virulence genes, or tRNAs in the phage genome. It was diverged from the most similar phages (identity, 88.35%; coverage, 89%) by phylogenetic analysis. Phage Ef212 shared a large part of its genome (60/80) with several other phages, yet some unique parts were found in their genomes. Host range analysis showed that phage Ef212 showed lytic activity against vancomycin-resistant and vancomycin-susceptible E. faecalis clinical isolates. This novel phage Ef212 showed the ability to inhibit and reduce the biofilm formation by around 42% and 38%, respectively. The biological and genomic features indicate that having an effective antibacterial activity, phage Ef212 seemed a promising therapeutic and biocontrol agent.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Faculty of Medicine, Department of Medical Microbiology, Baskent University, Ankara, Türkiye.
| | - Suleyman Yalcin
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, Türkiye
| |
Collapse
|
5
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
8
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
9
|
Viglasky J, Piknova M, Pristas P. Gene and domain shuffling in lytic cassettes of Enterococcus spp. bacteriophages. 3 Biotech 2023; 13:388. [PMID: 38023582 PMCID: PMC10630273 DOI: 10.1007/s13205-023-03775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
The genomes of Enterococcus faecalis and Enterococcus faecium bacteriophages were analysed for gene shuffling in the lytic cassettes of bacteriophages infecting. It was found that enterococcal bacteriophages could be classified into well-defined groups based on the size of their genomes and each size group had its own conserved gene composition of lytic cassettes. Enterococcal bacteriophages use a relatively broad spectrum of holins and endolysins with variable cell-wall binding (CWB) and catalytic domains, and most of them utilise a lytic cassette with more than two genes. Enterococcal bacteriophages most commonly use endolysins with amidase catalytic domains and the CWB domain SH3_5. Some bacteriophages possess in their lytic cassette a holin-like gene with the XhlA domain protein, characteristic of hemolysin. Regardless of the shuffling of genes encoding holins and endolysins in lytic modules, a novel example of CWB domain shuffling within enterococcal endolysins was identified. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03775-w.
Collapse
Affiliation(s)
- Jakub Viglasky
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Maria Piknova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
| | - Peter Pristas
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| |
Collapse
|
10
|
Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin Microbiol Rev 2023; 36:e0005922. [PMID: 37067406 PMCID: PMC10283489 DOI: 10.1128/cmr.00059-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Collapse
Affiliation(s)
- Kelly A. Cairns
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew A. Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Trisha N. Peel
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Iain J. Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael J. Dooley
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
- Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
12
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Pradal I, Casado A, del Rio B, Rodriguez-Lucas C, Fernandez M, Alvarez MA, Ladero V. Enterococcus faecium Bacteriophage vB_EfaH_163, a New Member of the Herelleviridae Family, Reduces the Mortality Associated with an E. faecium vanR Clinical Isolate in a Galleria mellonella Animal Model. Viruses 2023; 15:179. [PMID: 36680219 PMCID: PMC9860891 DOI: 10.3390/v15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The rise of antimicrobial resistant (AMR) bacteria is a major health concern, especially with regard to members of the ESKAPE group, to which vancomycin-resistant (VRE) Enterococcus faecium belongs. Phage therapy has emerged as a novel alternative for the treatment of AMR infections. This, however, relies on the isolation and characterisation of a large collection of phages. This work describes the exploration of human faeces as a source of new E. faecium-infecting phages. Phage vB_EfaH_163 was isolated and characterised at the microbiological, genomic, and functional levels. vB_EfaH_163 phage, a new member of Herelleviridae, subfamily Brockvirinae, has a dsDNA genome of 150,836 bp that does not harbour any virulence factors or antibiotic resistance genes. It infects a wide range of E. faecium strains of different origins, including VRE strains. Interestingly, it can also infect Enterococcus faecalis strains, even some that are linezolid-resistant. Its capacity to control the growth of a clinical VRE isolate was shown in broth culture and in a Galleria mellonella animal model. The discovery and characterisation of vB_EfaH_163 increases the number of phages that might be used therapeutically against AMR bacteria.
Collapse
Affiliation(s)
- Inés Pradal
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Angel Casado
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Beatriz del Rio
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Rodriguez-Lucas
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Laboratory, Hospital el Bierzo, 24404 Ponferrada, Spain
- Microbiology Laboratory, Hospital Universitario de Cabueñes, 33394 Gijón, Spain
| | - Maria Fernandez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel A. Alvarez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
14
|
El Haddad L, Angelidakis G, Clark JR, Mendoza JF, Terwilliger AL, Chaftari CP, Duna M, Yusuf ST, Harb CP, Stibich M, Maresso A, Chemaly RF. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022; 14:1591. [PMID: 36015218 PMCID: PMC9414631 DOI: 10.3390/pharmaceutics14081591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are naturally occurring viruses that selectively kill bacterial species without disturbing the individual's normal flora, averting the collateral damage of antimicrobial usage. The safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-resistant Enterococci, including Enterococcus faecium (VREfm) and Enterococcus faecalis from sewage samples, and demonstrate their efficacy and safety for VREfm infection in the greater wax moth Galleria mellonella model. No virulence-associated genes, antibiotic resistance genes or integrases were detected in the phages' genomes, rendering them safe to be used in an in vivo model. Phages may be considered as potential agents for therapy for bacterial infections secondary to multidrug-resistant organisms such as VREfm.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Georgios Angelidakis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Jesus F. Mendoza
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Christopher P. Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Duna
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Serena T. Yusuf
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Cynthia P. Harb
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Stibich
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
- Xenex Disinfection Services, San Antonio, TX 78216, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| |
Collapse
|
15
|
Feng C, Jia K, Chi T, Chen S, Yu H, Zhang L, Haidar Abbas Raza S, Alshammari AM, Liang S, Zhu Z, Li T, Qi Y, Shan X, Qian A, Zhang D, Zhang L, Sun W. Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hydrophila Without Distorting Gut Microbiota. Front Microbiol 2022; 13:898961. [PMID: 35903472 PMCID: PMC9315158 DOI: 10.3389/fmicb.2022.898961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Phage therapy is an alternative approach to overcome the problem of multidrug resistance in bacteria. In this study, a bacteriophage named PZL-Ah152, which infects Aeromonas hydrophila, was isolated from sewage, and its biological characteristics and genome were studied. The genome contained 54 putative coding sequences and lacked known putative virulence factors, so it could be applied to phage therapy. Therefore, we performed a study to (i) investigate the efficacy of PZL-Ah152 in reducing the abundance of pathogenic A. hydrophila strain 152 in experimentally infected crucian carps, (ii) evaluate the safety of 12 consecutive days of intraperitoneal phage injection in crucian carps, and (iii) determine how bacteriophages impact the normal gut microbiota. The in vivo and in vitro results indicated that the phage could effectively eliminate A. hydrophila. Administering PZL-Ah152 (2 × 109 PFU) could effectively protect the fish (2 × 108 CFU/carp). Furthermore, a 12-day consecutive injection of PZL-Ah152 did not cause significant adverse effects in the main organs of the treated animals. We also found that members of the genus Aeromonas could enter and colonize the gut. The phage PZL-Ah152 reduced the number of colonies of the genus Aeromonas. However, no significant changes were observed in α-diversity and β-diversity parameters, which suggested that the consumed phage had little effect on the gut microbiota. All the results illustrated that PZL-Ah152 could be a new therapeutic method for infections caused by A. hydrophila.
Collapse
Affiliation(s)
- Chao Feng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Kaixiang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Teng Chi
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Shuaimin Chen
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Huabo Yu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Liang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | | | | | - Shuang Liang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Zishan Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Tingxuan Li
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Yanling Qi
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
- *Correspondence: Lei Zhang,
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
- Wuwen Sun,
| |
Collapse
|
16
|
Wang X, Xing Y, Ji Y, Xi H, Liu X, Yang L, Lei L, Han W, Gu J. The Combination of Phages and Faecal Microbiota Transplantation Can Effectively Treat Mouse Colitis Caused by Salmonella enterica Serovar Typhimurium. Front Microbiol 2022; 13:944495. [PMID: 35875536 PMCID: PMC9301289 DOI: 10.3389/fmicb.2022.944495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the common causes of human colitis. In the present study, two lytic phages vB_SenS-EnJE1 and vB_SenS-EnJE6 were isolated and the therapeutic effect of the combination of phages and faecal microbiota transplantation (FMT) on S. Typhimurium-induced mouse colitis was investigated. The characteristics and genome analysis indicated that they are suitable phages for phage therapy. Results showed that vB_SenS-EnJE1 lysis 41/54 Salmonella strains of serotype O4, and vB_SenS-EnJE6 lysis 46/54 Salmonella strains of serotypes O4 and O9. Severe inflammatory symptoms and disruption of the intestinal barrier were observed in S. Typhimurium -induced colitis. Interestingly, compared with a single phage cocktail (Pc) or single FMT, the combination of Pc and FMT (PcFMT) completely removed S. Typhimurium after 72 h of treatment, and significantly improved pathological damage and restored the intestinal barrier. Furthermore, PcFMT effectively restored the intestinal microbial diversity, especially for Firmicutes/Bacteroidetes [predominantly bacterial phyla responsible for the production of short-chain fatty acids (SCFA)]. Additionally, we found that PcFMT treatment significantly increased the levels of SCFA. All these data indicated that the combination of phages and FMT possesses excellent therapeutic effects on S. Typhimurium -induced intestinal microbiota disorder diseases. Pc and FMT played roles in “eliminating pathogens” and “strengthening vital qi,” respectively. This study provides a new idea for the treatment of intestinal microbiota disorder diseases caused by specific bacterial infections.
Collapse
Affiliation(s)
- Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Yating Xing
- The Second Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaohe Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Li Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jingmin Gu,
| |
Collapse
|
17
|
Wang F, Xiao Y, Lu Y, Deng ZY, Deng XY, Lin LB. Bacteriophage Lytic Enzyme P9ly as an Alternative Antibacterial Agent Against Antibiotic-Resistant Shigella dysenteriae and Staphylococcus aureus. Front Microbiol 2022; 13:821989. [PMID: 35237249 PMCID: PMC8882861 DOI: 10.3389/fmicb.2022.821989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Developing new strategies to replace or supplement antibiotics to combat bacterial infection is a pressing task in the field of microbiological research. In this study, we report a lytic enzyme named P9ly deriving from the bacteriophage PSD9 that could infect multidrug-resistant Shigella. This enzyme was identified through whole-genome sequencing of PSD9. The results show that P9ly contains a conserved T4-like_lys domain and belongs to the phage lysozyme family. Recombinant P9ly obtained from protein purification presented biological activity and could digest bacterial cell walls (CW), resulting in the destruction of cell structure and leakage of intracellular components. Furthermore, P9ly exhibited bacteriolytic and bactericidal activity on different strains, especially multidrug-resistant Gram-negative Shigella dysenteriae and Gram-positive Staphylococcus aureus. Additionally, combined use of P9ly with ceftriaxone sodium (CRO) could decrease necessary dose of the antibiotic used and improve the antibacterial effect. In summary, under the current backdrop of extensive antibiotic usage and the continuous emergence of bacterial resistance, this study provides an insight into developing bacteriophage-based antibacterial agents against both Gram-negative and Gram-positive pathogens.
Collapse
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zheng-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
- *Correspondence: Lian-Bing Lin,
| |
Collapse
|
18
|
Rigvava S, Kusradze I, Tchgkonia I, Karumidze N, Dvalidze T, Goderdzishvili M. Novel lytic bacteriophage vB_GEC_EfS_9 against Enterococcus faecium. Virus Res 2022; 307:198599. [PMID: 34648886 DOI: 10.1016/j.virusres.2021.198599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/31/2023]
Abstract
Enterococcus spp. is a common commensal microorganism, however, some strains can cause opportunistic infections in humans. Treatment of Enterococcus faecium-related endocarditis, urinary and genital tract infections, meningitis, septicemia, and even neonatal sepsis is often complicated by antibiotic resistance. The spread of multi-resistant bacterial strains has renewed interest in phage therapy, which has many advantages: Its advantages include a much lower frequency of resistance development compared to antibiotics and strict specificity, which allows affecting of only their target microbes without disturbing necessary microbiome. We isolated and characterized a virulent bacteriophage which is active against Enterococcus faecium clinical strains. The phage, which was designated as vB_GEC_EfS_9 was studied in terms of its growth pattern and adsorption rate, as well as its host range. The whole genome of the phage was sequenced and analyzed. Obtained results indicate that phage vB_GEC_EfS_9 is a virulent phage which has a very good potential for therapeutic use against strains of E. faecium.
Collapse
Affiliation(s)
- S Rigvava
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; Caucasus International University, Tbilisi, Georgia.
| | - I Kusradze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - I Tchgkonia
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - N Karumidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - T Dvalidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - M Goderdzishvili
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| |
Collapse
|
19
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
20
|
Li P, Wang H, Li M, Qi W, Qi Z, Chen W, Dong Y, Xu Z, Zhang W. Characterization and genome analysis of a broad lytic spectrum bacteriophage P479 against multidrug-resistant Escherichia coli. Virus Res 2021; 308:198628. [PMID: 34780885 DOI: 10.1016/j.virusres.2021.198628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
The increase of multi-drug resistant and multi-serotypes of pathogenic Escherichia coli has brought more severe challenge to control infection. Nowadays, bacteriophage is a promising tool to treat colibacillosis as an alternative of antibiotics. A coliphage P479, isolated from sewage of poultry farm, could lyse multiple serotypes, including not only O1, O2, O8, O9, O21, O78, O83, O145 of Avian pathogenic E. coli, but O157:H7 of Enterohaemorrhagic E. coli and O18:K1:H7 Neonatal meningitis E. coli. Additionally, P479 could also lyse multi-drug resistant E. coli. These indicated that P479 had good lytic ability. One-step growth curve revealed that the latent time period of P479 was 10 min and the burst size was about 318 PFU/cell. Stability tests demonstrated that P479 had good stability under various temperature (4 to 50 °C) and pH (3 to11) conditions. P479 contained of a linear, double-stranded DNA molecule of 172,033 bp with 40.3% GC content. P479 contained 296 putative coding sequences (CDSs) and two tRNA genes. Based on genomic comparison, P479 was classified as a member of genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae, order Caudovirales. No known virulent or lysogenic genes were detected in the genome of P479, manifesting P479 was safe to adhibit. Antibacterial activity in vitro manifested that P479 has varying degrees bacteriostatic activity against different bacteria. According to the above properties, P479 has the potential to be applied in phage therapy in the future.
Collapse
Affiliation(s)
- Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiling Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Zitai Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiye Chen
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Yongyi Dong
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China
| | - Zhengjun Xu
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China.
| |
Collapse
|
21
|
Goodarzi F, Hallajzadeh M, Sholeh M, Talebi M, Mahabadi VP, Amirmozafari N. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:691-702. [PMID: 34900167 PMCID: PMC8629820 DOI: 10.18502/ijm.v13i5.7436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES An important leading cause of the emergence of vancomycin-resistant enterococci, especially Enterococcus faecium, is the inefficiency of antibiotics in the elimination of drug-resistant pathogens. Consequently, the need for alternative treatments is more necessary than ever. MATERIALS AND METHODS A highly effective bacteriophage against vancomycin-resistant E. faecium called vB-EfmS-S2 was isolated from hospital sewage. The biological properties of phage S2 and its effect on biofilm structures were determined. RESULTS Phage S2 was specifically capable of lysing a wide range of clinical E. faecium isolates. According to Electron microscopy observations, the phage S2 belonged to the Siphoviridea family. Suitable pH spectra for phage survival was 5-11, at which the phage showed 100% activity. The optimal temperature for phage growth was 30-45°C, with the highest growth at 37°C. Based on one-step growth curve results, the latent period of phage S2 was 14 min with a burst size of 200 PFU/ml. The phage S2 was also able to tolerate bile at concentrations of 1 and 2% and required Mg2+ for an effective infection cycle. Biofilms were significantly inhibited and disrupted in the presence of the phage. CONCLUSION According to the results, phage S2 could potentially be an alternative for the elimination and control of vancomycin-resistant E. faecium biofilm.
Collapse
Affiliation(s)
- Forough Goodarzi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hallajzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Melo-López FN, Zermeño-Cervantes LA, Barraza A, Loera-Muro A, Cardona-Félix CS. Biochemical characterization of LysVpKK5 endolysin from a marine vibriophage. Protein Expr Purif 2021; 188:105971. [PMID: 34508857 DOI: 10.1016/j.pep.2021.105971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Endolysins have been proposed as a potential antibacterial alternative for aquaculture, especially against Vibrio; the bacterial-agents that most frequently cause disease. Although multiple marine vibriophages have been characterized to date, research on vibriophage endolysins is recent. In this study, biochemical characterization of LysVpKK5 endolysin encoded by Vibrio parahaemolyticus-infecting VpKK5 phage was performed. In silico analysis revealed that LysVpKK5 possesses a conserved amidase_2 domain with a zinc-binding motif of high structural similarity to T7 lysozyme (RMSD = 0.107 Å). Contrary to expectations, the activity was inhibited with Zn2+ and was improved with other divalent cations, especially Ca2+. It showed optimal muralytic activity at pH 10, and curiously, no lytic activity at pH ≤ 7 was recorded. As for the thermal stability test, the optimal activity was recorded at 30 °C; the higher residual activity was recorded at 4 °C, and was lost at ≥ 50 °C. On the other hand, increasing NaCl concentrations reduced the activity gradually; the optimal activity was recorded at 50 mM NaCl. On the other hand, the enzymatic activity at 0.5 M NaCl was approx 30% and of approx 50% in seawater. LysVpKK5 endolysin exhibited a higher activity on V. parahaemolyticus ATCC-17802 strain, in comparison with AHPND + strains.
Collapse
Affiliation(s)
| | | | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23096, Mexico
| | - Abraham Loera-Muro
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23096, Mexico
| | | |
Collapse
|
23
|
Chen Z, Guo Z, Lin H, Tian Y, Zhang P, Chen H, Wang Y, Shen Y. The feasibility of phage therapy for periodontitis. Future Microbiol 2021; 16:649-656. [PMID: 34098742 DOI: 10.2217/fmb-2020-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis, a chronic progressive inflammation caused by plaque biofilm, is the main cause of tooth loss in adults. For certain refractory periodontitis cases, it is difficult to achieve a good curative effect using the existing periodontal treatment approaches, which may be due to periodontal pathogenic mechanism in the affected periodontal tissue that the host cannot resist and eliminate. Various pieces of evidence collectively revealed that most studies are focusing on phages in periodontal disease. Several studies have reported periodontitis treatment using phage therapy, highlighting its features including specificity, rapid propagation, and effectiveness on bacteriophage biofilms. In this study, we focus on these reports, aiming to lay the foundation for improved periodontal treatment approaches.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongbing Lin
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yue Tian
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Peipei Zhang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Huishan Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yawei Wang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| |
Collapse
|
24
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
25
|
Sunthornthummas S, Doi K, Fujino Y, Rangsiruji A, Sarawaneeyaruk S, Insian K, Pringsulaka O. Genomic characterisation of Lacticaseibacillus paracasei phage ΦT25 and preliminary analysis of its derived endolysin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Wang Z, Cai R, Wang G, Guo Z, Liu X, Guan Y, Ji Y, Zhang H, Xi H, Zhao R, Bi L, Liu S, Yang L, Feng X, Sun C, Lei L, Han W, Gu J. Combination Therapy of Phage vB_KpnM_P-KP2 and Gentamicin Combats Acute Pneumonia Caused by K47 Serotype Klebsiella pneumoniae. Front Microbiol 2021; 12:674068. [PMID: 33968007 PMCID: PMC8100603 DOI: 10.3389/fmicb.2021.674068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an important nosocomial and community acquired opportunistic pathogen which causes various infections. The emergence of multi-drug resistant (MDR) K. pneumoniae and carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) has brought more severe challenge to the treatment of K. pneumoniae infection. In this study, a novel bacteriophage that specifically infects K. pneumoniae was isolated and named as vB_KpnM_P-KP2 (abbreviated as P-KP2). The biological characteristics of P-KP2 and the bioinformatics of its genome were analyzed, and then the therapeutic effect of P-KP2 was tested by animal experiments. P-KP2 presents high lysis efficiency in vitro. The genome of P-KP2 shows homology with nine phages which belong to “KP15 virus” family and its genome comprises 172,138 bp and 264 ORFs. Besides, P-KP2 was comparable to gentamicin in the treatment of lethal pneumonia caused by K. pneumoniae W-KP2 (K47 serotype). Furthermore, the combined treatment of P-KP2 and gentamicin completely rescued the infected mice. Therefore, this study not only introduces a new member to the phage therapeutic library, but also serves as a reference for other phage-antibiotic combinations to combat MDR pathogens.
Collapse
Affiliation(s)
- Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruopeng Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xiao Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuan Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rihong Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lanting Bi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Chinese Journal of Veterinary Science, Jilin University, Changchun, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
vB_EfaS-DELF1, a novel Siphoviridae bacteriophage with highly effective lytic activity against vancomycin-resistant Enterococcus faecalis. Virus Res 2021; 298:198391. [PMID: 33737153 DOI: 10.1016/j.virusres.2021.198391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Abstract
Enterococcus faecalis is an environmental agent of bovine mastitis in cows and has many cytopathic effects on the urinary tract in both humans and animals. In this study, a novel lytic bacteriophage, vB_EfaS-DELF1, was isolated against 21 E. faecalis isolated from bovine mastitis, including vancomycin-resistant E. faecalis (VRE). vB_EfaS-DELF1 bacteriophage was specific for E. faecalis and showed no lytic effects against other tested Enterococcus spp., Gram-negative, or Gram-positive bacteria. Moreover, no activity was observed against yogurt starters. The phage suspension was stable in a wide range of pH, salinity, and temperature. It retained its activity in 3.5 % fat milk. vB_EfaS-DELF1 has the common phenotypic features of Siphoviridae with a double-strand DNA of 40,248 bp in length and a G + C content of 34.9 %. The genome encodes 62 putative ORFs and no tRNA. No undesirable genes such as lysogenic mediators, antibiotic resistance, or virulence factor genes were detected in the genome. The comparative genomic analysis demonstrated similarity to the other available phage genomes. The highest similarity was observed with two other phages (50 % coverage and 82.38 % identities with IME-EFm1; 35 % coverage and 86.22 % identities with IME-EFm5) that were placed in the same clade. The differences with the other aligned phages were high and were placed in distant clusters. Regarding the specificity of this new bacteriophage against all of the tested E. faecalis isolates and, in particular, against the vancomycin-resistant ones, and also the absence of antibiotic resistance or virulence genes in its genome, vB_EfaS-DELF1 is suggested as a potential candidate for biocontrol of E. faecalis infections.
Collapse
|
28
|
Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis Biofilm Removal Efficiency among Bacteriophage PBEF129, Its Endolysin, and Cefotaxime. Viruses 2021; 13:v13030426. [PMID: 33800040 PMCID: PMC7999683 DOI: 10.3390/v13030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive pathogen which colonizes human intestinal surfaces, forming biofilms, and demonstrates a high resistance to many antibiotics. Especially, antibiotics are less effective for eradicating biofilms and better alternatives are needed. In this study, we have isolated and characterized a bacteriophage, PBEF129, infecting E. faecalis. PBEF129 infected a variety of strains of E. faecalis, including those exhibiting antibiotic resistance. Its genome is a linear double-stranded DNA, 144,230 base pairs in length. Its GC content is 35.9%. The closest genomic DNA sequence was found in Enterococcus phage vB_EfaM_Ef2.3, with a sequence identity of 99.06% over 95% query coverage. Furthermore, 75 open reading frames (ORFs) were functionally annotated and five tRNA-encoding genes were found. ORF 6 was annotated as a phage endolysin having an L-acetylmuramoyl-l-alanine amidase activity. We purified the enzyme as a recombinant protein and confirmed its enzymatic activity. The endolysin’s host range was observed to be wider than its parent phage PBEF129. When applied to bacterial biofilm on the surface of in vitro cultured human intestinal cells, it demonstrated a removal efficacy of the same degree as cefotaxime, but much lower than its parent bacteriophage.
Collapse
Affiliation(s)
- Hyun Keun Oh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | - Yoon Jung Hwang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | | | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
- LyseNTech Co. Ltd., Gyung-Gi Do 17035, Korea;
- Bacteriophage Bank of Korea, Yong-In, Mo-Hyun, Gyung-Gi Do 17035, Korea
- Correspondence:
| |
Collapse
|
29
|
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther 2021; 19:845-865. [PMID: 33261536 DOI: 10.1080/14787210.2021.1858800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The quest to combat bacterial infections has dreaded humankind for centuries. Infections involving ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) impose therapeutic challenges due to the emergence of antimicrobial drug resistance. Recently, investigations with bacteriophages have led to the development of novel strategies against ESKAPE infections. Also, bacteriophages have been demonstrated to be instrumental in the dissemination of virulence markers in ESKAPE pathogens. AREAS COVERED The review highlights the potential of bacteriophage in and against the pathogenicity of antibiotic-resistant ESKAPE pathogens. The review also emphasizes the challenges of employing bacteriophage in treating ESKAPE pathogens and the knowledge gap in the bacteriophage mediated antibiotic resistance and pathogenicity in ESKAPE infections. EXPERT OPINION Bacteriophage infection can kill the host bacteria but in survivors can transfer genes that contribute toward the survival of the pathogens in the host and resistance toward multiple antimicrobials. The knowledge on the dual role of bacteriophages in the treatment and pathogenicity will assist in the prediction and development of novel therapeutics targeting antimicrobial-resistant ESKAPE. Therefore, extensive investigations on the efficacy of synthetic bacteriophage, bacteriophage cocktails, and bacteriophage in combination with antibiotics are needed to develop effective therapeutics against ESKAPE infections.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Sunil Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| |
Collapse
|
30
|
Jia K, Yang N, Zhang X, Cai R, Zhang Y, Tian J, Raza SHA, Kang Y, Qian A, Li Y, Sun W, Shen J, Yao J, Shan X, Zhang L, Wang G. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting Citrobacter freundii. Front Microbiol 2020; 11:585261. [PMID: 33329451 PMCID: PMC7717962 DOI: 10.3389/fmicb.2020.585261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023] Open
Abstract
Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30–40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4–10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.
Collapse
Affiliation(s)
- Kaixiang Jia
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nuo Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiuwen Zhang
- Research Management Office, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ruopeng Cai
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yang Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Yuanhuan Kang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying Li
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jinyu Shen
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
31
|
Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol 2020; 165:2799-2806. [PMID: 32989574 DOI: 10.1007/s00705-020-04822-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The increasing population infected by carbapenem-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. In this study, we isolated, characterized, and sequenced a bacteriophage, P509, which was able to specifically infect and lyse carbapenem-resistant K. pneumoniae of K locus type KL64. A one-step growth curve experiment showed that the latent time period of phage P509 was 5 min, and the burst size was about 85 phage particles/cell. Stability tests confirmed that P509 was stable over a wide range of temperatures (4 to 50 °C) and pH (3 to 11) conditions. Phage P509 was identified as a linear double-stranded DNA phage with a genome of 40,954 bp with 53.2% G + C content, encoding 50 predicted proteins. Genomic and morphological analysis suggested that P509 belonged to the genus Przondovirus, family Autographiviridae, order Caudovirales. Further analysis showed that no virulence-related genes or lysogen-formation gene clusters were detected in the genome, suggesting that P509 is a lytic phage, making it potentially suitable for clinical applications. In vitro, the number of viable cells in three phage-treated groups (MOI = 0.1, 0.01, 0.001) decreased by 3.75 log10 CFU/ml, 3.32 log10 CFU/ml and 3.21 log10 CFU/ml, respectively, after 80 min of incubation, in comparison to that in the untreated group. Based on these characteristics, phage P509 may be a promising candidate for future phage therapy applications.
Collapse
|
32
|
Li M, Guo M, Chen L, Zhu C, Xiao Y, Li P, Guo H, Chen L, Zhang W, Du H. Isolation and Characterization of Novel Lytic Bacteriophages Infecting Epidemic Carbapenem-Resistant Klebsiella pneumoniae Strains. Front Microbiol 2020; 11:1554. [PMID: 32793133 PMCID: PMC7385232 DOI: 10.3389/fmicb.2020.01554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/16/2020] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant clinical problem given the lack of therapeutic options available. Alternative antibacterial agents, such as bacteriophages, can be used as a valuable tool to treat the infections caused by these highly resistant bacteria. In this study, we isolated 54 phages from medical and domestic sewage wastewater between July and September 2019 and determined their host ranges against 54 clinical CRKP isolates, collected from a tertiary hospital in eastern China. The 54 CRKP isolates were from 7 sequence types (STs) and belonged to 9 capsular K locus types, harboring blaKPC–2 (n = 49), blaNDM–1 (n = 5), and blaIMP–4 (n = 3). Among them, the epidemic KPC-2-producing ST11 strains were most predominant (88.9%). The 54 phages showed different host ranges from 7 to 52 CRKP isolates. The total host ranges of three phages can potentially cover all 54 CRKP isolates. Among the 54 phages, phage P545, classified as a member of Myoviridaes, order Caudovirales, had a relatively wide host range (96.3%), a short latent period of 20 min, and a medium burst size of 82 PFU/cell and was stably maintained at different pH values (4–10) and temperatures (up to 60°C). P545 showed the ability to inhibit biofilm formation and to degrade the mature biofilms. Taken together, the results of our study showed that the newly isolated phage P545 had a relatively wide host range, excellent properties, and antibacterial activity as well as antibiofilm activity against a clinical CRKP ST11 isolate, providing a promising candidate for future phage therapy applications.
Collapse
Affiliation(s)
- Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Guo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, China
| | - Chaowang Zhu
- Department of Clinical Laboratory, The North District of Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yuyi Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongxiong Guo
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, United States
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Baryakova TH, Ritter SC, Tresnak DT, Hackel BJ. Computationally Aided Discovery of LysEFm5 Variants with Improved Catalytic Activity and Stability. Appl Environ Microbiol 2020; 86:e02051-19. [PMID: 31811034 PMCID: PMC6997734 DOI: 10.1128/aem.02051-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/30/2019] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-derived lysin proteins are potentially effective antimicrobials that would benefit from engineered improvements to their bioavailability and specific activity. Here, the catalytic domain of LysEFm5, a lysin with activity against vancomycin-resistant Enterococcus faecium (VRE), was subjected to site-saturation mutagenesis at positions whose selection was guided by sequence and structural information from homologous proteins. A second-order Potts model with parameters inferred from large sets of homologous sequence information was used to predict the average change in the statistical fitness for mutant libraries with diversity at pairs of sites within the secondary catalytic shell. Guided by the statistical fitness, nine double mutant saturation libraries were created and plated on agar containing autoclaved VRE to quickly identify and segregate catalytically active (halo-forming) and inactive (non-halo-forming) variants. High-throughput DNA sequencing of 873 unique variants showed that the statistical fitness was predictive of the retention or loss of catalytic activity (area under the curve [AUC], 0.840 to 0.894), with the inclusion of more diverse sequences in the starting multiple-sequence alignment improving the classification accuracy when pairwise amino acid couplings (epistasis) were considered. Of eight random halo-forming variants selected for more sensitive testing, one showed a 1.8 (±0.4)-fold improvement in specific activity and an 11.5 ± 0.8°C increase in melting temperature compared to those of the wild type. Our results demonstrate that a computationally informed approach employing homologous protein information coupled with a mid-throughput screening assay allows for the expedited discovery of lysin variants with improved properties.IMPORTANCE Broad-spectrum antibiotics can indiscriminately kill most bacteria, including commensal species that are a part of the normal human flora. This can potentially lead to the proliferation of drug-resistant bacteria upon elimination of competing species and to unwanted autoimmune effects in patients. Bacteriophage-derived lysin proteins are an alternative to conventional antibiotics that have coevolved alongside specific bacterial hosts. Lysins are capable of targeting conserved substrates in the bacterial cell wall essential for its viability. To engineer these proteins to exhibit improved therapeutically relevant properties, homology-guided statistical approaches can be used to identify compelling sites for mutation and to quantify the functional constraints acting on these sites to direct mutagenic library creation. The platform described herein couples this informed approach with a visual plate assay that can be used to simultaneously screen hundreds of mutants for catalytic activity, allowing for the streamlined identification of improved lysin variants.
Collapse
Affiliation(s)
- Tsvetelina H Baryakova
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Seth C Ritter
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Daniel T Tresnak
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
Yuan Y, Wang L, Li X, Tan D, Cong C, Xu Y. Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Res 2019; 272:197734. [DOI: 10.1016/j.virusres.2019.197734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
35
|
Cai R, Wang Z, Wang G, Zhang H, Cheng M, Guo Z, Ji Y, Xi H, Wang X, Xue Y, Ur Rahman S, Sun C, Feng X, Lei L, Tong Y, Han W, Gu J. Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes 2019; 55:696-706. [PMID: 31254238 DOI: 10.1007/s11262-019-01681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.
| |
Collapse
|
36
|
Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep 2019; 9:6643. [PMID: 31040333 PMCID: PMC6491613 DOI: 10.1038/s41598-019-43115-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL−1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL−1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.
Collapse
|
37
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
38
|
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol 2019; 10:539. [PMID: 30988669 PMCID: PMC6452778 DOI: 10.3389/fmicb.2019.00539] [Citation(s) in RCA: 853] [Impact Index Per Article: 170.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
The acronym ESKAPE includes six nosocomial pathogens that exhibit multidrug resistance and virulence: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Persistent use of antibiotics has provoked the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, which render even the most effective drugs ineffective. Extended spectrum β-lactamase (ESBL) and carbapenemase producing Gram negative bacteria have emerged as an important therapeutic challenge. Development of novel therapeutics to treat drug resistant infections, especially those caused by ESKAPE pathogens is the need of the hour. Alternative therapies such as use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial peptides, nanoparticles, and photodynamic light therapy are widely reported. Many reviews published till date describe these therapies with respect to the various agents used, their dosage details and mechanism of action against MDR pathogens but very few have focused specifically on ESKAPE. The objective of this review is to describe the alternative therapies reported to treat ESKAPE infections, their advantages and limitations, potential application in vivo, and status in clinical trials. The review further highlights the importance of a combinatorial approach, wherein two or more therapies are used in combination in order to overcome their individual limitations, additional studies on which are warranted, before translating them into clinical practice. These advances could possibly give an alternate solution or extend the lifetime of current antimicrobials.
Collapse
Affiliation(s)
- Mansura S Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Ekta E Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Shital N Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Madhumita S Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Karishma R Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
39
|
Saha D, Mukherjee R. Ameliorating the antimicrobial resistance crisis: phage therapy. IUBMB Life 2019; 71:781-790. [DOI: 10.1002/iub.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Dibya Saha
- Department of Biology; Indian Institute of Science Education and Research; Tirupati India
| | - Raju Mukherjee
- Department of Biology; Indian Institute of Science Education and Research; Tirupati India
| |
Collapse
|
40
|
Enterococcus faecalis Countermeasures Defeat a Virulent Picovirinae Bacteriophage. Viruses 2019; 11:v11010048. [PMID: 30634666 PMCID: PMC6356687 DOI: 10.3390/v11010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that has emerged as a major cause of nosocomial infections worldwide. Many clinical strains are indeed resistant to last resort antibiotics and there is consequently a reawakening of interest in exploiting virulent phages to combat them. However, little is still known about phage receptors and phage resistance mechanisms in enterococci. We made use of a prophageless derivative of the well-known clinical strain E. faecalis V583 to isolate a virulent phage belonging to the Picovirinae subfamily and to the P68 genus that we named Idefix. Interestingly, most isolates of E. faecalis tested—including V583—were resistant to this phage and we investigated more deeply into phage resistance mechanisms. We found that E. faecalis V583 prophage 6 was particularly efficient in resisting Idefix infection thanks to a new abortive infection (Abi) mechanism, which we designated Abiα. It corresponded to the Pfam domain family with unknown function DUF4393 and conferred a typical Abi phenotype by causing a premature lysis of infected E. faecalis. The abiα gene is widespread among prophages of enterococci and other Gram-positive bacteria. Furthermore, we identified two genes involved in the synthesis of the side chains of the surface rhamnopolysaccharide that are important for Idefix adsorption. Interestingly, mutants in these genes arose at a frequency of ~10−4 resistant mutants per generation, conferring a supplemental bacterial line of defense against Idefix.
Collapse
|
41
|
Tie K, Yuan Y, Yan S, Yu X, Zhang Q, Xu H, Zhang Y, Gu J, Sun C, Lei L, Han W, Feng X. Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes 2018; 54:446-456. [PMID: 29564689 DOI: 10.1007/s11262-018-1549-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/05/2018] [Indexed: 11/28/2022]
Abstract
Salmonella pullorum is the major pathogen that is harmful to the poultry industry in developing countries, and the treatment of chicken diarrhea caused by S. pullorum has become increasingly difficult. In this study, a virulent bacteriophage YSP2, which was able to specifically infect Salmonella, was isolated and characterized. Phage YSP2 was classified in the Siphoviridae family and had a short latent period of 10 min. No bacterial virulence- or lysogenesis-related ORF is present in the YSP2 genome, making it eligible for use in phage therapy. Experiments in vivo investigated the potential use of phages as a therapy against diarrhea in chickens caused by S. pullorum in a chicken diarrhea model, demonstrating that a single oral administration of YSP2 (1 × 1010 PFU/mL, 80 μL/chicken) 2 h after S. pullorum oral administration at a double median lethal dose was sufficient to protect chickens against diarrhea. Gross inspection showed that YSP2 can effectively reduce organ damage and significantly relieve hemorrhage in the intestine and liver tissue. Moreover, YSP2 can maintain a high curative effect when diluted to 108 PFU/mL. In light of its therapeutic effect on chicken diarrhea, YSP2 may serve as an alternative treatment strategy for infections caused by S. pullorum.
Collapse
Affiliation(s)
- Kunyuan Tie
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Yuyu Yuan
- College of Life Science and Technology, Dalian University of Technology, No. 2 Lingshui Road, Dalian, 116024, Liaoning, People's Republic of China
| | - Shiqing Yan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Xi Yu
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Qiuyang Zhang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Huihui Xu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
42
|
Zhang Y, Lin H, Wang J, Li M. Characteristics of Two Lysis-Related Proteins from a Shewanella putrefaciens Phage with High Lytic Activity and Wide Spectrum. J Food Prot 2018; 81:332-340. [PMID: 29369685 DOI: 10.4315/0362-028x.jfp-17-144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although Shewanella putrefaciens is the specific spoilage organism in most seafood, only seven Shewanella phages have been sequenced and their endolysins have not been reported until now. In this study, we cloned and expressed two lysis-related proteins (Spp64 and Spp62) encoded by phage Spp001, the first sequenced S. putrefaciens phage. Both recombinant proteins showed strong lytic capability toward chilled S. putrefaciens Sp225 and presented a wider activity spectrum compared with bacteriophage Spp001. The enzymatic activity of crude Spp64, Spp62ΔTD, and Spp62ΔTD-GST can cause decreases of 0.691, 0.674, and 0.685, respectively, as tested through the turbidity reduction assay. Furthermore, purified enzyme Spp64 at concentrations of 537.5 and 4.20 μg/mL was enough to decrease the optical density of chilled S. putrefaciens by 0.881 and 0.492, respectively, within 15 min. The recombinant Spp64 has a peptidase catalytic domain and exhibits high temperature resistance. Moreover, Spp64 displayed superior enzymatic activity in a range of pH values that matches environmental conditions (pH between 5.0 and 10.0), which demonstrates that its application in seafood is feasible. The present work is to our knowledge the first report on lysis-related enzymes encoded in the Shewanella phage. Both proteins presented extraordinary potential to control S. putrefaciens; we hope that these proteins can be developed as novel antibacterial agents in further research.
Collapse
Affiliation(s)
- Yue Zhang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengzhe Li
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
43
|
Antibacterial Activity of the Non-Cytotoxic Peptide (p-BthTX-I)₂ and Its Serum Degradation Product against Multidrug-Resistant Bacteria. Molecules 2017; 22:molecules22111898. [PMID: 29113051 PMCID: PMC6150245 DOI: 10.3390/molecules22111898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides can be used systemically, however, their susceptibility to proteases is a major obstacle in peptide-based therapeutic development. In the present study, the serum stability of p-BthTX-I (KKYRYHLKPFCKK) and (p-BthTX-I)₂, a p-BthTX-I disulfide-linked dimer, were analyzed by mass spectrometry and analytical high-performance liquid chromatography (HPLC). Antimicrobial activities were assessed by determining their minimum inhibitory concentrations (MIC) using cation-adjusted Mueller-Hinton broth. Furthermore, biofilm eradication and time-kill kinetics were performed. Our results showed that p-BthTX-I and (p-BthTX-I)₂ were completely degraded after 25 min. Mass spectrometry showed that the primary degradation product was a peptide that had lost four lysine residues on its C-terminus region (des-Lys12/Lys13-(p-BthTX-I)₂), which was stable after 24 h of incubation. The antibacterial activities of the peptides p-BthTX-I, (p-BthTX-I)₂, and des-Lys12/Lys13-(p-BthTX-I)₂ were evaluated against a variety of bacteria, including multidrug-resistant strains. Des-Lys12/Lys13-(p-BthTX-I)₂ and (p-BthTX-I)₂ degraded Staphylococcus epidermidis biofilms. Additionally, both the peptides exhibited bactericidal activities against planktonic S. epidermidis in time-kill assays. The emergence of bacterial resistance to a variety of antibiotics used in clinics is the ultimate challenge for microbial infection control. Therefore, our results demonstrated that both peptides analyzed and the product of proteolysis obtained from (p-BthTX-I)₂ are promising prototypes as novel drugs to treat multidrug-resistant bacterial infections.
Collapse
|
44
|
Cheng M, Zhang Y, Li X, Liang J, Hu L, Gong P, Zhang L, Cai R, Zhang H, Ge J, Ji Y, Guo Z, Feng X, Sun C, Yang Y, Lei L, Han W, Gu J. Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Sci Rep 2017; 7:10164. [PMID: 28860505 PMCID: PMC5579260 DOI: 10.1038/s41598-017-10755-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/14/2017] [Indexed: 01/03/2023] Open
Abstract
Phage-derived lysins can hydrolyse bacterial cell walls and show great potential for combating Gram-positive pathogens. In this study, the potential of LysEF-P10, a new lysin derived from a isolated Enterococcus faecalis phage EF-P10, as an alternative treatment for multidrug-resistant E. faecalis infections, was studied. LysEF-P10 shares only 61% amino acid identity with its closest homologues. Four proteins were expressed: LysEF-P10, the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain (LysEF-P10C), the putative binding domain (LysEF-P10B), and a fusion recombination protein (LysEF-P10B-green fluorescent protein). Only LysEF-P10 showed highly efficient, broad-spectrum bactericidal activity against E. faecalis. Several key functional residues, including the Cys-His-Asn triplet and the calcium-binding site, were confirmed using 3D structure prediction, BLAST and mutation analys. We also found that calcium can switch LysEF-P10 between its active and inactive states and that LysEF-P10B is responsible for binding E. faecalis cells. A single administration of LysEF-P10 (5 μg) was sufficient to protect mice against lethal vancomycin-resistant Enterococcus faecalis (VREF) infection, and LysEF-P10-specific antibody did not affect its bactericidal activity or treatment effect. Moreover, LysEF-P10 reduced the number of Enterococcus colonies and alleviated the gut microbiota imbalance caused by VREF. These results indicate that LysEF-P10 might be an alternative treatment for multidrug-resistant E. faecalis infections.
Collapse
Affiliation(s)
- Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Yufeng Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Jiaming Liang
- College of Clinical Medicine, Jilin University, Changchun, 130012, P.R. China
| | - Liyuan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Pengjuan Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Lei Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Jinli Ge
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Zhimin Guo
- First Hospital of Jilin University, Jilin University, Changchun, 130021, P.R. China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China. .,Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, P.R. China.
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, P.R. China.
| |
Collapse
|
45
|
Lewis BB, Pamer EG. Microbiota-Based Therapies for Clostridium difficile and Antibiotic-Resistant Enteric Infections. Annu Rev Microbiol 2017; 71:157-178. [PMID: 28617651 DOI: 10.1146/annurev-micro-090816-093549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens are increasingly antibiotic resistant, and development of clinically effective antibiotics is lagging. Curing infections increasingly requires antimicrobials that are broader spectrum, more toxic, and more expensive, and mortality attributable to antibiotic-resistant pathogens is rising. The commensal microbiota, comprising microbes that colonize the mammalian gastrointestinal tract, can provide high levels of resistance to infection, and the contributions of specific bacterial species to resistance are being discovered and characterized. Microbiota-mediated mechanisms of colonization resistance and pathogen clearance include bactericidal activity, nutrient depletion, immune activation, and manipulation of the gut's chemical environment. Current research is focusing on development of microbiota-based therapies to reduce intestinal colonization with antibiotic-resistant pathogens, with the goal of reducing pathogen transmission and systemic dissemination.
Collapse
Affiliation(s)
- Brittany B Lewis
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| | - Eric G Pamer
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| |
Collapse
|
46
|
Cheng M, Liang J, Zhang Y, Hu L, Gong P, Cai R, Zhang L, Zhang H, Ge J, Ji Y, Guo Z, Feng X, Sun C, Yang Y, Lei L, Han W, Gu J. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front Microbiol 2017; 8:837. [PMID: 28536572 PMCID: PMC5423268 DOI: 10.3389/fmicb.2017.00837] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.
Collapse
Affiliation(s)
- Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jiaming Liang
- College of Clinical Medicine, Jilin UniversityChangchun, China
| | - Yufeng Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liyuan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Pengjuan Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Lei Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jinli Ge
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhimin Guo
- First Hospital of Jilin University, Jilin UniversityChangchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|