1
|
Kitamura H, Kukimoto I, Yajima M, Ikuta K, Sasaki K, Kanda T. Distinct genomic features of Transeurasian strains of Epstein-Barr virus in East Asia. Virology 2024; 603:110359. [PMID: 39721196 DOI: 10.1016/j.virol.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
More than 95% of adult humans worldwide are latently infected with Epstein-Barr virus (EBV). Recent studies indicated that different EBV strains colonize different regions of Asia, where nasopharyngeal carcinoma (NPC) is endemic (southern China) or non-endemic (Japan/Korea). We searched for viral single nucleotide variant markers throughout the EBV genome by comparing the coding sequences of Japanese/Korean and NPC-endemic Chinese strains. We identified BamHI D fragment leftward reading frame 1 (BDLF1), BDLF2, and BDLF3 genes as viral geographical markers for distinguishing Japanese/Korean EBV strains from NPC-endemic Chinese EBV strains. Most significantly, BDLF-based EBV genotyping indicated that NPC-non-endemic Chinese and Mongolian EBV strains belong to the same group as Japanese/Korean EBV strains. We conclude that a particular type of EBV, designated as Transeurasian EBV, is prevalent among Transeurasian language speakers (Japanese, Korean, and Mongolian populations) and NPC-non-endemic Chinese populations.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Misako Yajima
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Department of Clinical Laboratory Science, Medical Science and Technology, School of Health Science, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2766-0. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Zhu Y, Gasbarri M, Zebret S, Pawar S, Mathez G, Diderich J, Valencia-Camargo AD, Russenberger D, Wang H, Silva PH, Dela Cruz JAB, Wei L, Cagno V, Münz C, Speck RF, Desmecht D, Stellacci F. Benzene with Alkyl Chains Is a Universal Scaffold for Multivalent Virucidal Antivirals. ACS CENTRAL SCIENCE 2024; 10:1012-1021. [PMID: 38799657 PMCID: PMC11117723 DOI: 10.1021/acscentsci.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 05/29/2024]
Abstract
Most viruses start their invasion by binding to glycoproteins' moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy in vivo against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.
Collapse
Affiliation(s)
- Yong Zhu
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Matteo Gasbarri
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Soumaila Zebret
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Sujeet Pawar
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Gregory Mathez
- Institute
of Microbiology, University Hospital of
Lausanne and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switerland
| | - Jacob Diderich
- Faculty
of
Veterinary Medicine Department of Pathology, University of Liège, Sart Tilman B43a, 4000 Liège, Belgium
| | - Alma Delia Valencia-Camargo
- Institute
of Experimental Immunology, University of
Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Doris Russenberger
- Department
of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, University of Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Paulo Henrique
Jacob Silva
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Jay-ar B. Dela Cruz
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Lixia Wei
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, University Hospital of
Lausanne and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switerland
| | - Christian Münz
- Institute
of Experimental Immunology, University of
Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roberto F. Speck
- Department
of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, University of Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - Daniel Desmecht
- Faculty
of
Veterinary Medicine Department of Pathology, University of Liège, Sart Tilman B43a, 4000 Liège, Belgium
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Escalante GM, Mutsvunguma LZ, Muniraju M, Rodriguez E, Ogembo JG. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front Immunol 2022; 13:867918. [PMID: 35493498 PMCID: PMC9047024 DOI: 10.3389/fimmu.2022.867918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
BackgroundEpstein-Barr virus (EBV) is the causal agent of infectious mononucleosis and has been associated with various cancers and autoimmune diseases. Despite decades of research efforts to combat this major global health burden, there is no approved prophylactic vaccine against EBV. To facilitate the rational design and assessment of an effective vaccine, we systematically reviewed pre-clinical and clinical prophylactic EBV vaccine studies to determine the antigens, delivery platforms, and animal models used in these studies.MethodsWe searched Cochrane Library, ClinicalTrials.gov, Embase, PubMed, Scopus, Web of Science, WHO’s Global Index Medicus, and Google Scholar from inception to June 20, 2020, for EBV prophylactic vaccine studies focused on humoral immunity.ResultsThe search yielded 5,614 unique studies. 36 pre-clinical and 4 clinical studies were included in the analysis after screening against the exclusion criteria. In pre-clinical studies, gp350 was the most commonly used immunogen (33 studies), vaccines were most commonly delivered as monomeric proteins (12 studies), and mice were the most used animal model to test immunogenicity (15 studies). According to an adaptation of the CAMARADES checklist, 4 pre-clinical studies were rated as very high, 5 as high, 13 as moderate quality, 11 as poor, and 3 as very poor. In clinical studies, gp350 was the sole vaccine antigen, delivered in a vaccinia platform (1 study) or as a monomeric protein (3 studies). The present study was registered in PROSPERO (CRD42020198440).ConclusionsFour major obstacles have prevented the development of an effective prophylactic EBV vaccine: undefined correlates of immune protection, lack of knowledge regarding the ideal EBV antigen(s) for vaccination, lack of an appropriate animal model to test vaccine efficacy, and lack of knowledge regarding the ideal vaccine delivery platform. Our analysis supports a multivalent antigenic approach including two or more of the five main glycoproteins involved in viral entry (gp350, gB, gH/gL, gp42) and a multimeric approach to present these antigens. We anticipate that the application of two underused challenge models, rhesus macaques susceptible to rhesus lymphocryptovirus (an EBV homolog) and common marmosets, will permit the establishment of in vivo correlates of immune protection and attainment of more generalizable data.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198440, identifier PROSPERO I.D. CRD4202019844.
Collapse
|
5
|
Ling J, Li J, Khan A, Lundkvist Å, Li JP. Is heparan sulfate a target for inhibition of RNA virus infection? Am J Physiol Cell Physiol 2022; 322:C605-C613. [PMID: 35196165 PMCID: PMC8977144 DOI: 10.1152/ajpcell.00028.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heparan sulfate (HS) is a linear polysaccharide attached to a core protein, forming heparan sulfate proteoglycans (HSPGs) that are ubiquitously expressed on the surface of almost all mammalian cells and the extracellular matrix. HS orchestrates the binding of various signal molecules to their receptors, thus, regulating many biological processes, including homeostasis, metabolism, and various pathological processes. Due to its wide distribution and negatively charged properties, HS is exploited by many viruses as a co-factor to attach to host cells. Therefore, inhibition of the interaction between virus and HS is proposed as a promising approach to mitigate viral infection, including SARS-CoV-2. In this review, we summarize the interaction manners of HS with viruses with focus on significant pathogenic RNA viruses, including alphaviruses, flaviviruses, and coronaviruses. We also provide an overview of the challenges we may face when using HS-mimetics as antivirals for clinical treatment. More studies are needed to provide a further understanding of the interplay between HS and viruses both in vitro and in vivo, which will favor the development of specific antiviral inhibitors.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
6
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
7
|
Jean-Pierre V, Lupo J, Buisson M, Morand P, Germi R. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine. Front Microbiol 2021; 12:701611. [PMID: 34239514 PMCID: PMC8258399 DOI: 10.3389/fmicb.2021.701611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of the most widespread viruses in the world; more than 90% of the planet's adult population is infected. Symptomatic primary infection by this Herpesviridae corresponds to infectious mononucleosis (IM), which is generally a benign disease. While virus persistence is often asymptomatic, it is responsible for 1.5% of cancers worldwide, mainly B cell lymphomas and carcinomas. EBV may also be associated with autoimmune and/or inflammatory diseases. However, no effective treatment or anti-EBV vaccine is currently available. Knowledge of the proteins and mechanisms involved in the different steps of the viral cycle is essential to the development of effective vaccines. The present review describes the main actors in the entry of the virus into B cells and epithelial cells, which are targets of interest in the development of prophylactic vaccines aimed at preventing viral infection. This review also summarizes the first vaccinal approaches tested in humans, all of which are based on the gp350/220 glycoprotein; while they have reduced the risk of IM, they have yet to prevent EBV infection. The main proteins involved in the EBV latency cycle and some of the proteins involved in the lytic cycle have essential roles in the oncogenesis of EBV. For that reason, these proteins are of interest for the development of therapeutic vaccines of which the objective is the stimulation of T cell immunity against EBV-associated cancers. New strategies aimed at broadening the antigenic spectrum, are currently being studied and will contribute to the targeting of the essential steps of the viral cycle, the objective being to prevent or treat the diseases associated with EBV.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Julien Lupo
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Marlyse Buisson
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
- Institut de Biologie Structurale, UMR 5075, CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Patrice Morand
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Raphaële Germi
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Costa V, El-Achkar VN, de Barros PP, León JE, Ribeiro-Silva A, Carlos R, Pignatari SSN, Ferreira S, Mello BP, Sichero L, Villa LL, Kaminagakura E. Role of epstein-barr virus in the severity of recurrent respiratory papillomatosis. Laryngoscope 2019; 130:E611-E618. [PMID: 31860132 DOI: 10.1002/lary.28465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective was to investigate the prevalence of the Epstein-Barr virus (EBV) and its association with human papilloma virus (HPV) detection, clinicopathological features, and the severity of recurrent respiratory papillomatosis (RRP). METHODS Cases of juvenile recurrent respiratory papillomatosis (JRRP) (n = 36) and adult recurrent respiratory papillomatosis (ARRP) (n = 44) were collected retrospectively and subdivided into low- and high-risk severity groups based on the Derkay score. We performed HPV detection and genotyping using a reverse hybridization protocol and investigated the presence of EBV by polymerase chain reaction (PCR) and in situ hybridization. CD21 levels were accessed by immunohistochemistry. RESULTS All samples were HPV-positive, including 49 cases of HPV 6, 26 cases of HPV 11, four cases of HPV 6 and 11 coinfections, and one case of HPV 16. EBV-DNA was detected in nine samples by PCR, although none of the cases were positive by means of in situ hybridization. CD21 immunoexpression was not statistically associated with any of the variables analyzed. HPV 6 detection was significantly higher in ARRP cases (P = 0.03), whereas HPV 11 was more prevalent in JRRP cases (P = 0.02) and was even more prevalent in JRRP cases of greater severity (Derkay laryngoscopic scale ≥20) (P = 0.04). CONCLUSION The presence of EBV does not seem to play an important role in the progression/severity of RRP. LEVEL OF EVIDENCE 4 Laryngoscope, 130:E611-E618, 2020.
Collapse
Affiliation(s)
- Victor Costa
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Vivian Narana El-Achkar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Jorge Esquiche León
- Department of Stomatology, Collective Health and Legal Dentistry, Ribeirão Preto School of Dentistry, São Paulo, Brazil
| | - Alfredo Ribeiro-Silva
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Román Carlos
- Centro Clínico de Cabeza y Cuello, Guatemala City, Guatemala
| | | | - Silvaneide Ferreira
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Barbara Pereira Mello
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Laura Sichero
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Hussein HAM, Briestenska K, Mistrikova J, Akula SM. IFITM1 expression is crucial to gammaherpesvirus infection, in vivo. Sci Rep 2018; 8:14105. [PMID: 30237526 PMCID: PMC6149222 DOI: 10.1038/s41598-018-32350-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023] Open
Abstract
The oncogenic gammaherpesviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV), are etiologically associated with a variety of human cancers, including Burkitt’s lymphoma (BL), Hodgkin lymphoma (HL), Kaposi’s sarcoma (KS), and primary effusion lymphoma (PEL). Recently, we demonstrated KSHV infection of B- and endothelial cells to significantly upregulate the expression of interferon induced transmembrane protein 1 (IFITM1) which in turn enhances virus entry. This is an extension of the above study. In here, we determined EBV infection of cells to trigger IFITM1 expression, in vitro. Silencing IFITM1 expression using siRNA specifically lowered gammaherpesvirus infection of cells at a post binding stage of entry. A natural model system to explore the effect of IFITM1 on gammaherpesvirus infection in vivo is infection of BALB/c mice with murine gammaherpesvirus 68 (MHV-68). Priming mice with siRNA specific to IFITM1 significantly lowered MHV-68 titers in the lung specimens compared to priming with (NS)siRNA or PBS. MHV-68 titers were monitored by plaque assay and qPCR. Taken together, for the first time, this study provides insight into the critical role of IFITM1 to promoting in vivo gammaherpesvirus infections.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Katarina Briestenska
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-842 15, Bratislava, Slovak Republic.,Institute of Virology, Biomedical research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Jela Mistrikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-842 15, Bratislava, Slovak Republic.,Institute of Virology, Biomedical research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
12
|
The Major Envelope Glycoprotein of Murid Herpesvirus 4 Promotes Sexual Transmission. J Virol 2017; 91:JVI.00235-17. [PMID: 28424280 DOI: 10.1128/jvi.00235-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important human and animal pathogens. Infection control has proven difficult because the key process of transmission is ill understood. Murid herpesvirus 4 (MuHV-4), a gammaherpesvirus of mice, is transmitted sexually. We show that this depends on the major virion envelope glycoprotein gp150. gp150 is redundant for host entry, and in vitro, it regulates rather than promotes cell binding. We show that gp150-deficient MuHV-4 reaches and replicates normally in the female genital tract after nasal infection but is poorly released from vaginal epithelial cells and fails to pass from the female to the male genital tract during sexual contact. Thus, we show that the regulation of virion binding is a key component of spontaneous gammaherpesvirus transmission.IMPORTANCE Gammaherpesviruses are responsible for many important diseases in both animals and humans. Some important aspects of their life cycle are still poorly understood. Key among these is viral transmission. Here we show that the major envelope glycoprotein of murid herpesvirus 4 functions not in entry or dissemination but in virion release to allow sexual transmission to new hosts.
Collapse
|
13
|
Ersing I, Nobre L, Wang LW, Soday L, Ma Y, Paulo JA, Narita Y, Ashbaugh CW, Jiang C, Grayson NE, Kieff E, Gygi SP, Weekes MP, Gewurz BE. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells. Cell Rep 2017; 19:1479-1493. [PMID: 28514666 PMCID: PMC5446956 DOI: 10.1016/j.celrep.2017.04.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 04/20/2017] [Indexed: 01/10/2023] Open
Abstract
Epstein-Barr virus (EBV) replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.
Collapse
Affiliation(s)
- Ina Ersing
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Liang Wei Wang
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Virology Program, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yijie Ma
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Immunobiology and Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Camille W Ashbaugh
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | - Elliott Kieff
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Immunobiology and Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Virology Program, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|