1
|
Sahoo SS, Erlacher M, Wlodarski MW. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management. Blood 2025; 145:475-485. [PMID: 39475954 PMCID: PMC11826520 DOI: 10.1182/blood.2022017717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Sterile alpha motif domain-containing protein 9 (SAMD9) and SAMD9-like (SAMD9L) are paralogous genes encoding antiviral proteins that negatively regulate cell proliferation. Heterozygous germ line gain-of-function (GoF) SAMD9/9L variants cause multisystem syndromes with variable manifestations. The unifying features are cytopenia, immunodeficiency, infections, bone marrow failure, myelodysplasia, and monosomy 7. Nonhematopoietic presentations can affect almost every organ system. Growth impairment and adrenal insufficiency are typical in SAMD9, whereas progressive neurologic deficits characterize SAMD9L. Most patients (>90%) carry germ line missense GoF variants. A subgroup of patients presenting with SAMD9L-associated inflammatory disease carry frameshift-truncating variants that are also GoF. Somatic genetic rescue occurs in two-third of patients or more and involves monosomy 7, which may spontaneously disappear (transient monosomy 7) or progress to myelodysplastic syndrome (MDS)/leukemia, and adaptive clones with somatic SAMD9/9L compensatory mutations or uniparental disomy 7q (UPD7q), both associated with remission. This manuscript examines the clinical and genetic spectrum, therapies, and outcome based on 243 published patients compiled in our registry, with additional genetic information on 62 unpublished cases. We consolidate the diverse clinical manifestations and diagnostic challenges of SAMD9/9L syndromes to enhance recognition and improve patient care. We highlight the knowledge gaps in pathomechanisms and emphasize the importance of genetic surveillance assessing disease remission vs disease progression. Insights are provided into variant curation and the necessity of testing for somatic SAMD9/9L mutations and UPD7q. Multidisciplinary care in specialized centers is critical to manage these complex disorders. Future natural history studies, especially in patients with monosomy 7, will help formulate evidence-based surveillance protocols and optimize transplant timing and outcomes.
Collapse
Affiliation(s)
- Sushree S. Sahoo
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
2
|
Gahr S, Perinetti Casoni G, Falk-Paulsen M, Maschkowitz G, Bryceson YT, Voss M. Viral host range factors antagonize pathogenic SAMD9 and SAMD9L variants. Exp Cell Res 2023; 425:113541. [PMID: 36894052 DOI: 10.1016/j.yexcr.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
SAMD9 and SAMD9L encode homologous interferon-induced genes that can inhibit cellular translation as well as proliferation and can restrict viral replication. Gain-of-function (GoF) variants in these ancient, yet rapidly evolving genes are associated with life-threatening disease in humans. Potentially driving population sequence diversity, several viruses have evolved host range factors that antagonize cell-intrinsic SAMD9/SAMD9L function. Here, to gain insights into the molecular regulation of SAMD9/SAMD9L activity and to explore the prospect of directly counteracting the activity of pathogenic variants, we examined whether dysregulated activity of pathogenic SAMD9/SAMD9L variants can be modulated by the poxviral host range factors M062, C7 and K1 in a co-expression system. We established that the virally encoded proteins retain interactions with select SAMD9/SAMD9L missense GoF variants. Furthermore, expression of M062, C7 and K1 could principally ameliorate the translation-inhibiting and growth-restrictive effect instigated by ectopically expressed SAMD9/SAMD9L GoF variants, yet with differences in potency. K1 displayed the greatest potency and almost completely restored cellular proliferation and translation in cells co-expressing SAMD9/SAMD9L GoF variants. However, neither of the viral proteins tested could antagonize a truncated SAMD9L variant associated with severe autoinflammation. Our study demonstrates that pathogenic SAMD9/SAMD9L missense variants can principally be targeted through molecular interactions, opening an opportunity for therapeutic modulation of their activity. Moreover, it provides novel insights into the complex intramolecular regulation of SAMD9/SAMD9L activity.
Collapse
Affiliation(s)
- Stine Gahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118, Kiel, Germany
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Kiel University, D-24098, Kiel, Germany
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Kiel University & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5021, Bergen, Norway
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118, Kiel, Germany.
| |
Collapse
|
3
|
Hernandez-Beeftink T, Guillen-Guio B, Lorenzo-Salazar JM, Corrales A, Suarez-Pajes E, Feng R, Rubio-Rodríguez LA, Paynton ML, Cruz R, García-Laorden MI, Prieto-González M, Rodríguez-Pérez A, Carriedo D, Blanco J, Ambrós A, González-Higueras E, Espinosa E, Muriel A, Tamayo E, Martin MM, Lorente L, Domínguez D, de Lorenzo AG, Giannini HM, Reilly JP, Jones TK, Añón JM, Soro M, Carracedo Á, Wain LV, Meyer NJ, Villar J, Flores C. A genome-wide association study of survival in patients with sepsis. Crit Care 2022; 26:341. [PMID: 36335405 PMCID: PMC9637317 DOI: 10.1186/s13054-022-04208-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Sepsis is a severe systemic inflammatory response to infections that is accompanied by organ dysfunction and has a high mortality rate in adult intensive care units. Most genetic studies have identified gene variants associated with development and outcomes of sepsis focusing on biological candidates. We conducted the first genome-wide association study (GWAS) of 28-day survival in adult patients with sepsis. METHODS This study was conducted in two stages. The first stage was performed on 687 European sepsis patients from the GEN-SEP network and 7.5 million imputed variants. Association testing was conducted with Cox regression models, adjusting by sex, age, and the main principal components of genetic variation. A second stage focusing on the prioritized genetic variants was performed on 2,063 ICU sepsis patients (1362 European Americans and 701 African-Americans) from the MESSI study. A meta-analysis of results from the two stages was conducted and significance was established at p < 5.0 × 10-8. Whole-blood transcriptomic, functional annotations, and sensitivity analyses were evaluated on the identified genes and variants. FINDINGS We identified three independent low-frequency variants associated with reduced 28-day sepsis survival, including a missense variant in SAMD9 (hazard ratio [95% confidence interval] = 1.64 [1.37-6.78], p = 4.92 × 10-8). SAMD9 encodes a possible mediator of the inflammatory response to tissue injury. INTERPRETATION We performed the first GWAS of 28-day sepsis survival and identified novel variants associated with reduced survival. Larger sample size studies are needed to better assess the genetic effects in sepsis survival and to validate the findings.
Collapse
Affiliation(s)
- Tamara Hernandez-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario S/N, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario S/N, Santa Cruz de Tenerife, Spain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario S/N, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario S/N, Santa Cruz de Tenerife, Spain
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Megan L Paynton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Raquel Cruz
- Genomic Medicine Group, Biomedical Research Center of Rare Diseases (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Isabel García-Laorden
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Aurelio Rodríguez-Pérez
- Department of Anesthesiology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Complejo Hospitalario Universitario de León, León, Spain
| | - Jesús Blanco
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Alfonso Ambrós
- Intensive Care Unit, Hospital General de Ciudad Real, Ciudad Real, Spain
| | | | - Elena Espinosa
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Arturo Muriel
- Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Eduardo Tamayo
- CIBER de Enfermedades Infecciosas, Department of Anesthesiology and Resuscitation, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - María M Martin
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - David Domínguez
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Heather M Giannini
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - José M Añón
- Intensive Care Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Marina Soro
- Department of Anesthesiology, Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Ángel Carracedo
- Genomic Medicine Group, Biomedical Research Center of Rare Diseases (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
- Genomic Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Foundation of Health Research Institute of Santiago de Compostela (FIDIS), SERGAS, Santiago de Compostela, Spain
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester Respiratory Biomedical Research, Centre, National Institute for Health Research, Glenfield Hospital, Leicester, UK
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario S/N, Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
4
|
Jung M. Inflammation fuels bone marrow exhaustion caused by Samd9l mutation. J Clin Invest 2022; 132:164136. [PMID: 36317635 PMCID: PMC9621124 DOI: 10.1172/jci164136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sterile α motif domain-containing 9 (SAMD9) and SAMD9-like (SAMD9L) syndromes are inherited bone marrow failure syndromes known for their frequent development of myelodysplastic syndrome with monosomy 7. In this issue of the JCI, Abdelhamed, Thomas, et al. report a mouse model with a hematopoietic cell-specific heterozygous Samd9l mutation knockin. This mouse model resembles human disease in many ways, including bone marrow failure and the nonrandom loss of the mutant allele. Samd9l-mutant hematopoietic stem progenitor cells showed reduced fitness at baseline, which was further exacerbated by inflammation. TGF-β hyperactivation was found to underlie reduced fitness, which was partially rescued by a TGF-β inhibitor. These findings illustrate the potential role of TGF-β inhibitors in the treatment of SAMD9/SAMD9L syndromes.
Collapse
|
5
|
Conrad SJ, Raza T, Peterson EA, Liem J, Connor R, Nounamo B, Cannon M, Liu J. Myxoma virus lacking the host range determinant M062 stimulates cGAS-dependent type 1 interferon response and unique transcriptomic changes in human monocytes/macrophages. PLoS Pathog 2022; 18:e1010316. [PMID: 36103568 PMCID: PMC9473615 DOI: 10.1371/journal.ppat.1010316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The evolutionarily successful poxviruses possess effective and diverse strategies to circumvent or overcome host defense mechanisms. Poxviruses encode many immunoregulatory proteins to evade host immunity to establish a productive infection and have unique means of inhibiting DNA sensing-dependent type 1 interferon (IFN-I) responses, a necessity given their dsDNA genome and exclusively cytoplasmic life cycle. We found that the key DNA sensing inhibition by poxvirus infection was dominant during the early stage of poxvirus infection before DNA replication. In an effort to identify the poxvirus gene products which subdue the antiviral proinflammatory responses (e.g., IFN-I response), we investigated the function of one early gene that is the known host range determinant from the highly conserved poxvirus host range C7L superfamily, myxoma virus (MYXV) M062. Host range factors are unique features of poxviruses that determine the species and cell type tropism. Almost all sequenced mammalian poxviruses retain at least one homologue of the poxvirus host range C7L superfamily. In MYXV, a rabbit-specific poxvirus, the dominant and broad-spectrum host range determinant of the C7L superfamily is the M062R gene. The M062R gene product is essential for MYXV infection in almost all cells tested from different mammalian species and specifically inhibits the function of host Sterile αMotif Domain-containing 9 (SAMD9), as M062R-null (ΔM062R) MYXV causes abortive infection in a SAMD9-dependent manner. In this study we investigated the immunostimulatory property of the ΔM062R. We found that the replication-defective ΔM062R activated host DNA sensing pathway during infection in a cGAS-dependent fashion and that knocking down SAMD9 expression attenuated proinflammatory responses. Moreover, transcriptomic analyses showed a unique feature of the host gene expression landscape that is different from the dsDNA alone-stimulated inflammatory state. This study establishes a link between the anti-neoplastic function of SAMD9 and the regulation of innate immune responses. Poxviruses encode a group of genes called host range determinants to maintain or expand their host tropism. The mechanism by which many viral host range factors function remains elusive. Some host range factors possess immunoregulatory functions responsible for evading or subduing host immune defense mechanisms. Most known immunoregulatory proteins encoded by poxviruses are dispensable for viral replication in vitro. The uniqueness of MYXV M062R is that it is essential for viral infection in vitro and belongs to one of the most conserved poxvirus host range families, the C7L superfamily. There is one known host target of the MYXV M062 protein, SAMD9. SAMD9 is constitutively expressed in mammalian cells and exclusively present in the cytoplasm with an anti-neoplastic function. Humans with deleterious mutations in SAMD9 present disease that ranges from lethality at a young age to a predisposition to myelodysplastic syndromes (MDS) that often require bone marrow transplantation. More importantly, SAMD9 serves as an important antiviral intrinsic molecule to many viruses. The cellular function of SAMD9 remains unclear mostly due to the difficulty of studying this protein, i.e., its large size, long half-life, and its constitutive expression in most cells. In this study we used M062R-null MYXV as a tool to study SAMD9 function and report a functional link between SAMD9 and the regulation of the proinflammatory responses triggered by cGAS-dependent DNA sensing.
Collapse
Affiliation(s)
- Steven J. Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Tahseen Raza
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Erich A. Peterson
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jason Liem
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Richard Connor
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Martin Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Center of Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Peng S, Meng X, Zhang F, Pathak PK, Chaturvedi J, Coronado J, Morales M, Mao Y, Qian SB, Deng J, Xiang Y. Structure and function of an effector domain in antiviral factors and tumor suppressors SAMD9 and SAMD9L. Proc Natl Acad Sci U S A 2022; 119:e2116550119. [PMID: 35046037 PMCID: PMC8795524 DOI: 10.1073/pnas.2116550119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023] Open
Abstract
SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Jaime Coronado
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Marisol Morales
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078;
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
| |
Collapse
|
7
|
Maulding ND, Seiler S, Pearson A, Kreusser N, Stuart JM. Dual RNA-Seq analysis of SARS-CoV-2 correlates specific human transcriptional response pathways directly to viral expression. Sci Rep 2022; 12:1329. [PMID: 35079083 PMCID: PMC8789814 DOI: 10.1038/s41598-022-05342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.
Collapse
Affiliation(s)
- Nathan D Maulding
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Spencer Seiler
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Alexander Pearson
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Nicholas Kreusser
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua M Stuart
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
8
|
Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, Noellke P, Dworzak M, Starý J, Locatelli F, Masetti R, Schmugge M, De Moerloose B, Catala A, Kállay K, Turkiewicz D, Hasle H, Buechner J, Jahnukainen K, Ussowicz M, Polychronopoulou S, Smith OP, Fabri O, Barzilai S, de Haas V, Baumann I, Schwarz-Furlan S, Niewisch MR, Sauer MG, Burkhardt B, Lang P, Bader P, Beier R, Müller I, Albert MH, Meisel R, Schulz A, Cario G, Panda PK, Wehrle J, Hirabayashi S, Derecka M, Durruthy-Durruthy R, Göhring G, Yoshimi-Noellke A, Ku M, Lebrecht D, Erlacher M, Flotho C, Strahm B, Niemeyer CM, Wlodarski MW. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med 2021; 27:1806-1817. [PMID: 34621053 PMCID: PMC9330547 DOI: 10.1038/s41591-021-01511-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Victor B Pastor
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charnise Goodings
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca K Voss
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emilia J Kozyra
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Amina Szvetnik
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Noellke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dworzak
- Department of Pediatrics, St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Jan Starý
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Riccardo Masetti
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Barbara De Moerloose
- Department of Paediatric Haematology-Oncology, Ghent University Hospital Ghent, Ghent, Belgium
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dominik Turkiewicz
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Kirsi Jahnukainen
- Division of Hematology-Oncology and SCT Children's Hospital, University of Helsinki and Helsinki University Hospital, Hus, Finland
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Owen P Smith
- Department of Pediatric Haematology/Oncology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Oksana Fabri
- Department. of Haematology and Transfusiology, National Institute of Children's Diseases Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Shlomit Barzilai
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valerie de Haas
- Dutch Childhood Oncology Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Irith Baumann
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Stephan Schwarz-Furlan
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Marena R Niewisch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Peter Lang
- Department of Hematology/Oncology and General Pediatrics, Children's University Hospital, University of Tübingen, Tübingen, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Rita Beier
- University Hospital Essen, Pediatric Haematology and Oncology, Essen, Germany
| | - Ingo Müller
- Division of Pediatric Hematology and Oncology, Clinic of Pedatric Hematology and Oncology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Division of Pediatric Stem Cell Therapy, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Pritam K Panda
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Digitalization in Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shinsuke Hirabayashi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Derecka
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ayami Yoshimi-Noellke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Lebrecht
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Nagamachi A, Kanai A, Nakamura M, Okuda H, Yokoyama A, Shinriki S, Matsui H, Inaba T. Multiorgan failure with abnormal receptor metabolism in mice mimicking Samd9/9L syndromes. J Clin Invest 2021; 131:140147. [PMID: 33373325 DOI: 10.1172/jci140147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant sterile α motif domain containing 9 (Samd9) and Samd9L (Samd9/9L) syndromes are a large subgroup of currently established inherited bone marrow failure syndromes that includes myelodysplasia, infection, growth restriction, adrenal hypoplasia, genital phenotypes, and enteropathy (MIRAGE), ataxia pancytopenia, and familial monosomy 7 syndromes. Samd9/9L genes are located in tandem on chromosome 7 and have been known to be the genes responsible for myeloid malignancies associated with monosomy 7. Additionally, as IFN-inducible genes, Samd9/9L are crucial for protection against viruses. Samd9/9L syndromes are caused by gain-of-function mutations and develop into infantile myelodysplastic syndromes associated with monosomy 7 (MDS/-7) at extraordinarily high frequencies. We generated mice expressing Samd9LD764N, which mimic MIRAGE syndrome, presenting with growth retardation, a short life, bone marrow failure, and multiorgan degeneration. In hematopoietic cells, Samd9LD764N downregulates the endocytosis of transferrin and c-Kit, resulting in a rare cause of anemia and a low bone marrow reconstitutive potential that ultimately causes MDS/-7. In contrast, in nonhematopoietic cells we tested, Samd9LD764N upregulated the endocytosis of EGFR by Ship2 phosphatase translocation to the cytomembrane and activated lysosomes, resulting in the reduced expression of surface receptors and signaling. Thus, Samd9/9L is a downstream regulator of IFN that controls receptor metabolism, with constitutive activation leading to multiorgan dysfunction.
Collapse
Affiliation(s)
- Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Nakamura
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Allenspach EJ, Soveg F, Finn LS, So L, Gorman JA, Rosen AB, Skoda-Smith S, Wheeler MM, Barrow KA, Rich LM, Debley JS, Bamshad MJ, Nickerson DA, Savan R, Torgerson TR, Rawlings DJ. Germline SAMD9L truncation variants trigger global translational repression. J Exp Med 2021; 218:e20201195. [PMID: 33724365 PMCID: PMC7970252 DOI: 10.1084/jem.20201195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
SAMD9L is an interferon-induced tumor suppressor implicated in a spectrum of multisystem disorders, including risk for myeloid malignancies and immune deficiency. We identified a heterozygous de novo frameshift variant in SAMD9L in an infant with B cell aplasia and clinical autoinflammatory features who died from respiratory failure with chronic rhinovirus infection. Autopsy demonstrated absent bone marrow and peripheral B cells as well as selective loss of Langerhans and Purkinje cells. The frameshift variant led to expression of a truncated protein with interferon treatment. This protein exhibited a gain-of-function phenotype, resulting in interference in global protein synthesis via inhibition of translational elongation. Using a mutational scan, we identified a region within SAMD9L where stop-gain variants trigger a similar translational arrest. SAMD9L variants that globally suppress translation had no effect or increased mRNA transcription. The complex-reported phenotype likely reflects lineage-dominant sensitivities to this translation block. Taken together, our findings indicate that interferon-triggered SAMD9L gain-of-function variants globally suppress translation.
Collapse
Affiliation(s)
- Eric J. Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Frank Soveg
- Department of Immunology, University of Washington, Seattle, WA
| | - Laura S. Finn
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA
| | - Lomon So
- Department of Immunology, University of Washington, Seattle, WA
- Division of Immunology, Benaroya Research Institute, Seattle, WA
| | - Jacquelyn A. Gorman
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Aaron B.I. Rosen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | | | | | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA
- Genome Sciences, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Deborah A. Nickerson
- Genome Sciences, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA
| | | | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Wang K, Zhang Z, Meng D, Li J. Investigating genetic drivers of juvenile dermatomyositis pathogenesis using bioinformatics methods. J Dermatol 2021; 48:1007-1020. [PMID: 33891717 DOI: 10.1111/1346-8138.15856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Juvenile dermatomyositis (JDM) is a chronic autoimmune disease. The pathogenic mechanisms remain ill-defined. The purpose of this study was to identify key genes related to JDM. Microarray datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEG) were identified. Then, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and protein-protein interaction (PPI) network were carried out. In addition, the hub genes were selected by cytoHubba. The expression profile and diagnostic capacity (receiver-operator curve [ROC]) of interested hub genes were verified. Gene set enrichment analysis (GSEA) was also carried out. Moreover, the signature of hub genes was then used as a search query to explore the Connectivity Map (CMAP). A total of 128 DEG were identified. The enriched functions and pathways of the DEG include response to virus, negative regulation of cell migration, cadmium ion transmembrane transport, defense response to Gram-negative bacterium, positive regulation of megakaryocyte differentiation, and negative regulation of angiogenesis. Twenty-one hub genes were identified. The expression levels of the interested genes were also confirmed. ROC analysis confirmed that the expression of these genes can distinguish JDM from controls. GSEA showed that these genes are mainly related to "inflammatory response", "complement", "interferon-α response", "IL6/JAK/STAT3 signaling", "TGF-β signaling", "IL2/STAT5 signaling" and "TNF-α signaling via NF-κB". The CMAP research found some compounds with the potential to counteract the effects of the dysregulated molecular signature in JDM. In this study, bioinformatics methods were used to identify DEG, which helps us understand the molecular mechanisms of JDM and provide candidate targets for diagnosis and treatment of JDM.
Collapse
Affiliation(s)
- Kai Wang
- Department of Rheumatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhongyuan Zhang
- Department of Rheumatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Deqian Meng
- Department of Rheumatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ju Li
- Department of Rheumatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
12
|
Inaba T, Nagamachi A. Revertant somatic mosaicism as a cause of cancer. Cancer Sci 2021; 112:1383-1389. [PMID: 33583097 PMCID: PMC8019205 DOI: 10.1111/cas.14852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Revertant (somatic) mosaicism is a spontaneous correction of a causative mutation in patients with congenital diseases. A relatively frequent event, revertant mosaicism may bring favorable outcomes that ameliorate disorders, and is therefore called “natural gene therapy.” However, it has been revealed recently that “overcorrection” of inherited bone marrow failure in patients with sterile alpha motif domain containing 9 (SAMD9)/9L syndromes by revertant mosaicism induces myelodysplastic syndrome (MDS) with monosomy 7 that occasionally proceeds to acute myelogenous leukemia (AML). In this review, we interpret very complex mechanisms underlying MDS/AML in patients with SAMD9/9L syndromes. This includes multiple myeloid tumor suppressors on the long arm of chromosome 7, all of which act in a haploinsufficient fashion, and a difference in sensitivity to interferon between cells carrying a mutation and revertants. Overcorrection of mutants by somatic mosaicism is likely a novel mechanism in carcinogenesis.
Collapse
Affiliation(s)
- Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Goodnow CC. COVID-19, varying genetic resistance to viral disease and immune tolerance checkpoints. Immunol Cell Biol 2020; 99:177-191. [PMID: 33113212 PMCID: PMC7894315 DOI: 10.1111/imcb.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is a zoonosis like most of the great plagues sculpting human history, from smallpox to pandemic influenza and human immunodeficiency virus. When viruses jump into a new species the outcome of infection ranges from asymptomatic to lethal, historically ascribed to “genetic resistance to viral disease.” People have exploited these differences for good and bad, for developing vaccines from cowpox and horsepox virus, controlling rabbit plagues with myxoma virus and introducing smallpox during colonization of America and Australia. Differences in resistance to viral disease are at the core of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) crisis, yet our understanding of the mechanisms in any interspecies leap falls short of the mark. Here I review how the two key parameters of viral disease are countered by fundamentally different genetic mechanisms for resistance: (1) virus transmission, countered primarily by activation of innate and adaptive immune responses; and (2) pathology, countered primarily by tolerance checkpoints to limit innate and adaptive immune responses. I discuss tolerance thresholds and the role of CD8 T cells to limit pathological immune responses, the problems posed by tolerant superspreaders and the signature coronavirus evasion strategy of eliciting only short‐lived neutralizing antibody responses. Pinpointing and targeting the mechanisms responsible for varying pathology and short‐lived antibody were beyond reach in previous zoonoses, but this time we are armed with genomic technologies and more knowledge of immune checkpoint genes. These known unknowns must now be tackled to solve the current COVID‐19 crisis and the inevitable zoonoses to follow.
Collapse
Affiliation(s)
- Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Riad S, Xiang Y, AlDaif B, Mercer AA, Fleming SB. Rescue of a Vaccinia Virus Mutant Lacking IFN Resistance Genes K1L and C7L by the Parapoxvirus Orf Virus. Front Microbiol 2020; 11:1797. [PMID: 32903701 PMCID: PMC7438785 DOI: 10.3389/fmicb.2020.01797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 interferons induce the upregulation of hundreds of interferon-stimulated genes (ISGs) that combat viral replication. The parapoxvirus orf virus (ORFV) induces acute pustular skin lesions in sheep and goats and can reinfect its host, however, little is known of its ability to resist IFN. Vaccinia virus (VACV) encodes a number of factors that modulate the IFN response including the host-range genes C7L and K1L. A recombinant VACV-Western Reserve (WR) strain in which the K1L and C7L genes have been deleted does not replicate in cells treated with IFN-β nor in HeLa cells in which the IFN response is constitutive and is inhibited at the level of intermediate gene expression. Furthermore C7L is conserved in almost all poxviruses. We provide evidence that shows that although ORFV is more sensitive to IFN-β compared with VACV, and lacks homologues of KIL and C7L, it nevertheless has the ability to rescue a VACV KIL- C7L- gfp+ mutant in which gfp is expressed from a late promoter. Co-infection of HeLa cells with the mutant and ORFV demonstrated that ORFV was able to overcome the block in translation of intermediate transcripts in the mutant virus, allowing it to progress to late gene expression and new viral particles. Our findings strongly suggest that ORFV encodes a factor(s) that, although different in structure to C7L or KIL, targets an anti-viral cellular mechanism that is a highly potent at killing poxviruses.
Collapse
Affiliation(s)
- Sherief Riad
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Basheer AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol 2020; 33:101197. [PMID: 33038986 PMCID: PMC7388796 DOI: 10.1016/j.beha.2020.101197] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Collapse
|
17
|
Zhang F, Meng X, Townsend MB, Satheshkumar PS, Xiang Y. Identification of CP77 as the Third Orthopoxvirus SAMD9 and SAMD9L Inhibitor with Unique Specificity for a Rodent SAMD9L. J Virol 2019; 93:e00225-19. [PMID: 30918078 PMCID: PMC6613757 DOI: 10.1128/jvi.00225-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are nonpermissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse SAMD9&L, but neither can bind chSAMD9L. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. In contrast to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs to antagonize chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that a species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9&L inhibitors with different specificities to overcome this barrier.IMPORTANCE Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, suggesting that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9&L, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9&L inhibitors with different specificities. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9&L inhibitors with different specificities.
Collapse
Affiliation(s)
- Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Michael B Townsend
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Human Host Range Restriction of the Vaccinia Virus C7/K1 Double Deletion Mutant Is Mediated by an Atypical Mode of Translation Inhibition. J Virol 2018; 92:JVI.01329-18. [PMID: 30209174 DOI: 10.1128/jvi.01329-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Replication of vaccinia virus in human cells depends on the viral C7 or K1 protein. A previous human genome-wide short interfering RNA (siRNA) screen with a C7/K1 double deletion mutant revealed SAMD9 as a principal host range restriction factor along with additional candidates, including WDR6 and FTSJ1. To compare their abilities to restrict replication, the cellular genes were individually inactivated by CRISPR/Cas9 mutagenesis. The C7/K1 deletion mutant exhibited enhanced replication in each knockout (KO) cell line but reached wild-type levels only in SAMD9 KO cells. SAMD9 was not depleted in either WDR6 or FTSJ1 KO cells, suggesting less efficient alternative rescue mechanisms. Using the SAMD9 KO cells as controls, we verified a specific block in host and viral intermediate and late protein synthesis in HeLa cells and demonstrated that the inhibition could be triggered by events preceding viral DNA replication. Inhibition of cap-dependent and -independent protein synthesis occurred primarily at the translational level, as supported by DNA and mRNA transfection experiments. Concurrent with collapse of polyribosomes, viral mRNA was predominantly in 80S and lighter ribonucleoprotein fractions. We confirmed the accumulation of cytoplasmic granules in HeLa cells infected with the C7/K1 deletion mutant and further showed that viral mRNA was sequestered with SAMD9. RNA granules were still detected in G3BP KO U2OS cells, which remained nonpermissive for the C7/K1 deletion mutant. Inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral mRNA, and failure of PKR, RNase L, or G3BP KO cells to restore protein synthesis support an unusual mechanism of host restriction.IMPORTANCE A dynamic relationship exists between viruses and their hosts in which each ostensibly attempts to exploit the other's vulnerabilities. A window is opened into the established condition, which evolved over millennia, if loss-of-function mutations occur in either the virus or host. Thus, the inability of viral host range mutants to replicate in specific cells can be overcome by identifying and inactivating the opposing cellular gene. Here, we investigated a C7/K1 host range mutant of vaccinia virus in which the cellular gene SAMD9 serves as the principal host restriction factor. Host restriction was triggered early in infection and manifested as a block in translation of viral mRNAs. Features of the block include inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral RNA, and inability to overcome the inhibition by inactivation of protein kinase R, ribonuclease L, or G3 binding proteins, suggesting a novel mechanism of host restriction.
Collapse
|
19
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2018; 143:507-527. [PMID: 30075154 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Mekhedov SL, Makarova KS, Koonin EV. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biol Direct 2017; 12:13. [PMID: 28545555 PMCID: PMC5445408 DOI: 10.1186/s13062-017-0185-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023] Open
Abstract
We report a comprehensive computational dissection of the domain architecture of the SAMD9 family proteins that are involved in antivirus and antitumor response in humans. We show that the SAMD9 protein family is represented in most animals and also, unexpectedly, in bacteria, in particular actinomycetes. From the N to C terminus, the core SAMD9 family architecture includes DNA/RNA-binding AlbA domain, a variant Sir2-like domain, a STAND-like P-loop NTPase, an array of TPR repeats and an OB-fold domain with predicted RNA-binding properties. Vertebrate SAMD9 family proteins contain the eponymous SAM domain capable of polymerization, whereas some family members from other animals instead contain homotypic adaptor domains of the DEATH superfamily, known as dedicated components of apoptosis networks. Such complex domain architecture is reminiscent of the STAND superfamily NTPases that are involved in various signaling processes, including programmed cell death, in both eukaryotes and prokaryotes. These findings suggest that SAMD9 is a hub of a novel, evolutionarily conserved defense network that remains to be characterized. REVIEWERS This article was reviewed by Igor B. Zhulin and Mensur Dlakic.
Collapse
Affiliation(s)
- Sergei L Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
21
|
Abstract
Rapidly evolving viral strains leading to epidemics and pandemics necessitates quick diagnostics and treatment to halt the progressive march of the disease. Optical biosensors like surface plasmon resonance (SPR) have emerged in recent times as a most reliable diagnostic device owing to their portability, reproducibility, sensitivity and specificity. SPR analyzes the kinetics of biomolecular interactions in a label-free manner. It has surpassed the conventional virus detection methods in its utility, particularly in medical diagnostics and healthcare. However, the requirement of high-end infrastructure setup and trained manpower are some of the roadblocks in realizing the true potential of SPR. This platform needs further improvisation in terms of simplicity, affordability and portability before it could be utilized in need-based remote areas of under-developed and developing countries with limited infrastructure.
Collapse
|