1
|
Rabelo V, Sanchez-Nuñez ML, Corrêa-Amorim LS, Kuhn RJ, Abreu PA, Paixão ICNP. In Silico Drug Repurposing Uncovered the Antiviral Potential of the Antiparasitic Drug Oxibendazole Against the Chikungunya Virus. ACS OMEGA 2024; 9:27632-27642. [PMID: 38947813 PMCID: PMC11209700 DOI: 10.1021/acsomega.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Chikungunya virus (CHIKV) has been reported in over 120 countries and is the causative agent of Chikungunya fever. The debilitating nature of this disease, which can persist months to years after acute infection, drastically impacts the quality of life of patients. Yet, specific antivirals are lacking for the treatment of this disease, which makes the search for new drugs necessary. In this context, the nsP2 protease emerges as an attractive therapeutic target, and drug repurposing strategies have proven to be valuable. Therefore, we combined in silico and in vitro methods to identify known drugs as potential CHIKV nsP2 protease inhibitors with antiviral properties within DrugBank. Herein, we developed a hybrid virtual screening pipeline comprising pharmacophore- and target-based screening, drug-like, and pharmaceutical filtering steps. Six virtual hits were obtained, and two of them, capecitabine (CPB) and oxibendazole (OBZ), were evaluated against CHIKV replication in Vero cells. CPB did not present antiviral activity, whereas OBZ inhibited the replication of two different strains of CHIKV, namely, 181-25 (Asian genotype) and BRA/RJ/18 (clinical isolate from ECSA genotype). OBZ showed potent antiviral activity against the CHIKV BRA/RJ/18 (EC50 = 11.4 μM) with a high selectivity index (>44). Analogs of OBZ (albendazole, fenbendazole, and mebendazole) were also evaluated, but none exhibited anti-CHIKV activity, and further, their stereoelectronic features were analyzed. Additionally, we observed that OBZ acts mainly at post-entry steps. Hence, our results support further in vivo studies to investigate the antiviral potential of OBZ, which offers a new alternative to fight CHIKV infections.
Collapse
Affiliation(s)
- Vitor
W. Rabelo
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| | - Maria Leonisa Sanchez-Nuñez
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| | - Leonardo S. Corrêa-Amorim
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
- Gerência
de Desenvolvimento Tecnológico, Instituto
Vital Brazil, Niterói, Rio de Janeiro 24230-410, Brazil
| | - Richard J. Kuhn
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paula A. Abreu
- Instituto
de Biodiversidade e Sustentabilidade (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 27965-045, Brazil
| | - Izabel C. N. P. Paixão
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
- Departamento
de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| |
Collapse
|
2
|
Cao Z, Ling X, Haseeb A, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Zhong J, Sun Y, Sun N, Li H. Analysis of the anti-PCV2 mechanism of Lactobacillus acidophilus based on non-target metabolomics and high-throughput molecular docking. Front Microbiol 2024; 15:1416235. [PMID: 38860222 PMCID: PMC11163031 DOI: 10.3389/fmicb.2024.1416235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Our previous studies have revealed that L. acidophilus possesses inhibitory effects on PCV2 proliferation in vivo, although the underlying mechanisms remain elusive. Probiotics like L. acidophilus are known to exert antiviral through their metabolites. Therefore, in this study, non-targeted metabolomics was used to detect the changes in metabolites of L. acidophilus after 24 h of proliferation. Subsequently, high-throughput molecular docking was utilized to analyze the docking scores of these metabolites with PCV2 Cap and Rep, aiming to identify compounds with potential anti-PCV2 effects. The results demonstrated that 128 compounds such as Dl-lactate were significantly increased. The results of high-throughput molecular docking indicated that compounds such as ergocristine, and telmisartan formed complexes with Cap and Rep, suggesting their potential anti-PCV2 properties. Furthermore, compounds like vitamin C, exhibit pharmacological effects consistent with L. acidophilus adding credence to the idea that L. acidophilus may exert pharmacological effects through its metabolites. These results will provide a foundation for the study of L. acidophilus.
Collapse
Affiliation(s)
- Zhigang Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiaoya Ling
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Abdul Haseeb
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huizhen Yang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
3
|
Wang M, Wang L, Leng P, Guo J, Zhou H. Drugs targeting structural and nonstructural proteins of the chikungunya virus: A review. Int J Biol Macromol 2024; 262:129949. [PMID: 38311132 DOI: 10.1016/j.ijbiomac.2024.129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Chikungunya virus (CHIKV) is a single positive-stranded RNA virus of the Togaviridae family and Alphavirus genus, with a typical lipid bilayer envelope structure, and is the causative agent of human chikungunya fever (CHIKF). The U.S. Food and Drug Administration has recently approved the first chikungunya vaccine, Ixchiq; however, vaccination rates are low, and CHIKF is prevalent owing to its periodic outbreaks. Thus, developing effective anti-CHIKV drugs in clinical settings is imperative. Viral proteins encoded by the CHIKV genome play vital roles in all stages of infection, and developing therapeutic agents that target these CHIKV proteins is an effective strategy to improve CHIKF treatment efficacy and reduce mortality rates. Therefore, in the present review article, we aimed to investigate the basic structure, function, and replication cycle of CHIKV and comprehensively outline the current status and future advancements in anti-CHIKV drug development, specifically targeting nonstructural (ns) proteins, including nsP1, nsP2, nsP3, and nsP4 and structural proteins such as capsid (C), E3, E2, 6K, and E1.
Collapse
Affiliation(s)
- Mengke Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
4
|
Dash R, Ray A, Mamidi P, De S, Mohapatra TK, Moharana AK, Mukherjee T, Ghosh S, Chattopadhyay S, Subudhi BB, Chattopadhyay S. Salicylic Acid Conjugate of Telmisartan Inhibits Chikungunya Virus Infection and Inflammation. ACS OMEGA 2024; 9:146-156. [PMID: 38222605 PMCID: PMC10785651 DOI: 10.1021/acsomega.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/16/2024]
Abstract
There is no approved antiviral for the management of the Chikungunya virus (CHIKV). To develop an antiviral drug that can manage both CHIKV and arthritis induced by it, an ester conjugate of telmisartan (TM) and salicylic acid (SA) was synthesized (DDABT1). It showed higher potency (IC50 of 14.53 μM) and a good selectivity index [(SI = CC50/IC50) > 33]. On post-treatment of DDABT1, CHIKV infection was inhibited significantly by reducing CPE, viral titer, viral RNA, and viral proteins. Further, the time of addition experiment revealed >95% inhibition up to 4hpi indicating its interference predominantly in the early stages of infection. However, the late stages were also affected. This conjugate of SA and TM was found to increase the antiviral efficacy, and this might be partly attributed to modulating angiotensin II (Ang II) receptor type 1 (AT1). However, DDABT1 might have other modes of action that need further investigation. In addition, the in vivo experiments showed an LD50 of 5000 mg/kg in rats and was found to be more effective than TM, SA, or their combination against acute, subacute, and chronic inflammation/arthritis in vivo. In conclusion, DDABT1 showed remarkable anti-CHIKV properties and the ability to reduce inflammation and arthritis, making it a very good potential drug candidate that needs further experimental validation.
Collapse
Affiliation(s)
- Rudra
Narayan Dash
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Amrita Ray
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Prabhudutta Mamidi
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Department
of Microbiology (VRDL), AIIMS, Sijua, Patrapada, Bhubaneswar 751019,Odisha, India
| | - Saikat De
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Tapas K Mohapatra
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
- Nityananda
College of Pharmacy, Seragarh, Balasore, Odisha 756060, India
| | - Alok K Moharana
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
- School
of
Pharmacy, Arka Jain University, Mohanpur, Jharkhand 832108, India
| | - Tathagata Mukherjee
- School
of Biological Sciences, National Institute
of Science Education and Research, HBNI, 752050 Bhubaneswar, India
| | - Soumyajit Ghosh
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Subhasis Chattopadhyay
- School
of Biological Sciences, National Institute
of Science Education and Research, HBNI, 752050 Bhubaneswar, India
| | - Bharat B Subudhi
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Soma Chattopadhyay
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
| |
Collapse
|
5
|
de Mattos Oliveira L, Araújo JSC, de Andrade KVF, Guerrero Moureau ATG, Dos Santos Junior MC. Compounds from Natural Products Candidates to Drug for Chikungunya Virus Infection: A Systematic Review. Curr Drug Targets 2024; 25:635-648. [PMID: 38847165 DOI: 10.2174/0113894501304256240524052446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Chikungunya fever is a disease caused by infection with the Chikungunya virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Despite its self-limited character, more than 60% of patients have chronic recurrent arthralgia with debilitating pain that lasts for years. AIM The objective of this review was to gather and analyze evidence from the literature on potential therapeutic strategies with molecules from natural products for the treatment of Chikungunya fever. METHODS A search was performed for clinical trials, observational studies, in vitro or in vivo, without restriction of the year of publication or language in electronic databases (Medline/PubMed, EMBASE, Google Scholar, The Cochrane Library, LILACS (BVS), clinical trial registries (Clinical Trials.gov), digital libraries from CAPES theses and dissertations (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and conference abstracts. A quality assessment of the selected studies was performed using the SYRCLE, RoB2 and SciRAP tools. RESULTS 42 studies were included, which showed molecules with potential antiviral pharmacological activity or with activity in reducing the joint complications caused by CHIKV infection. CONCLUSIONS Among the molecules found in the survey of references, regarding the class of secondary metabolites, flavonoids stood out and for this reason, the molecules may be promising candidates for future clinical trials. Overall, evidence from in vitro studies was of acceptable quality; in vivo and intervention studies showed a high risk of bias, which is a limitation of these studies.
Collapse
Affiliation(s)
- Larissa de Mattos Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | - Janay Stefany Carneiro Araújo
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | - Kaio Vinicius Freitas de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | | | - Manoelito Coelho Dos Santos Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| |
Collapse
|
6
|
Ayusso GM, da Silva Sanches PR, Carvalho T, Santos IA, Martins DOS, Lima MLD, da Conceição PJP, Bittar C, Merits A, Cilli EM, Jardim ACG, Rahal P, Calmon MF. The Synthetic Peptide GA-Hecate and Its Analogs Inhibit Multiple Steps of the Chikungunya Virus Infection Cycle In Vitro. Pharmaceuticals (Basel) 2023; 16:1389. [PMID: 37895860 PMCID: PMC10610090 DOI: 10.3390/ph16101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Chikungunya virus (CHIKV) belongs to the Alphavirus genus and is responsible for significant outbreaks worldwide. Currently, there is no approved antiviral therapy against CHIKV. Bioactive peptides have great potential for new drug development. Here, we evaluated the antiviral activity of the synthetic peptide GA-Hecate and its analogs PSSct1905 and PSSct1910 against CHIKV infection. Initial screening showed that all three peptides inhibited the CHIKV replication cycle in baby hamster kidney fibroblast cells (BHK-21) and human hepatocarcinoma epithelial cells (Huh-7). GA-Hecate and its analog PSSct1905 were the most active, demonstrating suppression of viral infection by more than 91%. The analog PSSct1905 exhibited a protective effect in cells against CHIKV infection. We also observed that the analogs PSSct1905 and PSSct1910 affected CHIKV entry into both cell lines, inhibiting viral attachment and internalization. Finally, all tested compounds presented antiviral activity on the post-entry steps of CHIKV infection in all cells evaluated. In conclusion, this study highlights the potential of the peptide GA-Hecate and its analogs as novel anti-CHIKV compounds targeting different stages of the viral replication cycle, warranting the development of GA-Hecate-based compounds with broad antiviral activity.
Collapse
Affiliation(s)
- Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | | | - Tamara Carvalho
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Daniel Oliveira Silva Martins
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Maria Letícia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Pâmela Jóyce Previdelli da Conceição
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Cíntia Bittar
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia;
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-060, SP, Brazil;
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Marilia Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| |
Collapse
|
7
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
8
|
Srivastava P, Chaudhary S, Malhotra S, Varma B, Sunil S. Transcriptome analysis of human macrophages upon chikungunya virus (CHIKV) infection reveals regulation of distinct signaling and metabolic pathways during the early and late stages of infection. Heliyon 2023; 9:e17158. [PMID: 37408916 PMCID: PMC10318463 DOI: 10.1016/j.heliyon.2023.e17158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Macrophages are efficient reservoirs for viruses that enable the viruses to survive over a longer period of infection. Alphaviruses such as chikungunya virus (CHIKV) are known to persist in macrophages even after the acute febrile phase. The viral particles replicate in macrophages at a very low level over extended period of time and are localized in tissues that are often less accessible by treatment. Comprehensive experimental studies are thus needed to characterize the CHIKV-induced modulation of host genes in these myeloid lineage cells and in one such pursuit, we obtained global transcriptomes of a human macrophage cell line infected with CHIKV, over its early and late timepoints of infection. We analyzed the pathways, especially immune related, perturbed over these timepoints and observed several host factors to be differentially expressed in infected macrophages in a time-dependent manner. We postulate that these pathways may play crucial roles in the persistence of CHIKV in macrophages.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sakshi Chaudhary
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
9
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Rabelo VWH, de Palmer Paixão ICN, Abreu PA. Structural insights into the inhibition of the nsP2 protease from Chikungunya virus by molecular modeling approaches. J Mol Model 2022; 28:311. [PMID: 36097090 DOI: 10.1007/s00894-022-05316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of the Chikungunya fever which has spread worldwide. Clinically, this disease may lead to prolonged incapacitating joint pain that can compromise remarkably the patients' quality of life. However, there are no licensed vaccines or specific drugs to fight this infection yet, making the search for novel therapies an imperative need. In this scenario, the CHIKV nsP2 protease emerged as an attractive therapeutic target once this protein plays a pivotal role in viral replication and pathogenesis. Hence, we investigated the structural basis for the inhibition of this enzyme by using molecular docking and dynamics simulations. Compounds with inhibitory activities against CHIKV nsP2 protease determined experimentally were selected from the literature. Docking studies with a set of stereoisomers showed that trans isomers, but not cis ones, bound close to the catalytic dyad which may explain isomerism requirements to the enzyme's inhibition. Further, binding mode analyses of other known inhibitors revealed highly conserved contacts between inhibitors and enzyme residues like N1011, C1013, A1046, Y1079, N1082, W1084, L1205, and M1242. Molecular dynamics simulations reinforced the importance of some of these interactions and pointed to nonpolar interactions as the main forces for inhibitors' binding. Finally, we observed that true inhibitors exhibited lower structural fluctuation, higher ligand efficiency and did not induce significant changes in protein correlated motions. Collectively, our findings might allow discerning true inhibitors from false ones and can guide drug development efforts targeting the nsP2 protease to fight CHIKV infections in the future.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.,Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, 27965-045, Brazil.
| |
Collapse
|
11
|
MBZM-N-IBT, a Novel Small Molecule, Restricts Chikungunya Virus Infection by Targeting nsP2 Protease Activity In Vitro, In Vivo, and Ex Vivo. Antimicrob Agents Chemother 2022; 66:e0046322. [PMID: 35766508 PMCID: PMC9295557 DOI: 10.1128/aac.00463-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 μM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.
Collapse
|
12
|
Jiang H, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. A monoclonal antibody-based colloidal gold immunochromatographic strip for the analysis of novobiocin in beef and chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1053-1064. [PMID: 35486679 DOI: 10.1080/19440049.2022.2048089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, a monoclonal antibody (mAb) 1G5 against novobiocin with high sensitivity and specificity was prepared from a newly-designed hapten. According to the results of an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), the 50%-inhibitory concentration of the anti-novobiocin mAb was 6.9 ng/mL and the cross-reactivity was less than 0.1% to its analogues. Furthermore, a rapid colloidal gold immunochromatographic assay (ICA) was successfully developed for the determination of novobiocin in spiked samples. Two calibration curves were established respectively, for beef and chicken samples. The ICA results showed a visual colorimetric value of 50 ng/mL and a cut-off value of 300 ng/mL in beef samples. The ICA results of chicken samples were almost the same as that of beef. When quantitative detection was performed using a strip reader, the detection ranges for quantitative analysis in beef and chicken were 23.7-287.5 and 19.7-263.8 µg/kg respectively. Recoveries were between 82.7 and 95.3% for beef samples with the coefficient of variation (CV) ranging from 2.5 to 5.1%. Recoveries were in the range of 89.6-105.5% with the CV ranging from 2.9% to 6.3% for chicken samples. Importantly, these results from the ICA were highly consistent with the results obtained by LC-MS/MS. Therefore, this ICA could be used as an alternative means for the rapid determination of NOV in a large number of beef and chicken samples.
Collapse
Affiliation(s)
- Hongtao Jiang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
14
|
Repurposing drugs targeting epidemic viruses. Drug Discov Today 2022; 27:1874-1894. [DOI: 10.1016/j.drudis.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
15
|
Gray M, Guerrero-Arguero I, Solis-Leal A, Robison RA, Berges BK, Pickett BE. Chikungunya virus time course infection of human macrophages reveals intracellular signaling pathways relevant to repurposed therapeutics. PeerJ 2022; 10:e13090. [PMID: 35341048 PMCID: PMC8944338 DOI: 10.7717/peerj.13090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chikungunya virus (CHIKV) is a mosquito-borne pathogen, within the Alphavirus genus of the Togaviridae family, that causes ~1.1 million human infections annually. CHIKV uses Aedes albopictus and Aedes aegypti mosquitoes as insect vectors. Human infections can develop arthralgia and myalgia, which results in debilitating pain for weeks, months, and even years after acute infection. No therapeutic treatments or vaccines currently exist for many alphaviruses, including CHIKV. Targeting the phagocytosis of CHIKV by macrophages after mosquito transmission plays an important role in early productive viral infection in humans, and could reduce viral replication and/or symptoms. Methods To better characterize the transcriptional response of macrophages during early infection, we generated RNA-sequencing data from a CHIKV-infected human macrophage cell line at eight or 24 hours post-infection (hpi), together with mock-infected controls. We then calculated differential gene expression, enriched functional annotations, modulated intracellular signaling pathways, and predicted therapeutic drugs from these sequencing data. Results We observed 234 pathways were significantly affected 24 hpi, resulting in six potential pharmaceutical treatments to modulate the affected pathways. A subset of significant pathways at 24 hpi includes AGE-RAGE, Fc epsilon RI, Chronic myeloid leukemia, Fc gamma R-mediated phagocytosis, and Ras signaling. We found that the MAPK1 and MAPK3 proteins are shared among this subset of pathways and that Telmisartan and Dasatinib are strong candidates for repurposed small molecule therapeutics that target human processes. The results of our analysis can be further characterized in the wet lab to contribute to the development of host-based prophylactics and therapeutics.
Collapse
Affiliation(s)
- Madison Gray
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Israel Guerrero-Arguero
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- Population Health and Host-pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Antonio Solis-Leal
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- Population Health and Host-pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Richard A. Robison
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Bradford K. Berges
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Brett E. Pickett
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
16
|
Kumar S, Garg C, Kaushik S, Buttar HS, Garg M. Demystifying therapeutic potential of medicinal plants against chikungunya virus. Indian J Pharmacol 2021; 53:403-411. [PMID: 34854411 DOI: 10.4103/ijp.ijp_81_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viral infections are posing a great threat to humanity for the last few years. Among these, Chikungunya which is a mosquito-borne viral infection has produced enormous epidemics around the world after been rebounded. Although this infection shows a low mortality rate, patients suffer from fever, arthralgia, and maculopapular rashes, which reduce the quality of life for several weeks to years. The currently available treatments only provide symptomatic relief based on analgesics, antipyretics, and anti-inflammatory drugs which are nonspecific without satisfactory results. Medicinal plants are a widely accepted source of new molecules for the treatment of infectious diseases including viral infections. The scientific reports, primarily focusing on the anti-chikungunya activity of plant extracts, natural origin pure compounds, and their synthetic analog published from 2011 to 2021, were selected from PubMed, Google Scholar, and Scopus by using related keywords like anti-chikungunya plants, natural antivirals for Chikungunya. The present review decodes scientific reports on medicinal plants against chikungunya virus (CHIKV) infection and demystifies the potential phytoconstituents which reveals that the screening of flavonoids containing plants and phytochemicals showing efficacy against other arbovirus infections, may prove as a potential lead for drug development against CHIKV. The present article also outlines pathogenesis, clinical aspects, molecular virology, and diagnostic approaches of CHIKV infection.
Collapse
Affiliation(s)
- Sukender Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Samander Kaushik
- Center for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Telmisartan restricts Chikungunya virus infection in vitro and in vivo through the AT1/PPAR-γ/MAPKs pathways. Antimicrob Agents Chemother 2021; 66:e0148921. [PMID: 34748384 DOI: 10.1128/aac.01489-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as a global public health threat. The inflammatory pathways of RAS and PPAR-γ are usually involved in viral infections. Thus, Telmisartan (TM) with known capacity to block AT1 receptor and activate PPAR-γ, was investigated against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero, RAW 264.7 cells and hPBMCs) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (IC50 of 15.34-20.89μM in the Vero and RAW 264.7 cells respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of CHIKV life cycle with efficacy in both pre and post-treatment assay. Moreover, the agonist of AT1 receptor and antagonist of PPAR-γ increased CHIKV infection suggesting TM's anti-viral potential by modulating host factors. Besides, reduced activation of all major MAPKs, NF-κB (p65) and cytokines by TM through the inflammatory axis supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at the human equivalent dose, TM abrogated CHIKV infection and inflammation significantly leading to reduced clinical score and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in future for repurposing against CHIKV.
Collapse
|
18
|
Yao R, Ianevski A, Kainov D. Safe-in-Man Broad Spectrum Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:313-337. [PMID: 34258746 DOI: 10.1007/978-981-16-0267-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.
Collapse
Affiliation(s)
- Rouan Yao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Institute for Molecule Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
20
|
Eberle RJ, Olivier DS, Pacca CC, Avilla CMS, Nogueira ML, Amaral MS, Willbold D, Arni RK, Coronado MA. In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 2021; 16:e0246319. [PMID: 33661906 PMCID: PMC7932080 DOI: 10.1371/journal.pone.0246319] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection. The results described in our study demonstrate the inhibitory potential of two flavonoids derived from citrus plants: Hesperetin (HST) against NS2B/NS3pro of ZIKV and nsP2pro of CHIKV and, Hesperidin (HSD) against nsP2pro of CHIKV. The flavonoids are noncompetitive inhibitors and the determined IC50 values are in low µM range for HST against ZIKV NS2B/NS3pro (12.6 ± 1.3 µM) and against CHIKV nsP2pro (2.5 ± 0.4 µM). The IC50 for HSD against CHIKV nsP2pro was 7.1 ± 1.1 µM. The calculated ligand efficiencies for HST were > 0.3, which reflect its potential to be used as a lead compound. Docking and molecular dynamics simulations display the effect of HST and HSD on the protease 3D models of CHIKV and ZIKV. Conformational changes after ligand binding and their effect on the substrate-binding pocket of the proteases were investigated. Additionally, MTT assays demonstrated a very low cytotoxicity of both the molecules. Based on our results, we assume that HST comprise a chemical structure that serves as a starting point molecule to develop a potent inhibitor to combat CHIKV and ZIKV co-infections by inhibiting the virus proteases.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | | | - Carolina C. Pacca
- Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- FACERES Medical School, São José do Rio Preto, Brazil
| | - Clarita M. S. Avilla
- Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
| | - Mauricio L. Nogueira
- Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, Brazil
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, Jülich, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
| | - Monika A. Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|