1
|
Zhang F, Xu LD, Wu S, Wang B, Xu P, Huang YW. Deciphering the hepatitis E virus ORF1: Functional domains, protein processing, and patient-derived mutations. Virology 2024; 603:110350. [PMID: 39675187 DOI: 10.1016/j.virol.2024.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Hepatitis E virus (HEV) is a major cause of acute and chronic hepatitis in humans. The HEV open reading frames (ORF1) encodes a large non-structural protein essential for viral replication, which contains several functional domains, including helicase and RNA-dependent RNA polymerase. A confusing aspect is that, while RNA viruses typically encode large polyproteins that rely on their enzymatic activity for processing into functional units, the processing of the ORF1 protein and the mechanisms involved remain unclear. The ORF1 plays a pivotal role in the viral life cycle, thus mutations in this region, especially those occurring under environmental pressures such as during antiviral drug treatment, could significantly affect viral replication and survival. Here, we summarize the recent advances in the functional domains, processing, and mutations of ORF1. Gaining a deeper understanding of HEV biology, particularly focusing on ORF1, could facilitate the development of new strategies to control HEV infections.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ling-Dong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou, 310058, China
| | - Shiying Wu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Wang B, Subramaniam S, Tian D, Mahsoub HM, Heffron CL, Meng XJ. Phosphorylation of Ser711 residue in the hypervariable region of zoonotic genotype 3 hepatitis E virus is important for virus replication. mBio 2024; 15:e0263524. [PMID: 39377575 PMCID: PMC11559016 DOI: 10.1128/mbio.02635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatitis E virus (HEV) is distinct from other hepatotropic viruses because it is zoonotic. HEV-1 and HEV-2 exclusively infect humans, whereas HEV-3 and HEV-4 are zoonotic. However, the viral and/or host factors responsible for cross-species HEV transmission remain elusive. The hypervariable region (HVR) in HEV is extremely heterogenetic and is implicated in HEV adaptation. Here, we investigated the potential role of Serine phosphorylation in the HVR in HEV replication. We first analyzed HVR sequences across different HEV genotypes and identified a unique region at the N-terminus of the HVR, which is variable in the human-exclusive HEV genotypes but relatively conserved in zoonotic HEV genotypes. Using predictive tools, we identified four potential phosphorylation sites that are highly conserved in zoonotic HEV-3 and HEV-4 genomes but absent in human-exclusive HEV-1 strains. To explore the functional significance of these putative phosphorylation sites, we introduced mutations into the HEV-3 infectious clone and indicator replicon, replacing each Serine residue individually with alanine or aspartic acid, and assessed the impact of these substitutions on HEV-3 replication. We found that the phospho-blatant S711A mutant significantly reduced virus replication, whereas the phospho-mimetic S711D mutant modestly reduced virus replication. Conversely, mutations in the other three Serine residues did not significantly affect HEV-3 replication. Furthermore, we demonstrated that Ser711 phosphorylation did not alter host cell tropism of zoonotic HEV-3. In conclusion, our results showed that potential phosphorylation of the Ser711 residue significantly affects HEV-3 replication in vitro, providing new insights into the potential mechanisms of zoonotic HEV transmission.IMPORTANCEHEV is an important zoonotic pathogen, causing both acute and chronic hepatitis E and extrahepatic manifestation of diseases, such as neurological sequelae. The zoonotic HEV-3 is linked to chronic infection and neurological diseases. The specific viral and/or host factors facilitating cross-species HEV infection are unknown. The intrinsically disordered HVR in ORF1 is crucial for viral fitness and adaptation, both in vitro and in vivo. We hypothesized that phosphorylation of Serine residues in the HVR of zoonotic HEV by unknown host cellular kinases is associated with cross-species HEV transmission. In this study, we identified a conserved region within the HVR of zoonotic HEV strains but absent in the human-exclusive HEV-1 and HEV-2. We elucidated the important role of phosphorylation at the Ser711 residue in zoonotic HEV-3 replication, without altering the host cell tropism. These findings contribute to our understanding the mechanisms of cross-species HEV transmission.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Royet A, Ruedas R, Gargowitsch L, Gervais V, Habersetzer J, Pieri L, Ouldali M, Paternostre M, Hofmann I, Tubiana T, Fieulaine S, Bressanelli S. Nonstructural protein 4 of human norovirus self-assembles into various membrane-bridging multimers. J Biol Chem 2024; 300:107724. [PMID: 39214299 PMCID: PMC11439542 DOI: 10.1016/j.jbc.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Single-stranded, positive-sense RNA ((+)RNA) viruses replicate their genomes in virus-induced intracellular membrane compartments. (+)RNA viruses dedicate a significant part of their small genomes (a few thousands to a few tens of thousands of bases) to the generation of these compartments by encoding membrane-interacting proteins and/or protein domains. Noroviruses are a very diverse genus of (+)RNA viruses including human and animal pathogens. Human noroviruses are the major cause of acute gastroenteritis worldwide, with genogroup II genotype 4 (GII.4) noroviruses accounting for the vast majority of infections. Three viral proteins encoded in the N terminus of the viral replication polyprotein direct intracellular membrane rearrangements associated with norovirus replication. Of these three, nonstructural protein 4 (NS4) seems to be the most important, although its exact functions in replication organelle formation are unknown. Here, we produce, purify, and characterize GII.4 NS4. AlphaFold modeling combined with experimental data refines and corrects our previous crude structural model of NS4. Using simple artificial liposomes, we report an extensive characterization of the membrane properties of NS4. We find that NS4 self-assembles and thereby bridges liposomes together. Cryo-EM, NMR, and membrane flotation show formation of several distinct NS4 assemblies, at least two of them bridging pairs of membranes together in different fashions. Noroviruses belong to (+)RNA viruses whose replication compartment is extruded from the target endomembrane and generates double-membrane vesicles. Our data establish that the 21-kDa GII.4 human norovirus NS4 can, in the absence of any other factor, recapitulate in tubo several features, including membrane apposition, that occur in such processes.
Collapse
Affiliation(s)
- Adrien Royet
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rémi Ruedas
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France; Sanofi, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France; Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johann Habersetzer
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Maïté Paternostre
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ilse Hofmann
- Core Facility Antibodies, German Cancer Research Center, Heidelberg, Germany
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Ferrié M, Alexandre V, Montpellier C, Bouquet P, Tubiana T, Mézière L, Ankavay M, Bentaleb C, Dubuisson J, Bressanelli S, Aliouat-Denis CM, Rouillé Y, Cocquerel L. The AP-1 adaptor complex is essential for intracellular trafficking of the ORF2 capsid protein and assembly of Hepatitis E virus. Cell Mol Life Sci 2024; 81:335. [PMID: 39117755 PMCID: PMC11335258 DOI: 10.1007/s00018-024-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.
Collapse
Affiliation(s)
- Martin Ferrié
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Claire Montpellier
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, Lille, F-59000, France
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Léa Mézière
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Maliki Ankavay
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
- Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Cyrine Bentaleb
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Cécile-Marie Aliouat-Denis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France.
| |
Collapse
|
5
|
Nagoba BS, Rayate AS. Hepatitis E virus infections. World J Virol 2024; 13:90951. [PMID: 38984082 PMCID: PMC11229837 DOI: 10.5501/wjv.v13.i2.90951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/02/2024] [Accepted: 04/07/2024] [Indexed: 06/24/2024] Open
Abstract
Hepatitis E virus (HEV) infection is now endemic worldwide. Most patients with acute infection recover uneventfully. Outbreaks and sporadic cases, particularly in high-risk individuals are emerging increasingly. The patients with risk factors like pregnancy and pre-existing chronic liver disease, present with or progress rapidly to severe disease. Immuno-suppression in post-transplant patients is an additional risk factor. Standardized FDA-approved diagnostic tests are the need of the hour. Further studies are needed to establish guideline-based treatment regimen and outbreak preparedness for HEV to decrease global morbidity, mortality, and healthcare burden. Policies for screening donors and transplant cases are required.
Collapse
Affiliation(s)
- Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
6
|
Paronetto O, Allioux C, Diméglio C, Lobjois L, Jeanne N, Ranger N, Boineau J, Pucelle M, Demmou S, Abravanel F, Chapuy-Regaud S, Izopet J, Lhomme S. Characterization of virus‒host recombinant variants of the hepatitis E virus. J Virol 2024; 98:e0029524. [PMID: 38712945 PMCID: PMC11237545 DOI: 10.1128/jvi.00295-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.
Collapse
Affiliation(s)
- Olivia Paronetto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Claire Allioux
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Chloé Diméglio
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Lhorane Lobjois
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nicolas Jeanne
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Noémie Ranger
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Jérôme Boineau
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Mélanie Pucelle
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sofia Demmou
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Florence Abravanel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sabine Chapuy-Regaud
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Jacques Izopet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sébastien Lhomme
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| |
Collapse
|
7
|
León-Janampa N, Boennec N, Le Tilly O, Ereh S, Herbet G, Moreau A, Gatault P, Longuet H, Barbet C, Büchler M, Baron C, Gaudy-Graffin C, Brand D, Marlet J. Relevance of Tacrolimus Trough Concentration and Hepatitis E virus Genetic Changes in Kidney Transplant Recipients With Chronic Hepatitis E. Kidney Int Rep 2024; 9:1333-1342. [PMID: 38707810 PMCID: PMC11069011 DOI: 10.1016/j.ekir.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Hepatitis E virus (HEV) can cause chronic infection (≥3 months) and cirrhosis in immunocompromised patients, especially kidney transplant recipients. Low alanine aminotransferase (ALT) levels and high HEV intrahost diversity have previously been associated with evolution toward chronicity in these patients. We hypothesized that additional clinical and viral factors could be associated with the risk of chronic HEV infection. Methods We investigated a series of 27 kidney transplant recipients with HEV infection, including 20 patients with chronic hepatitis E. Results High tacrolimus trough concentration at diagnosis was the most relevant marker associated with chronic hepatitis E (9.2 vs. 6.4 ng/ml, P = 0.04). Most HEV genetic changes selected during HEV infection were compartmentalized between plasma and feces. Conclusion This compartmentalization highlights the diversity and complexity of HEV replication compartments. Tacrolimus trough concentration at diagnosis of HEV infection could allow an early identification of patients at high risk of chronic hepatitis E and guide treatment initiation.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Natacha Boennec
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | | | - Simon Ereh
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Gabriel Herbet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Philippe Gatault
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Hélène Longuet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christelle Barbet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Mathias Büchler
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christophe Baron
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| |
Collapse
|
8
|
Versini R, Sritharan S, Aykac Fas B, Tubiana T, Aimeur SZ, Henri J, Erard M, Nüsse O, Andreani J, Baaden M, Fuchs P, Galochkina T, Chatzigoulas A, Cournia Z, Santuz H, Sacquin-Mora S, Taly A. A Perspective on the Prospective Use of AI in Protein Structure Prediction. J Chem Inf Model 2024; 64:26-41. [PMID: 38124369 DOI: 10.1021/acs.jcim.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Raphaelle Versini
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sana Zineb Aimeur
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie, Computationnelle et Quantitative UMR 7238, Institut de Biologie Paris-Seine, 4 Place Jussieu, F-75005 Paris, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Patrick Fuchs
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
9
|
Buchanan FJT, Chen S, Harris M, Herod MR. The hepatitis E virus ORF1 hypervariable region confers partial cyclophilin dependency. J Gen Virol 2023; 104:001919. [PMID: 37942835 PMCID: PMC10768694 DOI: 10.1099/jgv.0.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.
Collapse
Affiliation(s)
- Frazer J. T. Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
León-Janampa N, Caballero-Posadas I, Barc C, Darrouzain F, Moreau A, Guinoiseau T, Gatault P, Fleurot I, Riou M, Pinard A, Pezant J, Rossignol C, Gaudy-Graffin C, Brand D, Marlet J. A pig model of chronic hepatitis E displaying persistent viremia and a downregulation of innate immune responses in the liver. Hepatol Commun 2023; 7:e0274. [PMID: 37938097 PMCID: PMC10635601 DOI: 10.1097/hc9.0000000000000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | | | - Céline Barc
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - François Darrouzain
- Department of Pharmacology and Toxicology, Tours University Hospital, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | - Thibault Guinoiseau
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Philippe Gatault
- Department of Nephrology and Transplantation, Tours University Hospital, Tours, France
- EA4245, University of Tours, Tours, France
| | | | - Mickaël Riou
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Anne Pinard
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Jérémy Pezant
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | | | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| |
Collapse
|
11
|
Fieulaine S, Tubiana T, Bressanelli S. Hepatitis E virus RNA replication polyprotein: taking structural biology seriously. Front Microbiol 2023; 14:1254741. [PMID: 37601361 PMCID: PMC10436323 DOI: 10.3389/fmicb.2023.1254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
12
|
Pierce DM, Buchanan FJT, Macrae FL, Mills JT, Cox A, Abualsaoud KM, Ward JC, Ariëns RAS, Harris M, Stonehouse NJ, Herod MR. Thrombin cleavage of the hepatitis E virus polyprotein at multiple conserved locations is required for genome replication. PLoS Pathog 2023; 19:e1011529. [PMID: 37478143 PMCID: PMC10395923 DOI: 10.1371/journal.ppat.1011529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
The genomes of positive-sense RNA viruses encode polyproteins that are essential for mediating viral replication. These viral polyproteins must undergo proteolysis (also termed polyprotein processing) to generate functional protein units. This proteolysis can be performed by virally-encoded proteases as well as host cellular proteases, and is generally believed to be a key step in regulating viral replication. Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis. The positive-sense RNA genome is translated to generate a polyprotein, termed pORF1, which is necessary and sufficient for viral genome replication. However, the mechanism of polyprotein processing in HEV remains to be determined. In this study, we aimed to understand processing of this polyprotein and its role in viral replication using a combination of in vitro translation experiments and HEV sub-genomic replicons. Our data suggest no evidence for a virally-encoded protease or auto-proteolytic activity, as in vitro translation predominantly generates unprocessed viral polyprotein precursors. However, seven cleavage sites within the polyprotein (suggested by bioinformatic analysis) are susceptible to the host cellular protease, thrombin. Using two sub-genomic replicon systems, we demonstrate that mutagenesis of these sites prevents replication, as does pharmacological inhibition of serine proteases including thrombin. Overall, our data supports a model where HEV uses host proteases to support replication and could have evolved to be independent of a virally-encoded protease for polyprotein processing.
Collapse
Affiliation(s)
- Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Frazer J T Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jake T Mills
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Abigail Cox
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Khadijah M Abualsaoud
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Department of Laboratory and Blood Bank, Al Mikhwah General Hospital, Al Mikhwah, Saudi Arabia
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Kumar A, Subramani C, Raj S, Ranjith-Kumar CT, Surjit M. Hepatitis E Virus Protease Inhibits the Activity of Eukaryotic Initiation Factor 2-Alpha Kinase 4 and Promotes Virus Survival. J Virol 2023; 97:e0034723. [PMID: 37199644 PMCID: PMC10308950 DOI: 10.1128/jvi.00347-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Multiple mechanisms exist in a cell to cope with stress. Four independent stress-sensing kinases constitute the integrated stress response machinery of the mammalian cell, and they sense the stress signals and act by phosphorylating the eukaryotic initiation factor 2α (eIF2α) to arrest cellular translation. Eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4) is one of the four kinases and is activated under conditions of amino acid starvation, UV radiation, or RNA virus infection, resulting in shutdown of global translation. An earlier study in our laboratory constructed the protein interaction network of the hepatitis E virus (HEV) and identified eIF2AK4 as a host interaction partner of the genotype 1 (g1) HEV protease (PCP). Here, we report that PCP's association with the eIF2AK4 results in inhibition of self-association and concomitant loss of kinase activity of eIF2AK4. Site-directed mutagenesis of the 53rd phenylalanine residue of PCP abolishes its interaction with the eIF2AK4. Further, a genetically engineered HEV-expressing F53A mutant PCP shows poor replication efficiency. Collectively, these data identify an additional property of the g1-HEV PCP protein, through which it helps the virus in antagonizing eIF2AK4-mediated phosphorylation of the eIF2α, thus contributing to uninterrupted synthesis of viral proteins in the infected cells. IMPORTANCE Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. It causes chronic infection in organ transplant patients. Although the disease is self-limiting in normal individuals, it is associated with high mortality (~30%) in pregnant women. In an earlier study, we identified the interaction between the genotype 1 HEV protease (PCP) and cellular eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4). Since eIF2AK4 is a sensor of the cellular integrated stress response machinery, we evaluated the significance of the interaction between PCP and eIF2AK4. Here, we show that PCP competitively associates with and interferes with self-association of the eIF2AK4, thereby inhibiting its kinase activity. Lack of eIF2AK4 activity prevents phosphorylation-mediated inactivation of the cellular eIF2α, which is essential for initiation of cap-dependent translation. Thus, PCP behaves as a proviral factor, promoting uninterrupted synthesis of viral proteins in infected cells, which is crucial for survival and proliferation of the virus.
Collapse
Affiliation(s)
- Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandru Subramani
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shivani Raj
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
14
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
15
|
Lanrezac A, Baaden M. UNILIPID, a Methodology for Energetically Accurate Prediction of Protein Insertion into Implicit Membranes of Arbitrary Shape. MEMBRANES 2023; 13:362. [PMID: 36984749 PMCID: PMC10054542 DOI: 10.3390/membranes13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The insertion of proteins into membranes is crucial for understanding their function in many biological processes. In this work, we present UNILIPID, a universal implicit lipid-protein description as a methodology for dealing with implicit membranes. UNILIPID is independent of the scale of representation and can be applied at the level of all atoms, coarse-grained particles down to the level of a single bead per amino acid. We provide example implementations for these scales and demonstrate the versatility of our approach by accurately reflecting the free energy of transfer for each amino acid. In addition to single membranes, we describe the analytical implementation of double membranes and show that UNILIPID is well suited for modeling at multiple scales. We generalize to membranes of arbitrary shape. With UNILIPID, we provide a methodological framework for a simple and general parameterization tuned to reproduce a selected reference hydrophobicity scale. The software we provide along with the methodological description is optimized for specific user features such as real-time response, live visual analysis, and virtual reality experiences.
Collapse
|