1
|
He F, Zhu C, Wu X, Yi L, Lin Z, Wen W, Zhu C, Tu J, Qian K, Li Q, Ma G, Li H, Wang F, Zhou X. Genomic surveillance reveals low-level circulation of two subtypes of genogroup C coxsackievirus A10 in Nanchang, Jiangxi Province, China, 2015-2023. Front Microbiol 2024; 15:1459917. [PMID: 39355427 PMCID: PMC11443423 DOI: 10.3389/fmicb.2024.1459917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction In recent years, coxsackievirus (CV) A10 has been associated with increasing sporadic hand, foot, and mouth disease (HFMD) cases and outbreaks globally. In addition to mild symptoms such as pharyngitis and herpangina, CVA10-related complications or even fatality can occur. Currently, systematic phylogenetic studies of CVA10 are limited. Methods In this study, we first explored the epidemiological and genetic characteristics of CVA10 in Nanchang, an inland southeastern city of China, based on the HFMD surveillance network from 2015-2023. Results Among 3429 enterovirus-positive cases, 110 (3.04%) were associated with CVA10, with a male-to-female ratio of 1.62. The median age of the CVA10 patients was 2.3 years (interquartile range, IQR 1.0-4.0), with 94.55% (104/110) of the patients aged less than 5 years. Phylogenetic analyses using the full-length VP1, 5'UTR, P1, P2, P3 sequences and near full-length genomes indicated that CVA10 strains (n = 57) isolated in Nanchang belonged to genogroup C; two strains identified in 2017 belonged to C1 subtypes clustered with strains from Vietnam, Madagascar, France and Spain; and the others belonged to C2 subtypes interdigitating with CVA10 isolates from mainland China, the United States and Australia. Through extensive analysis, we identified a rare F168Y mutation in epitope 4 of VP1 in a Madagascar strain of genogroup F and a Chinese strain of genogroup C. Based on Bayesian evolutionary analyses, the average nucleotide substitution rate for the VP1 gene of CV10 strains was 3.07×10-3 substitutions/site/year. The most recent common ancestor (tMRCA) of genogroup C was dated 1990.84, and the tMRCA of CVA10 strains from Nanchang was dated approximately 2003.16, similar to strains circulating in other regions of China, suggesting that the viruses were likely introduced and cryptically circulated in China before the establishment of the HFMD surveillance network. Recombination analysis indicated intertypic recombination of the Nanchang strain with the genogroup G strain in the 3D region. Discussion Given the shifting dominance of viral genotypes and frequent recombination events, the existing surveillance system needs to be regulated to enhance genomic surveillance efforts on a more diverse spectrum of genotypes in the future.
Collapse
Affiliation(s)
- Fenglan He
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Xuan Wu
- The Third Hospital of Nanchang, Nanchang, China
| | - Liu Yi
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ziqi Lin
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weijie Wen
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Children’s Hospital, Nanchang, China
| | - Junling Tu
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ke Qian
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Guangqiang Ma
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fang Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Wang J, Wu W, Wang W, Zhang J, Xiao J, Cai M, Guo J, Li R, Zhu S, Zhang W, Chen M, Teng Z. Seroprevalence of neutralizing antibodies against HFMD associated enteroviruses among healthy individuals in Shanghai, China, 2022. Virol Sin 2024; 39:694-698. [PMID: 38801978 PMCID: PMC11401468 DOI: 10.1016/j.virs.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Jiayu Wang
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Wencheng Wu
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Wei Wang
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jingyi Zhang
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jianwei Xiao
- Microbiology Department, Yangpu Municipal Center for Disease Control and Prevention, Shanghai, 200090, China
| | - Mingyi Cai
- Microbiology Department, Jing'an Municipal Center for Disease Control and Prevention, Shanghai, 200070, China
| | - Jiaying Guo
- Microbiology Department, Changning Municipal Center for Disease Control and Prevention, Shanghai, 200050, China
| | - Run Li
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wanju Zhang
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Min Chen
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zheng Teng
- Microbiology Department, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| |
Collapse
|
3
|
Lian H, Yi L, Qiu M, Li B, Sun L, Zeng H, Zeng B, Yang F, Yang H, Yang M, Xie C, Qu L, Lin H, Hu P, Xu S, Zeng H, Lu J. Genomic epidemiology of CVA10 in Guangdong, China, 2013-2021. Virol J 2024; 21:122. [PMID: 38816865 PMCID: PMC11140982 DOI: 10.1186/s12985-024-02389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.
Collapse
Affiliation(s)
- Huimin Lian
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Qiu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huiling Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutica University, Guangzhou, China
| | - Biao Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Haiyi Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Mingda Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Chunyan Xie
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Lin Qu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pengwei Hu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, China
| | - Hanri Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Jing Lu
- School of Public Health, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
4
|
Zhang QY, Li JQ, Li Q, Zhang Y, Zhang ZR, Li XD, Zhang HQ, Deng CL, Yang FX, Xu Y, Zhang B. Identification of fangchinoline as a broad-spectrum enterovirus inhibitor through reporter virus based high-content screening. Virol Sin 2024; 39:301-308. [PMID: 38452856 DOI: 10.1016/j.virs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Zhang
- University of Science and Technology of China, Department of Life Sciences and Medicine, Hefei, 230026, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng-Xia Yang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yi Xu
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China.
| | - Bo Zhang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
5
|
Shi Y, Liu Y, Wu Y, Hu S, Sun B. Molecular epidemiology and recombination of enterovirus D68 in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105512. [PMID: 37827347 DOI: 10.1016/j.meegid.2023.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Enterovirus D68 (EV-D68), a member of Enterovirus genus of the Picornaviridae family, mainly causes respiratory system-related diseases as well as neurological complications in some patients. At present, there is no effective vaccine or treatment for the virus. The aim of this research was to systematically analyse the molecular epidemiology, recombination and changes in the epitope of EV-D68 in China from 2008 to 2022. Through phylogenetic analysis based on VP1 sequences, it was found that there was limited information about EV-D68 infection before 2011 and that EV-D68 infection was dominated by the A2 gene subtype from 2011 to 2013 and the B3 genotype from 2014 to 2018, during which A2 and B3 were coprevalent and alternately prevalent. We also constructed a phylogenetic tree using the EV-D68 full-length genome sequences, and the genotype of each sequence was consistent with that of the VP1 sequence evolutionary tree. Recombination analysis showed that MH341715 underwent intertypic recombination with the A2 genotype MH341729 at the 5' untranslated region (5'UTR) and that P1-P3 underwent recombination with the B3 genotype MH341712. The capsid protein VP1 is one of the most important structural proteins. In VP1, the BC-loop (89-105 amino acids) and DE-loop (140-152 amino acids) are the most variable domains on the surface of the virus and are associated with epitopes. In this study, it was found that the dominant amino acid composition of the BC-loop and DE-loop continued to change with the epidemic of the virus; the amino acid composition also differed in different regions of the same genotypes. The ongoing genomic and molecular epidemiology of EV-D68 remains important for predicting emergence of new viruses and preventing major outbreaks of respiratory diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yongjuan Liu
- Department of Central Laboratory, the Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Yanli Wu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
6
|
Sun Y, Cai J, Mao H, Gong L, Chen Y, Yan H, Shi W, Lou X, Su L, Wang X, Zhou B, Pei Z, Cao Y, Ge Q, Zhang Y. Epidemiology of hand, foot and mouth disease and genomic surveillance of coxsackievirus A10 circulating in Zhejiang Province, China during 2017 to 2022. J Clin Virol 2023; 166:105552. [PMID: 37523938 DOI: 10.1016/j.jcv.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Coxsackievirus A10 (CA10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD). OBJECTIVES We aimed to perform a retrospective analysis of the molecular epidemiological characteristics and genetic features of HFMD associated with CA10 infections in Zhejiang Province from 2017 to 2022. STUDY DESIGN Epidemiologic features were summarized. Throat swab specimens were collected and tested. The VP1 regions were sequenced for genotyping. CA10 positive samples were isolated. Whole genomes of CA10 isolations were sequenced. Nucleotide and amino acid changes were characterized. Phylogenetic trees were constructed. RESULTS The number of HFMD cases fluctuated from 2017 to 2022. Children aged below 3 years accounted for the majority (66.29%) and boys were more frequently affected than girls. Cases peaked in June. The positivity rate of HEV was 62.69%. A total of 90 strains of CA10 were isolated and 53 genomes were obtained. All CA10 in this study could be assigned to two genogroups, C (C2) and F (F1 and F3). CONCLUSION The clinical manifestations of HFMD associated with HEV are complex and diverse. CA10 infection may be emerging as a new and major cause of HFMD because an upward trend was observed in the proportion of CA10 cases after the use of EV71 vaccines. Different genogroups of CA10 had different geographic distribution patterns. Surveillance should be strengthened and further comprehensive studies should be continued to provide a scientific basis for HFMD prevention and control.
Collapse
Affiliation(s)
- Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Jian Cai
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Liming Gong
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Yin Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Wen Shi
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Xingxing Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Biaofeng Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Zhichao Pei
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Yanli Cao
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Qiong Ge
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China.
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China.
| |
Collapse
|
7
|
Hoque SA, Kotaki T, Pham NTK, Onda Y, Okitsu S, Sato S, Yuki Y, Kobayashi T, Maneekarn N, Kiyono H, Hayakawa S, Ushijima H. Genotype Diversity of Enteric Viruses in Wastewater Amid the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:176-191. [PMID: 37058225 PMCID: PMC10103036 DOI: 10.1007/s12560-023-09553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 06/13/2023]
Abstract
Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Research Institute of Disaster Medicine, Institute for Global Prominent Research, Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, USA
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
8
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
9
|
Razafindratsimandresy R, Joffret ML, Andriamandimby SF, Andriamamonjy S, Rabemanantsoa S, Richard V, Delpeyroux F, Heraud JM, Bessaud M. Enterovirus detection in different regions of Madagascar reveals a higher abundance of enteroviruses of species C in areas where several outbreaks of vaccine-derived polioviruses occurred. BMC Infect Dis 2022; 22:821. [PMID: 36348312 PMCID: PMC9641760 DOI: 10.1186/s12879-022-07826-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background Poliomyelitis outbreaks due to pathogenic vaccine-derived polioviruses (VDPVs) are threatening and complicating the global polio eradication initiative. Most of these VDPVs are genetic recombinants with non-polio enteroviruses (NPEVs) of species C. Little is known about factors favoring this genetic macroevolution process. Since 2001, Madagascar has experienced several outbreaks of poliomyelitis due to VDPVs, and most of VDPVs were isolated in the south of the island. The current study explored some of the viral factors that can promote and explain the emergence of recombinant VDPVs in Madagascar. Methods Between May to August 2011, we collected stools from healthy children living in two southern and two northern regions of Madagascar. Virus isolation was done in RD, HEp-2c, and L20B cell lines, and enteroviruses were detected using a wide-spectrum 5ʹ-untranslated region RT-PCR assay. NPEVs were then sequenced for the VP1 gene used for viral genotyping. Results Overall, we collected 1309 stools, of which 351 NPEVs (26.8%) were identified. Sequencing revealed 33 types of viruses belonging to three different species: Enterovirus A (8.5%), Enterovirus B (EV-B, 40.2%), and Enterovirus C (EV-C, 51.3%). EV-C species included coxsackievirus A13, A17, and A20 previously described as putative recombination partners for poliovirus vaccine strains. Interestingly, the isolation rate was higher among stools originating from the South (30.3% vs. 23.6%, p-value = 0.009). EV-C were predominant in southern sites (65.7%) while EV-B predominated in northern sites (54.9%). The factors that explain the relative abundance of EV-C in the South are still unknown. Conclusions Whatever its causes, the relative abundance of EV-C in the South of Madagascar may have promoted the infections of children by EV-C, including the PV vaccine strains, and have favored the recombination events between PVs and NPEVs in co-infected children, thus leading to the recurrent emergence of recombinant VDPVs in this region of Madagascar. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07826-0.
Collapse
|
10
|
Kang YJ, Shi C, Zhou J, Qian J, Qiu Y, Ge G. Multiple molecular characteristics of circulating enterovirus types among pediatric hand, foot and mouth disease patients after EV71 vaccination campaign in Wuxi, China. Epidemiol Infect 2022; 150:1-19. [PMID: 35473720 PMCID: PMC9128351 DOI: 10.1017/s0950268822000784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular properties of the circulating causative agents of hand, foot and mouth disease (HFMD) in Wuxi remain unclear, posing diagnostic and prevention challenges. Additionally, in several regions of mainland China, the EV71 immunisation drastically reduced related cases and altered the HFMD pathogen spectrum, while the precise situation in Wuxi remained unknown. To address these issues, paediatric HFMD cases diagnosed in the clinic were enrolled and anal swabs were acquired in the spring of 2019. The 5′-UTR and VP1 genes were interpreted using RT-nPCR with degenerate primers to confirm their genotypes. Following that, the entire genome sequences of each viral type were recovered, allowing for the interpretation of several molecular properties. A total of 249 clinically confirmed HFMD cases had their anal swabs taken for viral identification, from which the genome sequences of seven genotypes were recovered. Coxsackievirus A16 is the most prevalent type, followed by Coxsackievirus A6, A10, A2, A4, A5 and Echovirus 11, all of which were genetically determined for the first time in Wuxi. Phylogenetic and recombination analyses were used to evaluate their evolutionary relationships with other strains found in other regions. Noticeably, a CVA16 subtype, responsible for a large proportion of the observed cases, phylogenetically clustered within clade B1a along with some strains from other countries, was the first one to be reported in China. Furthermore, some recombination events were inferred from strains detected in sporadic cases, particularly the recombination between CVA2 and CVA5 strains. Our investigation elucidated the multiple molecular characteristics of the HFMD causal enterovirus strains in Wuxi, underlining the potential hazards associated with these circulating viral types in the population and aiding in future surveillance and prevention of this disease.
Collapse
Affiliation(s)
- Yan-Jun Kang
- Department of Pediatric Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Chao Shi
- Department of Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jian Zhou
- Department of Pediatric Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Jun Qian
- Department of Pediatrics, Wuxi Children's Hospital, Wuxi 214023, China
| | - Yuanwang Qiu
- Department of Infectious Diseases, The Fifth People's Hospital of Wuxi, Wuxi, China
| | - Guizhi Ge
- Department of Infectious Disease, Wuxi Children's Hospital, Wuxi, China
| |
Collapse
|