1
|
Graaf A, Petric PP, Sehl-Ewert J, Henritzi D, Breithaupt A, King J, Pohlmann A, Deutskens F, Beer M, Schwemmle M, Harder T. Cold-passaged isolates and bat-swine influenza a chimeric viruses as modified live-attenuated vaccines against influenza a viruses in pigs. Vaccine 2022; 40:6255-6270. [PMID: 36137904 DOI: 10.1016/j.vaccine.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Development of a live attenuated duck hepatitis A virus type 3 vaccine (strain SD70). Vaccine 2020; 38:4695-4703. [PMID: 32446833 DOI: 10.1016/j.vaccine.2020.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/06/2023]
Abstract
Duck hepatitis A virus type 3 (DHAV-3) is an important pathogen that causes substantial losses in the Chinese duck industry. DHAV-3 is highly fatal to ducklings and there is no licensed vaccine in China available to reduce DHAV-3 infection. Our goal was to develop a live attenuated vaccine candidate against DHAV-3. A field isolated strain, SD, was attenuated by serially passaging in specific-pathogen-free (SPF) chicken embryos, and it lost its pathogenicity after 40 passages. The 70th passaged strain (SD70), which achieved good growth capacity in chicken embryos with a viral titer of 107.5 ELD50/mL, was chosen to be the live attenuated vaccine candidate. The SD70 strain did not cause clinical signs of disease or mortality in 1-day-old ducklings and showed no virulence reversion after seven rounds of in vivo back passages. The minimum effective dose of SD70 was determined to be 102.5 ELD50 via the vaccination route of subcutaneous inoculation. A single dose of the SD70 provided good protection to susceptible ducklings against the lethal DHAV-3 strain. Compared with the genomic sequence of the parent SD strain, the SD70 had 12 amino acid substitutions, some of which may play a role in virulence attenuation. This study demonstrated that the attenuated SD70 strain is a promising vaccine candidate for the prevention of DHAV-3 infection in China. It exhibited safety, good stability and excellent protection.
Collapse
|
3
|
Lee YT, Kim KH, Ko EJ, Kim MC, Lee YN, Hwang HS, Lee Y, Jung YJ, Kim YJ, Santos J, Perez DR, Kang SM. Enhancing the cross protective efficacy of live attenuated influenza virus vaccine by supplemented vaccination with M2 ectodomain virus-like particles. Virology 2019; 529:111-121. [PMID: 30685658 DOI: 10.1016/j.virol.2019.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Current influenza vaccines including live attenuated influenza virus (LAIV) provide suboptimal protection against drift and potential pandemic strains. We hypothesized that supplementing LAIV with a highly conserved antigenic target M2 ectodomain (M2e) would confer cross-protection by inducing humoral and cellular immune responses to conserved antigenic targets. Intranasal vaccination with LAIV (A/Netherlands/602/09, H1N1) supplemented with tandem repeat M2e containing virus-like particles (M2e5x VLP) induced M2e- and virus-specific antibodies. Upon heterosubtypic virus challenge, M2e5x VLP-supplemented LAIV vaccination of mice induced significantly improved cross protection by preventing weight loss and lowering lung viral titers. Further mechanistic studies on heterosubtypic immunity suggest that T cell responses to M2e and nucleoprotein as well as systemic and mucosal antibodies to M2e and viruses might be contributing to cross protection. Therefore, this study demonstrates a novel vaccination strategy to improve the cross protective efficacy of LAIV by supplementing with a conserved M2e antigenic target.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Green Cross Cell Corp., Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Komipharm Co., Ltd., Siheung, Gyeonggi-do 15094, Republic of Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Hye-Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Microbiology, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jefferson Santos
- Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
5
|
Activation and Induction of Antigen-Specific T Follicular Helper Cells Play a Critical Role in Live-Attenuated Influenza Vaccine-Induced Human Mucosal Anti-influenza Antibody Response. J Virol 2018; 92:JVI.00114-18. [PMID: 29563292 PMCID: PMC5952133 DOI: 10.1128/jvi.00114-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
There is increasing interest recently in developing intranasal vaccines against respiratory tract infections. The antibody response is critical for vaccine-induced protection, and T follicular helper cells (TFH) are considered important for mediating the antibody response. Most data supporting the role for TFH in the antibody response are from animal studies, and direct evidence from humans is limited, apart from the presence of TFH-like cells in blood. We studied the activation and induction of TFH and their role in the anti-influenza antibody response induced by a live-attenuated influenza vaccine (LAIV) in human nasopharynx-associated lymphoid tissue (NALT). TFH activation in adenotonsillar tissues was analyzed by flow cytometry, and anti-hemagglutinin (anti-HA) antibodies were examined following LAIV stimulation of tonsillar mononuclear cells (MNC). Induction of antigen-specific TFH by LAIV was studied by flow cytometry analysis of induced TFH and CD154 expression. LAIV induced TFH proliferation, which correlated with anti-HA antibody production, and TFH were shown to be critical for the antibody response. Induction of TFH from naive T cells by LAIV was shown in newly induced TFH expressing BCL6 and CD21, followed by the detection of anti-HA antibodies. Antigen specificity of LAIV-induced TFH was demonstrated by expression of the antigen-specific T cell activation marker CD154 upon challenge by H1N1 virus antigen or HA. LAIV-induced TFH differentiation was inhibited by BCL6, interleukin-21 (IL-21), ICOS, and CD40 signaling blocking, and that diminished anti-HA antibody production. In conclusion, we demonstrated the induction by LAIV of antigen-specific TFH in human NALT that provide critical support for the anti-influenza antibody response. Promoting antigen-specific TFH in NALT by use of intranasal vaccines may provide an effective vaccination strategy against respiratory infections in humans. IMPORTANCE Airway infections, such as influenza, are common in humans. Intranasal vaccination has been considered a biologically relevant and effective way of immunization against airway infection. The vaccine-induced antibody response is crucial for protection against infection. Recent data from animal studies suggest that one type of T cells, TFH, are important for the antibody response. However, data on whether TFH-mediated help for antibody production operates in humans are limited due to the lack of access to human immune tissue containing TFH. In this study, we demonstrate the induction of TFH in human immune tissue, providing critical support for the anti-influenza antibody response, by use of an intranasal influenza vaccine. Our findings provide direct evidence that TFH play a critical role in vaccine-induced immunity in humans and suggest a novel strategy for promoting such cells by use of intranasal vaccines against respiratory infections.
Collapse
|
6
|
Long Y, Ma L, Liu Z, Song S, Geng X, Yang F, Guo Q, Li Z, Li W, Liao G. Preparation and evaluation of a novel, live, attenuated influenza H1N1 vaccine strain produced by a modified classical reassortment method. Hum Vaccin Immunother 2017; 14:615-622. [PMID: 29064728 DOI: 10.1080/21645515.2017.1380761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Live attenuated influenza vaccine (LAIV)-based Vero cells could provide a better choice to control and prevent influenza virus infections. This study used the human influenza virus A/Yunnan/1/2005Vca(H3N2) (YN/05Vca) as a donor strain. YN/05Vca has a double phenotype of cold adaption (ca) and Vero cell adaption (va). The parental virus strain used was the wild-type A/Solomon Islands/3/2006 (H1N1) (SI/06wt). The study employed the modified classical reassortment method to generate a new virus strain. After co-infection of Vero cells, some different sub-types of the reassorted viruses were generated randomly. Then, the specific anti-serum (anti-YN/05Vca) could combine with and neutralize the donor virus, and the original parental virus could not grow in Vero cells at a low temperature until it was re-structured with the meaningful gene fragment from the donor virus in Vero cells. According to the plaques and RT-PCR results, a new monoclonal strain of Vero cell cold adaption virus was screened: SI/06Vca. After immunological and biological identification, this new strain virus could be used as a seed bank for LAIV, which has maintained surface antigenicity with SI/06wt. Consequently, this new Vero cell cold adaption virus SI/06Vca could be used for large-scale vaccine production with sufficient safety and efficacy, as confirmed by animal experiments with mice and ferrets.
Collapse
Affiliation(s)
- Yunfeng Long
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Department of Food Laboratory, Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau , Nanjing , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Ze Liu
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Fan Yang
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,c Department of Pathogenic Biology, Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- d The Department of Production Administration , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| |
Collapse
|
7
|
Tamura SI, Ainai A, Suzuki T, Kurata T, Hasegawa H. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine? Jpn J Infect Dis 2017; 69:165-79. [PMID: 27212584 DOI: 10.7883/yoken.jjid.2015.560] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza is a contagious, acute respiratory disease caused by the influenza virus. The mucosal lining in the host respiratory tract is not only the site of virus infection, but also the site of defense; it is at this site that the host immune response targets the virus and protects against reinfection. One of the most effective methods to prevent influenza is to induce specific antibody (Ab) responses in the respiratory tract by vaccination. Two types of influenza vaccines, intranasal live attenuated influenza virus (LAIV) vaccines and parenteral (injectable) inactivated vaccines, are currently used worldwide. These vaccines are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration. Live attenuated vaccines induce both secretory IgA (S-IgA) and serum IgG antibodies (Abs), whereas parenteral vaccines induce only serum IgG Abs. However, intranasal administration of inactivated vaccines together with an appropriate adjuvant induces both S-IgA and IgG Abs. Several preclinical studies on adjuvant-combined, nasal-inactivated vaccines revealed that nasal S-IgA Abs, a major immune component in the upper respiratory tract, reacted with homologous virus hemagglutinin (HA) and were highly cross-reactive with viral HA variants, resulting in protection and cross-protection against infection by both homologous and variant viruses, respectively. Serum-derived IgG Abs, which are present mainly in the lower respiratory tract, are less cross-reactive and cross-protective. In addition, our own clinical trials have shown that nasal-inactivated whole virus vaccines, including a built-in adjuvant (single-stranded RNA), induced serum hemagglutination inhibition (HI) Ab titers that fulfilled the EMA criteria for vaccine efficacy. The nasal-inactivated whole virus vaccines also induced high levels of nasal HI and neutralizing Ab titers, although we have not yet evaluated the nasal HI titers due to the lack of official criteria to establish efficacy based on this parameter. Data suggest that adjuvant-combined nasal-inactivated vaccines have advantages over the current injectable vaccine because the former induce both S-IgA and serum IgG Abs. In addition, nasal-inactivated vaccines seem to be superior to the LAIV vaccines, because non-infectious preparations could be used in high-risk groups. Thus, the development of intranasal inactivated vaccines is recommended, because such vaccines are expected to improve the efficacy of influenza vaccines.
Collapse
Affiliation(s)
- Shin-Ichi Tamura
- Department of Pathology, National Institute of Infectious Diseases
| | | | | | | | | |
Collapse
|
8
|
Wei Y, Qi L, Gao H, Sun H, Pu J, Sun Y, Liu J. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Sci Rep 2016; 6:30382. [PMID: 27457755 PMCID: PMC4960571 DOI: 10.1038/srep30382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022] Open
Abstract
To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.
Collapse
Affiliation(s)
- Yandi Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Talbot TR, Crocker DD, Peters J, Doersam JK, Ikizler MR, Sannella E, Wright PE, Edwards KM. Duration of Virus Shedding After Trivalent Intranasal Live Attenuated Influenza Vaccination in Adults. Infect Control Hosp Epidemiol 2016; 26:494-500. [PMID: 15954490 DOI: 10.1086/502574] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractObjective:To characterize the probability and duration of viral shedding among adults given trivalent live attenuated influenza vaccine (LATV).Design:Prospective surveillance study.Methods:Nasal wash samples were collected from adult volunteers at baseline and on days 3, 7, and 10 and between days 17 and 21 following intranasal LAIV vaccination. The presence, titer, and identification of each specific strain of influenza virus shed were determined by standard methodology.Results:Twenty subjects received LATV. No samples were positive for influenza virus at baseline. After LAIV vaccination, influenza virus was recovered from 10 of 20 vaccinees on day 3, from 1 of 18 vaccinees on day 7, and from none of the samples on days 10 or 17 through 21. Vaccinees who shed vaccine virus were significantly younger than those who did not (mean age, 26.4 vs 38.6 years;P< .01). Although the presence of specific mucosal immunoglobulin A to influenza B was associated with significantly less shedding of influenza B after vaccination (P= .02), associations of shedding with other measures of immunity were not detected.Conclusion:The duration of shedding of vaccine virus after LAIV in adults is limited and may be associated with an individual's prior influenza vaccination history.
Collapse
Affiliation(s)
- Thomas R Talbot
- Departments of Medicine and Preventive Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee YJ, Jang YH, Kim P, Lee YH, Lee YJ, Byun YH, Lee KH, Kim K, Seong BL. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin. Virology 2016; 491:1-9. [PMID: 26874012 DOI: 10.1016/j.virol.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response.
Collapse
Affiliation(s)
- Yoon Jae Lee
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyusik Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
11
|
Rejinold NS, Shin JH, Seok HY, Kim YC. Biomedical applications of microneedles in therapeutics: recent advancements and implications in drug delivery. Expert Opin Drug Deliv 2015; 13:109-31. [DOI: 10.1517/17425247.2016.1115835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1109-20. [PMID: 26291090 DOI: 10.1128/cvi.00358-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine.
Collapse
|
13
|
Anamur C, Winter G, Engert J. Stability of collapse lyophilized influenza vaccine formulations. Int J Pharm 2015; 483:131-41. [DOI: 10.1016/j.ijpharm.2015.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 12/26/2022]
|
14
|
Sakuma S, Morimoto N, Nishida K, Murakami T, Egawa T, Endo R, Kataoka M, Yamashita S, Miyata K, Mohri K, Ochiai K, Hiwatari KI, Koike S, Tobita E, Uto T, Baba M. Cross-reactivity of immunoglobulin A secreted on the nasal mucosa in mice nasally inoculated with inactivated H1N1 influenza A viruses in the presence of D-octaarginine-linked polymers. Eur J Pharm Biopharm 2015; 92:56-64. [PMID: 25720816 DOI: 10.1016/j.ejpb.2015.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/26/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
We evaluated cross-reactivity of immunoglobulin A (IgA) secreted on the nasal mucosa in mice that were nasally inoculated 4 times with a mixture of inactivated H1N1 influenza A viruses and poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing d-octaarginine at 7-day intervals. Three viral strains (A/Puerto Rico/8/34, A/New Caledonia/20/99 IVR116, and A/Solomon Islands/03/2006) and D-octaarginine-linked polymers with different molecular weights were used as antigens and their carriers, respectively. Secretion of intranasal IgA was barely observed when the inactivated virus alone was administered. The polymer induced the production of intranasal IgA specific to the inoculated viruses, irrespective of the viral strain and molecular weight of the polymer. The respective antibodies cross-reacted to recombinant hemagglutinin proteins of not only the viral strain used for immunization but also other H1N1 strains, including A/Puerto Rico/8/34 strain whose hemagglutinin proteins are diverse from those of other strains. Mice with high reactivity of IgA to the inoculated viruses tended to acquire clear cross-reactivity to other viral strains. Notably, IgA induced by inactivated H1N1 A/New Caledonia/20/99 IVR116 strain with the strongest immunogenicity between 3 antigens in the presence of the polymer cross-reacted to recombinant hemagglutinin proteins of the A/Brisbane/10/2007 and A/Viet Nam/1194/2004 strains, which are categorized into H3N2 and H5N1, respectively. Our polymer is a potential candidate for an efficient antigen carrier that induces mucosal IgA having cross-reactivity to antigenically drifted variants, irrespective of the subtype of viral strains.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | - Naoki Morimoto
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Kazuhiro Nishida
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Tomofumi Murakami
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Tomomi Egawa
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kohei Miyata
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Kohta Mohri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kyohei Ochiai
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | | | - Seiji Koike
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Etsuo Tobita
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Tomofumi Uto
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masanori Baba
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
15
|
Virus-vectored influenza virus vaccines. Viruses 2014; 6:3055-79. [PMID: 25105278 PMCID: PMC4147686 DOI: 10.3390/v6083055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Collapse
|
16
|
Lee DH, Park JK, Song CS. Progress and hurdles in the development of influenza virus-like particle vaccines for veterinary use. Clin Exp Vaccine Res 2014; 3:133-9. [PMID: 25003086 PMCID: PMC4083065 DOI: 10.7774/cevr.2014.3.2.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/28/2023] Open
Abstract
Virus-like particles (VLPs), which resemble infectious virus particles in structure and morphology, have been proposed to provide a new generation of vaccine candidates against various viral infections. As effective immunogens, characterized by high immunogenicity and safety, VLPs have been employed in the development of human influenza vaccines. Recently, several influenza VLP vaccines have been developed for veterinary use and successfully evaluated in swine, canine, duck, and chicken models. These VLP vaccine candidates induced protective immune responses and enabled serological differentiation between vaccinated and infected animals in conjunction with a diagnostic test. Here, we review the current progress of influenza VLP development as a next-generation vaccine technology in the veterinary field and discuss the challenges and future direction of this technology.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Keun Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
17
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Jang YH, Lee EY, Byun YH, Jung EJ, Lee YJ, Lee YH, Lee KH, Lee J, Seong BL. Protective efficacy in mice of monovalent and trivalent live attenuated influenza vaccines in the background of cold-adapted A/X-31 and B/Lee/40 donor strains. Vaccine 2013; 32:535-43. [PMID: 24342248 DOI: 10.1016/j.vaccine.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Influenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses. In this study, we investigated the protective immune responses of both mono- and trivalent vaccine formulations in the mouse model. Two type A vaccines and one type B vaccine against A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shangdong/7/97 in the background of the A/X-31 ca or B/Lee/40 ca were generated by a reassortment procedure and evaluated for their immunogenicity and protective efficacy. Each monovalent vaccine elicited high levels of serum antibodies and conferred complete protection against homologous wild type virus infection. As compared to the monovalent vaccines, trivalent formulation induced higher levels of type A-specific serum antibodies and slightly lower levels of type B-specific antibodies, suggesting an immunological synergism within type A viruses and an interference in the replication of type B virus. Relatively lower type B-specific immunogenicity in trivalent vaccine formulation could be effectively implemented by increasing the vaccine dose of influenza B virus. These results of immunogenicity, protection efficacy, and immunological synergism between type A vaccines provide an experimental basis for optimal composition of trivalent vaccines for subsequent developments of multivalent CAIVs against seasonal and pandemic influenza viruses.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Young Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Ju Jung
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Translational Vaccine Research Center, Yonsei University, Seoul, South Korea; Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.
| |
Collapse
|
19
|
Jang YH, Byun YH, Lee KH, Park ES, Lee YH, Lee YJ, Lee J, Kim KH, Seong BL. Host defense mechanism-based rational design of live vaccine. PLoS One 2013; 8:e75043. [PMID: 24098364 PMCID: PMC3788757 DOI: 10.1371/journal.pone.0075043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022] Open
Abstract
Live attenuated vaccine (LAV), mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells. Utilizing these tightly regulated host defense mechanisms, we present a novel apoptosis-triggered attenuation of viral virulence as a rational design of live attenuated vaccine with desired levels of safety, efficacy, and productivity. Mutant influenza viruses carrying caspase recognition motifs in viral NP and the interferon-antagonist NS1 proteins were highly attenuated both in vitro and in vivo by caspase-mediated cleavage of those proteins in infected cells. Both viral replication and interferon-resistance were substantially reduced, resulting in a marked attenuation of virulence of the virus. Despite pronounced attenuation, the viruses demonstrated high growth phenotype in embryonated eggs at lower temperature, ensuring its productivity. A single dose vaccination with the mutant virus elicited high levels of systemic and mucosal antibody responses and provided complete protection against both homologous and heterologous lethal challenges in mouse model. While providing a practical means to generate seasonal or pandemic influenza live vaccines, the sensitization of viral proteins to pathogen-triggered apoptotic signals presents a potentially universal, mechanism-based rational design of live vaccines against many viral infections.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Influenza virus infects a wide variety of species including humans, pigs, horses, sea mammals and birds. Weight loss caused by influenza infection and/or co-infection with other infectious agents results in significant financial loss in swine herds. The emergence of pandemic H1N1 (A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans and livestock constitutes a concerning public health threat. Influenza virus contains eight single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current vaccines provide limited cross protection to heterologous challenge. In pigs, this presents a major obstacle for vaccine development. Different strategies are under development to produce vaccines that provide better cross-protection for swine. Moreover, overriding interfering maternal antibodies is another goal for influenza vaccines in order to permit effective immunization of piglets at an early age. Herein, we present a review of influenza virus infection in swine, including a discussion of current vaccine approaches and techniques used for novel vaccine development.
Collapse
|
21
|
Kang SM, Kim MC, Compans RW. Virus-like particles as universal influenza vaccines. Expert Rev Vaccines 2013; 11:995-1007. [PMID: 23002980 DOI: 10.1586/erv.12.70] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current influenza vaccines are primarily targeted to induce immunity to the influenza virus strain-specific hemagglutinin antigen and are not effective in controlling outbreaks of new pandemic viruses. An approach for developing universal vaccines is to present highly conserved antigenic epitopes in an immunogenic conformation such as virus-like particles (VLPs) together with an adjuvant to enhance the vaccine immunogenicity. In this review, the authors focus on conserved antigenic targets and molecular adjuvants that were presented in VLPs. Conserved antigenic targets that include the hemagglutinin stalk domain, the external domain of influenza M2 and neuraminidase are discussed in addition to molecular adjuvants that are engineered to be incorporated into VLPs in a membrane-anchored form.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
22
|
Jang YH, Byun YH, Lee DH, Lee KH, Lee YJ, Lee YH, Park JK, Song CS, Seong BL. Cold-adapted X-31 live attenuated 2009 pandemic H1N1 influenza vaccine elicits protective immune responses in mice and ferrets. Vaccine 2013; 31:1320-7. [PMID: 23313655 DOI: 10.1016/j.vaccine.2012.12.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/17/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022]
Abstract
The 2009 pandemic influenza H1N1 (pdmH1N1) is characterized by rapid transmission among humans and disproportionate infection to children and young adults. Although the pdmH1N1 demonstrated less lethality than initially expected and has now moved into its post-pandemic period, it remains highly possible that through antigenic shift or antigenic drift the pdmH1N1 might re-emerge in the future as a more virulent strain than before, underscoring the need for vaccination prior to an outbreak. Using X-31 ca as a backbone strain, we generated a live attenuated pdmH1N1 vaccine and evaluated its potential as a safe and effective vaccine using mouse and ferret models. Despite an acceptable level of attenuation phenotypes, single dose of immunization with the vaccine efficiently stimulated both systemic and mucosal antibody responses and provided complete protection against lethal challenge with wild type pdmH1N1 virus, even at the lowest immunization dose of 10(3)PFU. The promising results of safety, immunogenicity, and protective efficacy of the vaccine not only contribute to expanding the repertoire of live vaccines as a judicious choice for pandemic H1N1 preparedness, but also suggest the great potential of X-31 ca donor strain to serve as reliable platform for generating diverse live vaccine constructs against seasonal influenza viruses and other pandemic strains.
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Cold Temperature
- Disease Models, Animal
- Female
- Ferrets
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Survival Analysis
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Citation(s) in RCA: 1019] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.
Collapse
|
25
|
Kang SM, Song JM, Kim YC. Microneedle and mucosal delivery of influenza vaccines. Expert Rev Vaccines 2012; 11:547-60. [PMID: 22697052 DOI: 10.1586/erv.12.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both noninvasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia(TM)) and intranasal vaccines (FluMist®) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated microneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross-protective mucosal immunity, but effective non-live mucosal vaccines remain to be developed.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
26
|
Sakuma S, Suita M, Inoue S, Marui Y, Nishida K, Masaoka Y, Kataoka M, Yamashita S, Nakajima N, Shinkai N, Yamauchi H, Hiwatari KI, Tachikawa H, Kimura R, Uto T, Baba M. Cell-penetrating peptide-linked polymers as carriers for mucosal vaccine delivery. Mol Pharm 2012; 9:2933-41. [PMID: 22953762 DOI: 10.1021/mp300329r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated the potential of poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, as a carrier for mucosal vaccine delivery. Mice were nasally inoculated four times every seventh day with PBS containing ovalbumin with or without the d-octaarginine-linked polymer. The polymer enhanced the production of ovalbumin-specific immunoglobulin G (IgG) and secreted immunoglobulin A (IgA) in the serum and the nasal cavity, respectively. Ovalbumin internalized into nasal epithelial cells appeared to stimulate IgA production. Ovalbumin transferred to systemic circulation possibly enhanced IgG production. An equivalent dose of the cholera toxin B subunit (CTB), which was used as a positive control, was superior to the polymer in enhancing antibody production; however, dose escalation of the polymer overcame this disadvantage. A similar immunization profile was also observed when ovalbumin was replaced with influenza virus HA vaccines. The polymer induced a vaccine-specific immune response identical to that induced by CTB, irrespective of the antibody type, when its dose was 10 times that of CTB. Our cell-penetrating peptide-linked polymer is a potential candidate for antigen carriers that induce humoral immunity on the mucosal surface and in systemic circulation when nasally coadministered with antigens.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University , 45-1 Nagaotoge-cho, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tanimoto T, Haredy AM, Takenaka N, Tamura SI, Okuno Y, Mori Y, Yamanishi K, Okamoto S. Comparison of the cross-reactive anti-influenza neutralizing activity of polymeric and monomeric IgA monoclonal antibodies. Viral Immunol 2012; 25:433-9. [PMID: 22985289 DOI: 10.1089/vim.2012.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we examined whether polymeric IgA (pIgA) and monomeric IgA (mIgA) antibodies differ in their ability to neutralize drift viruses within the same subtype. We used an IgA monoclonal antibody (mAb; H1-21) against influenza virus strain A/Hiroshima/52/2005 (A/Hiroshima; H3N2). The mAb was obtained after immunizing mice mucosally with a split-virion (SV) vaccine. The mAb contained both mIgA and pIgA forms. It reacted with the homologous virus and cross-reacted with drift viruses A/New York/55/2004 (H3N2) and A/Wyoming/3/2003 (H3N2) in hemagglutinin-inhibition (HI) and neutralizing Ab assays. The mAb also cross-reacted with A/Panama/2007/99 (H3N2) in an ELISA. We separated the mAb into pIgA and mIgA fractions by gel filtration, and then tested them for neutralizing Ab activity. The neutralizing activity for the A/Hiroshima/52/2005, A/New York/55/2004, and A/Wyoming/3/2003 viruses was lower for the mIgA than the pIgA fraction. However, the neutralizing efficiency for drift variants relative to that for the homotype did not differ between pIgA and mIgA, and pIgA only neutralized variants that could also be neutralized by mIgA. These results suggest that the polymerization of IgA enhances its antiviral immune responses, but does not increase the number of influenza virus strains neutralized by the IgA.
Collapse
Affiliation(s)
- Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yoo DG, Kim MC, Park MK, Song JM, Quan FS, Park KM, Cho YK, Kang SM. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J Med Food 2012; 15:855-62. [PMID: 22856395 DOI: 10.1089/jmf.2012.0017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ginseng has been used in humans for thousands of years and is known to have multiple biological and immunomodulatory effects. In this study, we investigated whether Korean red ginseng extract would have preventive and antiviral effects on influenza virus infection. Oral administration to mice of red ginseng extract prior to infection significantly increased survival after infection with the 2009 pandemic H1N1 virus. Daily oral treatment of vaccinated mice with red ginseng extract provided enhanced cross-protection against antigenically distinct H1N1 and H3N2 influenza viruses. Naive mice that were infected with virus mixed with red ginseng extract showed significantly enhanced protection, lower levels of lung viral titers and interleukin-6, but higher levels of interferon-γ compared with control mice having virus infections without red ginseng extract, indicating an antiviral effect of ginseng. In addition, ginseng extract exhibited inhibitory effects on the growth of influenza virus in vitro. This study provides evidence that intake of ginseng extract will have beneficial effects on preventing lethal infection with newly emerging influenza viruses.
Collapse
Affiliation(s)
- Dae-Goon Yoo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Loving CL, Vincent AL, Pena L, Perez DR. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs. Vaccine 2012; 30:5830-8. [PMID: 22835742 DOI: 10.1016/j.vaccine.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/02/2012] [Accepted: 07/12/2012] [Indexed: 01/29/2023]
Abstract
In the United States there are currently two influenza vaccine platforms approved for use in humans-conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across strains. Pandemic H1N1 (pH1N1) IAV swept the globe in 2009 and crossed the species barrier, infecting swine in several countries. Pigs are a natural host for IAV and serve as a model for evaluating immune responses following vaccination and challenge. Recently, a temperature-sensitive (ts) LAIV was developed by introducing modifications in the polymerase genes of a swine-like triple reassortant (tr) virus and when paired with pandemic HA and NA, provided sterilizing immunity upon intratracheal challenge with virulent pH1N1 virus. The utility of a ts LAIV is expanded in this report to show vaccination of pigs induced a cell-mediated immune response characterized by an increased number of antigen-specific IFN-secreting cells and expanded T cell populations when compared to pigs vaccinated with a whole inactivated virus (WIV) vaccine. Following challenge, there was a significant increase in the percentage of proliferating lymphocytes in the LAIV group compared to the WIV group following restimulation with pH1N1 in vitro. Also, there was an increase in the percentage of CD4/CD8 double-positive memory T cells in LAIV vaccinated pigs compared to WIV vaccinated pigs. Hemagglutination inhibition and serum neutralization titers were significantly higher in the LAIV-vaccinated pigs compared to the WIV vaccinated pigs following the initial dose of vaccine. Taken together, these results indicate the ts LAIV vaccine, generated from a triple reassortant IAV, elicits greater cell-mediated and humoral immune responses in pigs.
Collapse
Affiliation(s)
- Crystal L Loving
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States.
| | | | | | | |
Collapse
|
30
|
Peng J, Kong W, Guo D, Liu M, Wang Y, Zhu H, Pang B, Miao X, Yu B, Luo T, Hu Q, Zhou D. The epidemiology and etiology of influenza-like illness in Chinese children from 2008 to 2010. J Med Virol 2012; 84:672-8. [PMID: 22337308 PMCID: PMC7166694 DOI: 10.1002/jmv.22247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Influenza-like illness can be caused by a wide range of respiratory viruses. In order to investigate the epidemiology of viral pathogens related to influenza-like illness in children of Wuhan, the largest city in central China, throat swab samples were collected from 1,472 young patients, from July 2008 to June 2010, before and after the occurrence of the 2009 pandemic influenza A (H1N1) virus (pH1N1). It was found that 923 patients (62.7%) were positive for at least 1 virus and 90 patients (9.8%) were detected for multiple (≥2) respiratory viruses by real-time PCR detection of 16 viruses. Seasonal influenza A virus was the predominant pathogen among all the 16 viruses with a positive rate of 13.3% (196/1,472), which was followed by pH1N1 (159/1,472). It was also noted that the viral distribution pattern in Wuhan changed upon the introduction of the pH1N1 virus.
Collapse
Affiliation(s)
- Jinsong Peng
- Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Intranasal immunization with a formalin-inactivated human influenza A virus whole-virion vaccine alone and intranasal immunization with a split-virion vaccine with mucosal adjuvants show similar levels of cross-protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:979-90. [PMID: 22552600 DOI: 10.1128/cvi.00016-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.
Collapse
|
32
|
Protective efficacy of an H1N1 cold-adapted live vaccine against the 2009 pandemic H1N1, seasonal H1N1, and H5N1 influenza viruses in mice. Antiviral Res 2012; 93:346-53. [DOI: 10.1016/j.antiviral.2012.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/24/2011] [Accepted: 01/02/2012] [Indexed: 12/25/2022]
|
33
|
McCullers JA, Huber VC. Correlates of vaccine protection from influenza and its complications. Hum Vaccin Immunother 2012; 8:34-44. [PMID: 22252001 DOI: 10.4161/hv.8.1.18214] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite use of influenza vaccines for more than 65 y, influenza and its complications are a major cause of morbidity and mortality worldwide. Most deaths during influenza virus infections are due to underlying co-morbidities or secondary bacterial pneumonia. The measures of immune response currently used for licensure of influenza vaccines are relevant mainly for protection from viral infection in healthy adults. Development of new or improved influenza vaccines will require a definition of novel, and specific correlates of protection. These correlates should associate immune responses with outcomes that are relevant to specific risk groups, such as asthma exacerbation, hospitalization or disruptions to care or daily activities. Assessment of vaccine effectiveness for both viral and bacterial vaccines should include measures of impact on secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
34
|
Lorenzo ME, Hodgson A, Robinson DP, Kaplan JB, Pekosz A, Klein SL. Antibody responses and cross protection against lethal influenza A viruses differ between the sexes in C57BL/6 mice. Vaccine 2011; 29:9246-55. [PMID: 21983155 DOI: 10.1016/j.vaccine.2011.09.110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/22/2011] [Accepted: 09/23/2011] [Indexed: 11/15/2022]
Abstract
A mouse model was used to determine if protective immunity to influenza A virus infection differs between the sexes. The median lethal dose of H1N1 or H3N2 was lower for naïve females than males. After a sublethal, primary infection with H1N1 or H3N2, females and males showed a similar transient morbidity, but females generated more neutralizing and total anti-influenza A virus antibodies. Immunized males and females showed similar protection against secondary challenge with a homologous virus, but males experienced greater morbidity and had higher lung viral titers after infection with a lethal dose of heterologous virus. Females develop stronger humoral immune responses and greater cross protection against heterosubtypic virus challenge.
Collapse
Affiliation(s)
- Maria E Lorenzo
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | | | | | | | | |
Collapse
|
35
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
36
|
Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 2011; 12:786-95. [PMID: 21743478 PMCID: PMC3140559 DOI: 10.1038/ni.2067] [Citation(s) in RCA: 638] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/06/2011] [Indexed: 12/15/2022]
Abstract
We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV−/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.
Collapse
|
37
|
Chaussee MS, Sandbulte HR, Schuneman MJ, Depaula FP, Addengast LA, Schlenker EH, Huber VC. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections. Vaccine 2011; 29:3773-81. [PMID: 21440037 DOI: 10.1016/j.vaccine.2011.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 01/28/2023]
Abstract
Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.
Collapse
Affiliation(s)
- Michael S Chaussee
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen GL, Min JY, Lamirande EW, Santos C, Jin H, Kemble G, Subbarao K. Comparison of a live attenuated 2009 H1N1 vaccine with seasonal influenza vaccines against 2009 pandemic H1N1 virus infection in mice and ferrets. J Infect Dis 2011; 203:930-6. [PMID: 21257740 DOI: 10.1093/infdis/jiq144] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of seasonal influenza vaccination in pandemic influenza A H1N1 disease is important to address, because a large segment of the population is vaccinated annually. We administered 1 or 2 doses of pandemic H1N1 vaccine (CA/7 ca), a seasonal trivalent inactivated (s-TIV), or live attenuated influenza vaccine (s-LAIV) to mice and ferrets and subsequently challenged them with a pandemic H1N1 virus. In both species, CA/7 ca was immunogenic and conferred complete protection against challenge. s-TIV did not confer protection in either animal model, and s-LAIV did not confer any protection in ferrets. In mice, 2 doses of s-LAIV led to complete protection in the upper respiratory tract and partial protection in the lungs. Our data indicate that vaccination with the seasonal influenza vaccines did not confer complete protection in the lower respiratory tract in either animal model, whereas the CA/7 ca vaccine conferred complete protection in both animal models.
Collapse
Affiliation(s)
- Grace L Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Acuña-Soto R, Castañeda-Davila L, Chowell G. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:223-238. [PMID: 21361409 DOI: 10.3934/mbe.2011.8.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this article, we provide a chronological description of the 2009 H1N1 influenza pandemic in Mexico from the detection of severe respiratory disease among young adults in central Mexico and the identification of the novel swine-origin influenza virus to the response of Mexican public health authorities with the swift implementation of the National Preparedness and Response Plan for Pandemic Influenza. Furthermore, we review some features of the 2009 H1N1 influenza pandemic in Mexico in relation to the devastating 1918-1920 influenza pandemic and discuss opportunities for the application of mathematical modeling in the transmission dynamics of pandemic influenza. The value of historical data in increasing our understanding of past pandemic events is highlighted.
Collapse
Affiliation(s)
- Rodolfo Acuña-Soto
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Delegacion Coyoacan, Mexico D.F. 04510, Mexico.
| | | | | |
Collapse
|
40
|
Schneider-Ohrum K, Ross TM. Virus-Like Particles for Antigen Delivery at Mucosal Surfaces. Curr Top Microbiol Immunol 2011; 354:53-73. [DOI: 10.1007/82_2011_135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
41
|
Curtiss R. The impact of vaccines and vaccinations: Challenges and opportunities for modelers. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:77-93. [PMID: 21361401 DOI: 10.3934/mbe.2011.8.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This review focuses on how infectious diseases and their prevention and control by development of vaccines and widespread vaccination has shaped evolution of human civilization and of the animals and plants that humans depend on for food, labor and companionship. After describing major infectious diseases and the current status for control by vaccination, the barriers to infection and the attributes of innate and acquired immunity contributing to control are discussed. The evolution in types of vaccines is presented in the context of developing technologies and in improving adjuvants to engender enhanced vaccine efficacy. The special concerns and needs in vaccine design and development are discussed in dealing with epidemics/pandemics with special emphasis on influenza and current global problems in vaccine delivery.
Collapse
Affiliation(s)
- Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
42
|
Subbramanian RA, Basha S, Shata MT, Brady RC, Bernstein DI. Pandemic and seasonal H1N1 influenza hemagglutinin-specific T cell responses elicited by seasonal influenza vaccination. Vaccine 2010; 28:8258-67. [DOI: 10.1016/j.vaccine.2010.10.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/23/2010] [Accepted: 10/29/2010] [Indexed: 11/25/2022]
|
43
|
Immunogenicity and protective efficacy of an elastase-dependent live attenuated swine influenza virus vaccine administered intranasally in pigs. Vaccine 2010; 28:7098-108. [DOI: 10.1016/j.vaccine.2010.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/25/2010] [Accepted: 08/01/2010] [Indexed: 11/18/2022]
|
44
|
Laguna-Torres VA, Gómez J, Aguilar PV, Ampuero JS, Munayco C, Ocaña V, Pérez J, Gamero ME, Arrasco JC, Paz I, Chávez E, Cruz R, Chavez J, Mendocilla S, Gomez E, Antigoni J, Gonzalez S, Tejada C, Chowell G, Kochel TJ. Changes in the viral distribution pattern after the appearance of the novel influenza A H1N1 (pH1N1) virus in influenza-like illness patients in Peru. PLoS One 2010; 5:e11719. [PMID: 20668548 PMCID: PMC2910706 DOI: 10.1371/journal.pone.0011719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 06/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background We describe the temporal variation in viral agents detected in influenza like illness (ILI) patients before and after the appearance of the ongoing pandemic influenza A (H1N1) (pH1N1) in Peru between 4-January and 13-July 2009. Methods At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW) 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD) in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR). Results We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW) 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5%) from EW 19–28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima) followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle) cities during our study period. The city of Iquitos (Jungle) had the highest number of influenza B cases and only one pH1N1 case. Conclusions The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.
Collapse
|
45
|
Controlling influenza by cytotoxic T-cells: calling for help from destroyers. J Biomed Biotechnol 2010; 2010:863985. [PMID: 20508820 PMCID: PMC2875772 DOI: 10.1155/2010/863985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/03/2010] [Indexed: 12/26/2022] Open
Abstract
Influenza is a vaccine preventable disease that causes severe illness and excess mortality in humans. Licensed influenza vaccines induce humoral immunity and protect against strains that antigenically match the major antigenic components of the vaccine, but much less against antigenically diverse influenza strains. A vaccine that protects against different influenza viruses belonging to the same subtype or even against viruses belonging to more than one subtype would be a major advance in our battle against influenza. Heterosubtypic immunity could be obtained by cytotoxic T-cell (CTL) responses against conserved influenza virus epitopes. The molecular mechanisms involved in inducing protective CTL responses are discussed here. We also focus on CTL vaccine design and point to the importance of immune-related databases and immunoinformatics tools in the quest for new vaccine candidates. Some techniques for analysis of T-cell responses are also highlighted, as they allow estimation of cellular immune responses induced by vaccine preparations and can provide correlates of protection.
Collapse
|
46
|
Abstract
AbstractSwine influenza is an important contagious disease in pigs caused by influenza A viruses. Although only three subtypes of influenza A viruses, H1N1, H1N2 and H3N2, predominantly infect pigs worldwide, it is still a big challenge for vaccine manufacturers to produce efficacious vaccines for the prevention and control of swine influenza. Swine influenza viruses not only cause significant economic losses for the swine industry, but are also important zoonotic pathogens. Vaccination is still one of the most important and effective strategies to prevent and control influenza for both the animal and human population. In this review, we will discuss the current status of swine influenza worldwide as well as current and future options to control this economically important swine disease.
Collapse
|
47
|
Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res 2010; 28:135-44. [PMID: 20387097 DOI: 10.1007/s11095-010-0134-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/24/2010] [Indexed: 01/27/2023]
Abstract
PURPOSE This study sought to determine the effects of microneedle coating formulation, drying time and storage time on antigen stability and in vivo immunogenicity of influenza microneedle vaccines. METHODS The stability of inactivated influenza virus vaccine was monitored by hemagglutination (HA) activity and virus particle aggregation as a function of storage time and temperature with or without trehalose. In vivo immunogenicity of inactivated influenza vaccines coated onto microneedles was determined in mice by virus-specific antibody titers and survival rates. RESULTS In the absence of trehalose, HA activity decreased below 10% and to almost zero after 1 h and 1 month of drying, respectively. Addition of trehalose maintained HA activity above 60% after drying and above 20% after 1 month storage at 25°C. Loss of HA activity generally correlated with increased virus particle aggregation. Administration of microneedles coated with trehalose-stabilized influenza vaccine yielded high serum IgG antibody titers even after 1 month storage, and all animals survived with minimal weight loss after lethal challenge infection. CONCLUSIONS Inactivated influenza virus vaccine coated on microneedles with trehalose significantly improved the HA activity as well as in vivo immunogenicity of the vaccine after an extended time of storage.
Collapse
Affiliation(s)
- Yeu-Chun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
48
|
Wang L, Yassine H, Saif YM, Lee CW. Developing live attenuated avian influenza virus in ovo vaccines for poultry. Avian Dis 2010; 54:297-301. [PMID: 20521649 DOI: 10.1637/8623-012309-resnote.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated vaccines can mimic natural infection and induce humoral and cellular immune response. However, the possibility of reassortment between vaccine viruses and field isolates and of mutations from low-pathogenic to highly pathogenic viruses has prevented the use of live attenuated strains as poultry vaccines. In ovo vaccination using live attenuated strains that can undergo limited replication cycles would be a better option, because these strains can be used for mass vaccination without spreading or reassorting with other viruses. Our previous study demonstrated that two influenza nonstructural (NS) variant viruses are highly attenuated and immunogenic in chickens, making them potential live vaccine candidates. In this study, we tested whether NS variants could be used as in ovo vaccines alone or in combination with temperature-sensitive (ts) mutations. In addition, we also tested the effect of different hemagglutinin (HA) subtypes on in ovo vaccination of NS variants. Our results demonstrated that NS variants alone or in combination with ts mutations were not attenuated enough to be used for in ovo vaccination. We also observed variable effects of different HA subtypes in the same NS deletion variant backbone on hatchability. However, even with substitution of HA subtypes, NS variant-inoculated eggs still had lower hatchability compared to the mock control group, indicating that the high virulence of NS variant backbone strain in eggs might have affected the results.
Collapse
Affiliation(s)
- Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
49
|
Genotyping and screening of reassortant live-attenuated influenza B vaccine strain. J Virol Methods 2009; 165:133-8. [PMID: 19883691 DOI: 10.1016/j.jviromet.2009.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 12/20/2022]
Abstract
Live-attenuated influenza virus vaccines can be generated by reassortment of gene segments between an attenuated donor strain and a virulent wild-type virus. The annual production schedule for the seasonal influenza vaccine necessitates rapid and efficient genotyping of the reassorted progeny to identify the desired vaccine strains. This study describes a multiplex RT-PCR system capable of identifying each gene segment from the cold-adapted attenuated donor virus, B/Lee/40ca. The specificity of the amplification system was optimized by testing various wild-type influenza B viruses. The resulting RT-PCR method is sensitive and efficient enough for routine identification of reassortant clones to identify the desired gene constellation, consisting of six segments from the attenuated donor virus and the H and N genes from the wild-type virus. By providing a more rapid and efficient means of genotyping the candidate reassortant strains, this method could be implemented to expedite the generation of each component strain and allow more time to culture and process the final seasonal influenza vaccine.
Collapse
|
50
|
Yuki Y, Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines 2009; 8:1083-97. [PMID: 19627189 DOI: 10.1586/erv.09.61] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mucosal vaccines are considered the most suitable type of vaccines to combat emerging and re-emerging infectious diseases because of their ability to induce both mucosal and systemic immunity. Considerable advances have been made toward the development of mucosal vaccines against influenza virus and rotavirus. Many additional mucosal vaccines are in development, including vaccines against cholera, typhoid, traveler's diarrhea and respiratory infections. In addition to oral and nasal vaccines, transcutaneous (or skin patch) and sublingual immunizations are now part of a new generation of mucosal vaccines. Furthermore, a rice-based oral vaccine (MucoRice) has been receiving global attention as a new form of cold chain-free vaccine, because it is stable at room temperature for a prolonged period. This review describes recent developments in mucosal vaccines with promising preclinical and clinical results.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | | |
Collapse
|