1
|
Pan F, Gong J, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Expression characteristics of non-virion protein of Hirame novirhabdovirus and its transfection induced response in hirame natural embryo cells. Int J Biol Macromol 2023; 242:124567. [PMID: 37100320 DOI: 10.1016/j.ijbiomac.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The non-virion (NV) protein is the signature of genus Novirhabdovirus, which has been of considerable concern due to its potential role in viral pathogenicity. However, its expression characteristics and induced immune response remain limited. In the present work, it was demonstrated that Hirame novirhabdovirus (HIRRV) NV protein was only detected in the viral infected hirame natural embryo (HINAE) cells, but absent in the purified virions. Results showed that the transcription of NV gene could be stably detected in HIRRV-infected HINAE cells at 12 h post infection (hpi) and then reached the peak at 72 hpi. A similar expression trend of NV gene was also found in HIRRV-infected flounders. Subcellular localization analysis further exhibited that HIRRV-NV protein was predominantly localized in the cytoplasm. To elucidate the biological function of HIRRV-NV protein, NV eukaryotic plasmid was transfected into HINAE cells for RNA-seq. Compared to empty plasmid group, some key genes in RLR signaling pathway were significantly downregulated in NV-overexpressed HINAE cells, indicating that RLR signaling pathway was inhibited by HIRRV-NV protein. The interferon-associated genes were also significantly suppressed upon transfection of NV gene. This research would improve our understanding of expression characteristics and biological function of NV protein during HIRRV infection process.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiaojiao Gong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Goldberg TL, Blevins E, Leis EM, Standish IF, Richard JC, Lueder MR, Cer RZ, Bishop-Lilly KA. Plasticity, Paralogy, and Pseudogenization: Rhabdoviruses of Freshwater Mussels Elucidate Mechanisms of Viral Genome Diversification and the Evolution of the Finfish-Infecting Rhabdoviral Genera. J Virol 2023; 97:e0019623. [PMID: 37154732 PMCID: PMC10231222 DOI: 10.1128/jvi.00196-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Viruses in the family Rhabdoviridae display remarkable genomic variation and ecological diversity. This plasticity occurs despite the fact that, as negative sense RNA viruses, rhabdoviruses rarely if ever recombine. Here, we describe nonrecombinatorial evolutionary processes leading to genomic diversification in the Rhabdoviridae inferred from two novel rhabdoviruses of freshwater mussels (Mollusca: Bivalvia: Unionida). Killamcar virus 1 (KILLV-1) from a plain pocketbook (Lampsilis cardium) is closely related phylogenetically and transcriptionally to finfish-infecting viruses in the subfamily Alpharhabdovirinae. KILLV-1 offers a novel example of glycoprotein gene duplication, differing from previous examples in that the paralogs overlap. Evolutionary analyses reveal a clear pattern of relaxed selection due to subfunctionalization in rhabdoviral glycoprotein paralogs, which has not previously been described in RNA viruses. Chemarfal virus 1 (CHMFV-1) from a western pearlshell (Margaritifera falcata) is closely related phylogenetically and transcriptionally to viruses in the genus Novirhabdovirus, the sole recognized genus in the subfamily Gammarhabdovirinae, representing the first known gammarhabdovirus of a host other than finfish. The CHMFV-1 G-L noncoding region contains a nontranscribed remnant gene of precisely the same length as the NV gene of most novirhabdoviruses, offering a compelling example of pseudogenization. The unique reproductive strategy of freshwater mussels involves an obligate parasitic stage in which larvae encyst in the tissues of finfish, offering a plausible ecological mechanism for viral host-switching. IMPORTANCE Viruses in the family Rhabdoviridae infect a variety of hosts, including vertebrates, invertebrates, plants and fungi, with important consequences for health and agriculture. This study describes two newly discovered viruses of freshwater mussels from the United States. One virus from a plain pocketbook (Lampsilis cardium) is closely related to fish-infecting viruses in the subfamily Alpharhabdovirinae. The other virus from a western pearlshell (Margaritifera falcata) is closely related to viruses in the subfamily Gammarhabdovirinae, which until now were only known to infect finfish. Genome features of both viruses provide new evidence of how rhabdoviruses evolved their extraordinary variability. Freshwater mussel larvae attach to fish and feed on tissues and blood, which may explain how rhabdoviruses originally jumped between mussels and fish. The significance of this research is that it improves our understanding of rhabdovirus ecology and evolution, shedding new light on these important viruses and the diseases they cause.
Collapse
Affiliation(s)
- Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emilie Blevins
- Xerces Society for Invertebrate Conservation, Portland, Oregon, USA
| | - Eric M. Leis
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Midwest Fisheries Center, Onalaska, Wisconsin, USA
| | - Isaac F. Standish
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Midwest Fisheries Center, Onalaska, Wisconsin, USA
| | - Jordan C. Richard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- U.S. Fish and Wildlife Service, Southwestern Virginia Field Office, Abingdon, Virginia, USA
| | - Matthew R. Lueder
- Leidos, Reston, Virginia, USA
- Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Maryland, USA
| | - Regina Z. Cer
- Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Maryland, USA
| |
Collapse
|
3
|
Ito T, Mekata T, Olesen NJ, Lorenzen N. Epitope mapping of the monoclonal antibody IP5B11 used for detection of viral haemorrhagic septicaemia virus facilitated by genome sequencing of carpione novirhabdovirus. Vet Res 2023; 54:35. [PMID: 37069579 PMCID: PMC10111850 DOI: 10.1186/s13567-023-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The monoclonal antibody (mAb) IP5B11, which is used worldwide for the diagnosis of viral haemorrhagic septicaemia (VHS) in fish, reacts with all genotypes of VHS virus (VHSV). The mAb exceptionally also reacts with the carpione rhabdovirus (CarRV). Following next generation genome sequencing of CarRV and N protein sequence alignment including five kinds of fish novirhabdoviruses, the epitope recognized by mAb IP5B11 was identified. Dot blot analysis confirmed the epitope of mAb IP5B11 to be associated with the region N219 to N233 of the N protein of VHSV. Phylogenetic analysis identified CarRV as a new member of the fish novirhabdoviruses.
Collapse
Affiliation(s)
- Takafumi Ito
- Pathology Division, Fisheries Research Agency, Fisheries Technology Institute, 422-1 Nakatsuhamaura, Minami-Ise, Mie, 516-0193, Japan.
| | - Tohru Mekata
- Pathology Division, Fisheries Research Agency, Fisheries Technology Institute, 422-1 Nakatsuhamaura, Minami-Ise, Mie, 516-0193, Japan
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, Japan
| | - Niels Jørgen Olesen
- National Institute for Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Niels Lorenzen
- National Institute for Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Uthaman SK, Jang MS, Kong KH, Oh MJ, Kim WS. Production and Characterization of Monoclonal Antibodies Against Structural Proteins of Hirame Novirhabdovirus. Monoclon Antib Immunodiagn Immunother 2023; 42:53-58. [PMID: 36971574 DOI: 10.1089/mab.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Hirame novirhabdovirus (HIRRV) is a significant viral pathogen of Japanese flounder (Paralichthys olivaceus). In this study, seven monoclonal antibodies (mAbs) against HIRRV (isolate CA-9703) were produced and characterized. Three mAbs (1B3, 5G6, and 36D3) were able to recognize nucleoprotein (N) (42 kDa) and four mAbs (11-2D9, 15-1G9, 17F11, and 24-1C6) recognized matrix (M) protein (24 kDa) of HIRRV. Western blot, Enzyme-linked immunosorbent assay, and indirect fluorescent antibody technique (IFAT) results indicated that the developed mAbs were specific to HIRRV without any cross-reactivity against other different fish viruses and epithelioma papulosum cyprini cells. All the mAbs comprised IgG1 heavy chain and κ light chain except 5G6, which has a heavy chain of IgG2a class. These mAbs can be very useful in development of immunodiagnosis of HIRRV infection.
Collapse
Affiliation(s)
| | - Min-Seok Jang
- South Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Yeosu, Republic of Korea
| | - Kyoung-Hui Kong
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
5
|
Pan F, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Genome characterization of Hirame novirhabdovirus (HIRRV) isolate CNPo2015 and transcriptome analysis of Hirame natural embryo (HINAE) cells infected with CNPo2015. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108493. [PMID: 36509411 DOI: 10.1016/j.fsi.2022.108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hirame novirhabdovirus (HIRRV) is a fish rhabdovirus belonging to family Rhabdoviridae, genus Novirhabdovirus, which is highly contagious and virulent, and causes hemorrhagic disease in many fish species. In the present work, the whole genome sequence of HIRRV strain CNPo2015 that previously isolated from cultured flounders was obtained using high-throughput sequencing. It consists of 10,998 nucleotides and encodes six viral proteins arranged in order of 3'-N-P-M-G-NV-L-5'. Among Novirhabdovirus, L protein of CNPo2015 possessed the lowest amino acid sequence divergence with HIRRV isolate CA 9703 and HIRRV 080113, and the highest with Snakehead rhabdovirus. Furthermore, the immune response of Hirame natural embryo (HINAE) cell line to HIRRV infection was characterized by RNA-seq, and the results showed that 1976 differentially expressed genes (DEGs) including 1219 up-regulated and 727 down-regulated genes were identified in the HINAE cells infected with HIRRV at 48 h post infection (hpi). Several KEGG pathways were significantly enriched in the viral infected cells, such as cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, cell cycle, apoptosis, RIG-I-like receptors signaling pathway and P13K-AKT signaling pathway. Post viral infection, the flow cytometric Annexin V/PI assay found that apoptotic rate of HINAE cells showed a slight increase within 3 days and then the early and late apoptotic rate were significantly increased to 41 ± 2.65% and 12.37 ± 2.61% at day 4, respectively. Meanwhile, qRT-PCR results also showed that six apoptosis-related genes (BCL2L1, CASPASE 3, CASPASE 10, FAS, AKT and CDK1) were significantly upregulated. This investigation has not only enriched our knowledge of sequence difference characteristics between CNPo2015 and other Novirhabdoviruses, but also provided a data basis for deeper understanding of immune responses in flounder cells post viral infection.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
6
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
7
|
Walker PJ, Bigarré L, Kurath G, Dacheux L, Pallandre L. Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals. Animals (Basel) 2022; 12:ani12111363. [PMID: 35681827 PMCID: PMC9179924 DOI: 10.3390/ani12111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Rhabdoviridae is a family of viruses that includes some important pathogens of fish and marine mammals. Aspects of the taxonomic classification of fish viruses assigned to this family have recently been reviewed by the International Committee on Taxonomy of Viruses (ICTV). This paper describes the newly approved taxonomy, including the assignment of new subfamilies and new virus species. The paper also considers a taxonomic conundrum presented by viruses assigned to one group of fish rhabdoviruses (genus Novirhabdovirus) for which assignment to the family Rhabdoviridae may not be appropriate. Abstract The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification.
Collapse
Affiliation(s)
- Peter J. Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4067, Australia
- Correspondence:
| | - Laurent Bigarré
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| | - Gael Kurath
- Western Fisheries Research Center, US Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Laurent Dacheux
- Unit Lyssavirus Epidemiology and Neuropathology, Université Paris Cité, Institut Pasteur, 28 Rue du Docteur Roux, CEDEX 15, 75724 Paris, France;
| | - Laurane Pallandre
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| |
Collapse
|
8
|
Effect of NV gene deletion in the genome of hirame rhabdovirus (HIRRV) on viral replication and the type I interferon response of the host cell. Arch Virol 2021; 167:77-84. [PMID: 34709467 DOI: 10.1007/s00705-021-05286-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Hirame rhabdovirus (HIRRV), a member of the genus Novirhabdovirus, causes morbidity and mortality in farmed olive flounder (Paralichthys olivaceus). As no information is available on the role of the NV gene of HIRRV, we produced a recombinant HIRRV with the NV gene deleted (rHIRRV-ΔNV) using reverse genetic technology and investigated whether the NV gene knockout affected HIRRV replication and the type I interferon response of the host cell. The rescue of rHIRRV-ΔNV was successful only when IRF9-gene-knockout Epithelioma papulosum cyprini (ΔIRF9-EPC) cells were used, suggesting that the NV protein of HIRRV might be involved in inhibition of the type I interferon response of the host cell. This conclusion was also supported by the significantly higher level of Mx gene induction in EPC cells infected with rHIRRV-ΔNV than in cells infected with recombinant HIRRV without the deletion. When cells were coinfected with rHIRRV-ΔNV and either wild-type HIRRV or wild-type viral hemorrhagic septicemia virus (VHSV), there was a decrease in the growth rate of not only wild-type HIRRV but also wild-type VHSV in a concentration-dependent manner. Further studies are required to investigate the role of HIRRV NV in virulence and its possible importance for the development of attenuated vaccines.
Collapse
|
9
|
Niner MD, Stepien CA, Gorgoglione B, Leaman DW. Genomic and immunogenic changes of Piscine novirhabdovirus (Viral Hemorrhagic Septicemia Virus) over its evolutionary history in the Laurentian Great Lakes. PLoS One 2021; 16:e0232923. [PMID: 34048438 PMCID: PMC8162641 DOI: 10.1371/journal.pone.0232923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
A unique and highly virulent subgenogroup (-IVb) of Piscine novirhabdovirus, also known as Viral Hemorrhagic Septicemia Virus (VHSV), suddenly appeared in the Laurentian Great Lakes, causing large mortality outbreaks in 2005 and 2006, and affecting >32 freshwater fish species. Periods of apparent dormancy have punctuated smaller and more geographically-restricted outbreaks in 2007, 2008, and 2017. In this study, we conduct the largest whole genome sequencing analysis of VHSV-IVb to date, evaluating its evolutionary changes from 48 isolates in relation to immunogenicity in cell culture. Our investigation compares genomic and genetic variation, selection, and rates of sequence changes in VHSV-IVb, in relation to other VHSV genogroups (VHSV-I, VHSV-II, VHSV-III, and VHSV-IVa) and with other Novirhabdoviruses. Results show that the VHSV-IVb isolates we sequenced contain 253 SNPs (2.3% of the total 11,158 nucleotides) across their entire genomes, with 85 (33.6%) of them being non-synonymous. The most substitutions occurred in the non-coding region (NCDS; 4.3%), followed by the Nv- (3.8%), and M- (2.8%) genes. Proportionally more M-gene substitutions encoded amino acid changes (52.9%), followed by the Nv- (50.0%), G- (48.6%), N- (35.7%) and L- (23.1%) genes. Among VHSV genogroups and subgenogroups, VHSV-IVa from the northeastern Pacific Ocean has shown the fastest substitution rate (2.01x10-3), followed by VHSV-IVb (6.64x10-5) and by the VHSV-I, -II and-III genogroups from Europe (4.09x10-5). A 2016 gizzard shad (Dorosoma cepedianum) from Lake Erie possessed the most divergent VHSV-IVb sequence. The in vitro immunogenicity analysis of that sample displayed reduced virulence (as did the other samples from 2016), in comparison to the original VHSV-IVb isolate (which had been traced back to 2003, as an origin date). The 2016 isolates that we tested induced milder impacts on fish host cell innate antiviral responses, suggesting altered phenotypic effects. In conclusion, our overall findings indicate that VHSV-IVb has undergone continued sequence change and a trend to lower virulence over its evolutionary history (2003 through present-day), which may facilitate its long-term persistence in fish host populations.
Collapse
Affiliation(s)
- Megan D. Niner
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Carol A. Stepien
- School of Oceanography, University of Washington, Seattle, WA, United States of America
- Genetics and Genomics Group, NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, United States of America
- * E-mail: ,
| | - Bartolomeo Gorgoglione
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Douglas W. Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
10
|
Tang X, Cao J, Zhang J, Xing J, Sheng X, Zhan W. Development of monoclonal antibody against glycoprotein of hirame novirhabdovirus (HIRRV) with virus neutralizing activity. Microb Pathog 2021; 154:104868. [PMID: 33771630 DOI: 10.1016/j.micpath.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/15/2022]
Abstract
Hirame rhabdovirus (HIRRV) is one of the most important viruses of fish, posing a great threat to the fish industry in Asia and Europe. The glycoprotein (G) of HIRRV is known to play important roles in virus attachment and entry, making it an ideal target for both diagnosis and therapy. In this study, a truncated G of HIRRV was expressed as a fusion protein in Escherichia coli. Using the recombinant G protein (rG), monoclonal antibodies (mAbs) were prepared by the hybridoma technology. Subsequently, positive clones were screened by indirect enzyme-linked immunosorbent assay (ELISA) and further characterized by Western blot and immunofluorescence assay (IFA). ELISA results showed that two mAbs (3E5 and 4D10) could react with the rG, as well as the purified HIRRV. Western blot analysis showed that the mAbs belong to the IgG isotype and could recognize a 60 kDa viral protein, which is consistent with the molecular weight of G protein and determined to be the G protein of HIRRV by mass spectrometry. The virions in HIRRV-infected EPC could also be recognized by two mAbs in IFA. Moreover, neutralization assay showed that mAb 4D10 could significantly inhibit the proliferation of HIRRV and delay the development of cytopathic effect in viral-infected EPC cells, and in vivo neutralization assay also showed that mAb 4D10 could significantly reduce the mortality of HIRRV-infected flounder, indicating that mAb 4D10 can partially neutralize the HIRRV infection. Western blot analysis showed that mAb 4D10 could specifically bind the C-terminal domain of HIRRV-G protein. These results demonstrated that the produced mAbs could specifically recognize the G protein of HIRRV and displayed virus-neutralizing activity in vitro and in vivo, which could serve as effective detection probes and potential neutralizing antibodies for HIRRV.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jialin Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China.
| |
Collapse
|
11
|
Clouthier SC, Schroeder T, Bueren EK, Anderson ED, Emmenegger E. Analytical validation of two RT-qPCR tests and detection of spring viremia of carp virus (SVCV) in persistently infected koi Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2021; 143:169-188. [PMID: 33629660 DOI: 10.3354/dao03564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spring viremia of carp virus (SVCV) ia a carp sprivivirus and a member of the genus Sprivivirus within the family Rhabdoviridae. The virus is the etiological agent of spring viremia of carp, a disease of cyprinid species including koi Cyprinus carpio L. and notifiable to the World Organisation for Animal Health. The goal of this study was to explore hypotheses regarding inter-genogroup (Ia to Id) SVCV infection dynamics in juvenile koi and contemporaneously create new reverse-transcription quantitative PCR (RT-qPCR) assays and validate their analytical sensitivity, specificity (ASp) and repeatability for diagnostic detection of SVCV. RT-qPCR diagnostic tests targeting the SVCV nucleoprotein (Q2N) or glycoprotein (Q1G) nucleotides were pan-specific for isolates typed to SVCV genogroups Ia to Id. The Q2N test had broader ASp than Q1G because Q1G did not detect SVCV isolate 20120450 and Q2N displayed occasional detection of pike fry sprivivirus isolate V76. Neither test cross-reacted with other rhabdoviruses, infectious pancreatic necrosis virus or co-localizing cyprinid herpesvirus 3. Both tests were sensitive with observed 50% limits of detection of 3 plasmid copies and high repeatability. Test analysis of koi immersed in SVCV showed that the virus could be detected for at least 167 d following exposure and that titer, prevalence, replicative rate and persistence in koi were correlated significantly with virus virulence. In this context, high virulence SVCV isolates were more prevalent, reached higher titers quicker and persisted in koi for longer periods of time relative to moderate and low virulence isolates.
Collapse
Affiliation(s)
- Sharon C Clouthier
- Fisheries & Oceans Canada, Freshwater Institute, Winnipeg, Manitoba R3T 2N6, Canada
| | | | | | | | | |
Collapse
|
12
|
Tang X, Qin Y, Sheng X, Xing J, Zhan W. Generation, characterization and application of monoclonal antibodies against matrix protein of hirame novirhabdovirus (HIRRV) in flounder. DISEASES OF AQUATIC ORGANISMS 2018; 128:203-213. [PMID: 29862978 DOI: 10.3354/dao03222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hirame novirhabdovirus (HIRRV) causes severe disease in fish cultures, resulting in great economic loss in Asia and Europe. In this study, the matrix protein (M) of HIRRV was recombinantly expressed as the immunogen to produce monoclonal antibodies (MAbs) using hybridoma cell fusion technology, and 3 MAbs were produced and characterized by indirect ELISA, Western blotting and immunofluorescence assay (IFA). Western blotting and mass spectrometric analysis showed that the MAbs could specifically react with the nature M protein of HIRRV. The MAbs were employed to detect virions in HIRRV-infected epithelioma papulosum cyprini (EPC) cells and flounder Paralichthys olivaceus by IFA and immunohistochemistry (IHC). In the virus-infected EPC cells, the virions were mainly located in the cytoplasm, whereas in flounder, HIRRV was present in all 10 tested tissues, and the positive signals in spleen, head-kidney and heart were higher than in other tissues, consistent with the results obtained by RT-PCR. Moreover, strong positive signals were observed in the endothelial cells of blood vessels, but only the leukocytes were infected by HIRRV in the whole blood cells. These results indicate that the high susceptibility to HIRRV of leukocytes and endothelial cells may facilitate the spread of HIRRV and finally cause systemic infection in flounder. This study provides a foundation for further studies on rapid diagnosis of HIRRV and its infection mechanisms.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | | | | | | | | |
Collapse
|
13
|
Zhang J, Tang X, Sheng X, Xing J, Zhan W. Isolation and identification of a new strain of hirame rhabdovirus (HIRRV) from Japanese flounder Paralichthys olivaceus in China. Virol J 2017; 14:73. [PMID: 28388934 PMCID: PMC5384145 DOI: 10.1186/s12985-017-0742-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023] Open
Abstract
Background Hirame rhabdovirus virus (HIRRV) is a rhabdovirus that causes acute hemorrhage disease in fish culture, resulting in a great economic loss in parts of Asia and Europe. Methods In this study, we isolated a virus strain named as CNPo2015 from cultured Japanese flounder in Shandong province, China. Cell isolation, electron microscopic observation, RT-PCR detection and phylogenetic analysis were used for virus identification. Further, artificial infection experiment was conducted for virulence testing. Results The gross signs included abdominal distension, fin reddening and yellow ascitic fluid in the abdominal cavity. Histopathological examination revealed marked cell degeneration and necrosis in the kidney. The tissue homogenates induced obvious cytopathic effects in EPC, FHM and FG cell lines. Electron microscopic observation showed the virus had a bullet-like shape with a capsule membrane. RT-PCR and sequencing analysis revealed that CNPo2015 belonged to the HIRRV with high sequence identity to HIRRV isolates. Infection experiment confirmed that the HIRRV CNPo2015 strain was virulent to flounder juveniles with a LD50 value of 1.0 × 105.9 TCID50/fish. Conclusion In conclusion, we described the first isolation and characterization of a HIRRV from Japanese flounder in China. This will provide a candidate material for further research on the infection mechanism and preventive strategies of HIRRV.
Collapse
Affiliation(s)
- Jialin Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266071, China
| |
Collapse
|
14
|
Seo HG, Do JW, Jung SH, Han HJ. Outbreak of hirame rhabdovirus infection in cultured spotted sea bass Lateolabrax maculatus on the western coast of Korea. JOURNAL OF FISH DISEASES 2016; 39:1239-1246. [PMID: 27371509 DOI: 10.1111/jfd.12513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, we determined the cause of a disease outbreak in spotted sea bass, Lateolabrax maculatus reared in culture cages on the western coast of Korea in 2013. The major signs in the diseased fish exhibited were haemorrhaging on the membranes of the abdomen, gastrointestinal organs and opercular gills, as well as an enlarged spleen. No external morphological signs of infection were visible, except for a darkening in colour. No parasites or pathological bacteria were isolated from the diseased fish; however, epithelioma papulosum cyprini (EPC) cells inoculated with tissue homogenates from the diseased fish showed cytopathic effects (CPEs). Virus particles in the EPC cells were bullet-shaped, 185-225 nm long and 70-80 nm wide, characteristic of Rhabdoviridae. Polymerase chain reaction analyses of homogenized tissues from the diseased fish and supernatants of cell cultures with CPEs indicated specific, 553-bp-long fragments corresponding to the matrix protein gene of the hirame rhabdovirus (HIRRV). Phylogenetically, the HIRRV phosphoprotein gene of spotted sea bass was more closely related to phosphoproteins from Chinese and Polish HIRRV strains than from other Korean strains. To our knowledge, this is the first report of HIRRV infection in cultured spotted sea bass.
Collapse
Affiliation(s)
- H-G Seo
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - J W Do
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - S H Jung
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - H-J Han
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| |
Collapse
|
15
|
Kim WS, Oh MJ. Hirame rhabdovirus (HIRRV) as the cause of a natural disease outbreak in cultured black seabream (Acanthopagrus schlegeli) in Korea. Arch Virol 2015; 160:3063-6. [DOI: 10.1007/s00705-015-2573-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/13/2015] [Indexed: 11/25/2022]
|
16
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
17
|
Borzym E, Matras M, Maj-Paluch J, Baud M, De Boisséson C, Talbi C, Olesen NJ, Bigarré L. First isolation of hirame rhabdovirus from freshwater fish in Europe. JOURNAL OF FISH DISEASES 2014; 37:423-430. [PMID: 23962315 DOI: 10.1111/jfd.12119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
A rhabdovirus was isolated in cell culture inoculated with tissue material from diseased grayling, Thymallus thymallus (L.), originating from a fish farm affected by a mortality episode in Poland. Diagnostics tests showed that the virus was not related to novirhabdoviruses known in Europe, nor to vesiculovirus-like species, except perch rhabdovirus (PRhV) with which it shared moderate serological relations. However, RT-PCR with PRhV probes gave negative results. To identify the virus, a random-priming sequence-independent single primer amplification was adopted. Surprisingly, two of the obtained sequences exhibited a high identity (>99%) with hirame rhabdovirus (HIRRV), a novirhabdovirus usually found in fish in marine Asiatic countries, for instance Japan, China and Korea. The full-length sequence of the phosphoprotein gene (P) demonstrated a higher identity of the present isolate with HIRRV from China compared with the Korean isolate. An identical viral sequence was also found in brown trout, Salmo trutta trutta L., affected by mortalities in a second farm in the same region, after a likely contamination from the grayling farm. To our knowledge, this is the first report of HIRRV in Europe, and in two hosts from fresh water that have not been described before as susceptible species.
Collapse
Affiliation(s)
- E Borzym
- Department of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
He M, Yan XC, Liang Y, Sun XW, Teng CB. Evolution of the viral hemorrhagic septicemia virus: divergence, selection and origin. Mol Phylogenet Evol 2014; 77:34-40. [PMID: 24727199 DOI: 10.1016/j.ympev.2014.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is an economically significant rhabdovirus that affects an increasing number of freshwater and marine fish species. Extensive studies have been conducted on the molecular epizootiology, genetic diversity, and phylogeny of VHSV. However, there are discrepancies between the reported estimates of the nucleotide substitution rate for the G gene and the divergence times for the genotypes. Herein, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of the six VHSV genes. Rate estimates based on the G gene indicated that the marine genotypes/subtypes might not all evolve slower than their major European freshwater counterpart. Age calculations on the six genes revealed that the first bifurcation event of the analyzed isolates might have taken place within the last 300 years, which was much younger than previously thought. Selection analyses suggested that two codons of the G gene might be positively selected. Surveys of codon usage bias showed that the P, M and NV genes exhibited genotype-specific variations. Furthermore, we proposed that VHSV originated from the Pacific Northwest of North America.
Collapse
Affiliation(s)
- Mei He
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xue-Chun Yan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Wen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
19
|
Dating the divergence of the infectious hematopoietic necrosis virus. INFECTION GENETICS AND EVOLUTION 2013; 18:145-50. [DOI: 10.1016/j.meegid.2013.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/11/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
|
20
|
Hwang SD, Midorikawa N, Punnarak P, Kikuchi Y, Kondo H, Hirono I, Aoki T. Inhibition of Hirame rhabdovirus growth by RNA aptamers. JOURNAL OF FISH DISEASES 2012; 35:927-934. [PMID: 22943666 DOI: 10.1111/jfd.12000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
RNA aptamers are artificial nucleic acids that specifically bind to a wide variety of targets. They are an effective tool for pharmaceutical research and development of antiviral agents. Here, we describe four Hirame rhabdovirus (HIRRV)-RNA aptamers (H1, H2, H3 and H4) that we obtained from an in vitro process called the systematic evolution of ligands by exponential enrichment (SELEX). The HIRRV-RNA aptamers specifically bind to HIRRV. Hirame natural embryo (HINAE) cells treated with virus and the RNA aptamer showed a decrease in appearance of cytopathic effect when compared with control (treated only with virus). Rhodovulum sulfidophilum was transformed with genes for the RNA aptamers, and the aptamers were detected in the culture medium, indicating that they were secreted from the cells. Thus, the recombinant R. sulfidophilum might be a powerful tool for the prevention of HIRRV in aquaculture.
Collapse
Affiliation(s)
- S D Hwang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Cho MY, Lee UH, Moon CH, Bang JD, Jee BY, Cha SJ, Kim JW, Park MA, Do JW, Park JW. Genetically similar VHSV isolates are differentially virulent in olive flounder Paralichthys olivaceus. DISEASES OF AQUATIC ORGANISMS 2012; 101:105-114. [PMID: 23135137 DOI: 10.3354/dao02503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two viral hemorrhagic septicemia virus (VHSV) isolates, VHSV-KR-CJA and VHSV-KR-YGH, were isolated from viral hemorrhagic septicemia disease outbreaks in flounder farms in South Korea. The VHSV-KR-CJA isolate was isolated from a flounder farm with high mortality (80%), while the VHSV-KR-YGH isolate was isolated from a flounder farm with low mortality (15%), suggesting that these isolates differ in virulence. The virulence of these isolates was evaluated in juvenile flounder via intraperitoneal injection. Consistent with their virulence in the field, mortality data revealed that the VHSV-KR-CJA isolate was highly pathogenic (cumulative mortality of 80%), while the VHSV-KR-YGH isolate was less pathogenic in flounder (cumulative mortality of 20%). To characterize the genotypes of these viruses, the full open reading frames (ORFs) encoding nucleoprotein N, phosphoprotein P, matrix protein M, glycoprotein G, nonstructural viral protein NV, and polymerase L of these viruses were sequenced and analyzed. Sequence analysis revealed that both isolates are genetically very similar (identical amino acid sequences for P, M, NV, and L and >99.7 and 99.8% amino acid sequence identity for N and G, respectively). Phylogenetic analysis indicated that both of these viruses belong to the Genotype IVa group, suggesting that they originated from a common ancestral virus. The low pathogenicity VHSV strain may potentially evolve to become a more pathogenic strain through only a few nucleotide substitutions. Further functional analyses of mutations in VHSV genes are necessary to identify factors that determine VHSV pathogenicity in flounder.
Collapse
Affiliation(s)
- Mi Young Cho
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute, Busan 619-705, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The family Rhabdoviridae has a non-segmented single stranded negative-sense RNA and its genome ranges in size from approximately 11 kb to almost 16 kb. It is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms. The five structural protein genes are arranged in the same linear order (3'-N-P-M-G-L-5') and may be interspersed with one more additional accessory gene. For many years, a full of knowledge of the rhabdoviridae has been established on extensive studies of two kinds of prototype viruses; vesicular stomatitis virus (VSV) and rabies virus (RABV). Among them, the genus Lyssavirus includes RABV and rabies-related viruses naturally infect mammals and chiropterans via bite-exposure by rabid animals and finally cause fatal encephalitis. In this review, we describe the sketch of the various virological features of the Rhabdoviridae, especially focusing on VSV and RABV.
Collapse
|
23
|
Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR. Rhabdovirus accessory genes. Virus Res 2011; 162:110-25. [PMID: 21933691 PMCID: PMC7114375 DOI: 10.1016/j.virusres.2011.09.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine.
Collapse
Affiliation(s)
- Peter J Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia.
| | | | | | | |
Collapse
|
24
|
Yingjie S, Min Z, Hong L, Zhiqin Y, Xiaocong Z, Zhe W. Analysis and characterization of the complete genomic sequence of the Chinese strain of hirame rhabdovirus. JOURNAL OF FISH DISEASES 2011; 34:167-171. [PMID: 21241324 DOI: 10.1111/j.1365-2761.2010.01218.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- S Yingjie
- College of Animal Science and Veterinary Medicine; Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
25
|
Zhu RL, Lei XY, Ke F, Yuan XP, Zhang QY. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell. Virus Res 2010; 155:495-505. [PMID: 21185339 DOI: 10.1016/j.virusres.2010.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/05/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
Genomic sequence of Scophthalmus maximus rhabdovirus (SMRV) isolated from diseased turbot has been characterized. The complete genome of SMRV comprises 11,492 nucleotides and encodes five typical rhabdovirus genes N, P, M, G and L. In addition, two open reading frames (ORF) are predicted overlapping with P gene, one upstream of P and smaller than P (temporarily called Ps), and another in P gene which may encodes a protein similar to the vesicular stomatitis virus C protein. The C ORF is contained within the P ORF. The five typical proteins share the highest sequence identities (48.9%) with the corresponding proteins of rhabdoviruses in genus Vesiculovirus. Phylogenetic analysis of partial L protein sequence indicates that SMRV is close to genus Vesiculovirus. The first 13 nucleotides at the ends of the SMRV genome are absolutely inverse complementarity. The gene junctions between the five genes show conserved polyadenylation signal (CATGA(7)) and intergenic dinucleotide (CT) followed by putative transcription initiation sequence A(A/G)(C/G)A(A/G/T), which are different from known rhabdoviruses. The entire Ps ORF was cloned and expressed, and used to generate polyclonal antibody in mice. One obvious band could be detected in SMRV-infected carp leucocyte cells (CLCs) by anti-Ps/C serum via Western blot, and the subcellular localization of Ps-GFP fusion protein exhibited cytoplasm distribution as multiple punctuate or doughnut shaped foci of uneven size.
Collapse
Affiliation(s)
- Ruo-Lin Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
26
|
Development and evaluation of a sensitive and quantitative assay for hirame rhabdovirus based on quantitative RT-PCR. J Virol Methods 2010; 169:391-6. [DOI: 10.1016/j.jviromet.2010.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
|
27
|
Duesund H, Nylund S, Watanabe K, Ottem KF, Nylund A. Characterization of a VHS virus genotype III isolated from rainbow trout (Oncorhychus mykiss) at a marine site on the west coast of Norway. Virol J 2010; 7:19. [PMID: 20102597 PMCID: PMC2823671 DOI: 10.1186/1743-422x-7-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/26/2010] [Indexed: 11/15/2022] Open
Abstract
Background Norwegian production of rainbow trout (Oncorhynchus mykiss) has been without any outbreaks of VHS for many years until the disease emerged in a farm in western Norway in November 2007. The fish were, in addition to VHS virus, positive for gill chlamydia-like bacteria, Flavobacterium psychrophilum, and a microsporidian. A new VHS virus genotype III was isolated from the fish in RTgill-W1 cells and the complete coding region (11,065 nucleotides) was sequenced. This virus was also used in a challenge experiment to see if it could cause any mortality in rainbow trout in sea water. Results This is the first time a nearly complete sequence of a genotype III virus isolate has been presented. The organization of the genes is the same as in the other VHS virus genotypes studied (GI and GIV). Between the ORFs are nontranslated regions that contain highly conserved sequences encompassing the polyadenylation signal for one gene, and the putative transcription initiation site of the next gene. The intergenic regions vary in length from 74 nt to 128 nt. The nucleotide sequence is more similar to genotype I isolates compared to isolates from genotype II and IV. Analyses of the sequences of the N and G protein genes show that this new isolate is distinct from other VHS virus isolates and groups closely together with isolates from genotype III. In a challenge experiment, using intraperitoneal (ip) injection of the isolate, co-habitation with infected fish, and bath challenge, mortalities slightly above 40% were obtained. There was no significant difference in mortality between the bath challenged group and the ip injected group, while the mortality in the co-habitation group was as low as 30%. Conclusions All VHS virus isolates in genotype III are from marine fish in the North East Atlantic. Unlike the other known genotype III isolates, which are of low virulence, this new isolate is moderately virulent. It was not possible to detect any changes in the virus genome that could explain the higher virulence. A major problem for the study of virulence factors is the lack of information about other genotype III isolates.
Collapse
Affiliation(s)
- Henrik Duesund
- Department of Biology, University of Bergen, Thormohlensgt 55, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
28
|
Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada.
| | | | | | | |
Collapse
|
29
|
Lü AJ, Li ZQ, Zhang QY. Detection of cutaneous antibodies in excised skin explants from grass carp, Ctenopharyngodon idella (Valenciennes), immune to Scophthalmus maximus rhabdovirus. JOURNAL OF FISH DISEASES 2008; 31:559-565. [PMID: 18482386 DOI: 10.1111/j.1365-2761.2008.00919.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study determined whether cutaneous antibodies were present in excised skin explants of grass carp, Ctenopharyngodon idella, immune to Scophthalmus maximus rhabdovirus (SMRV). Culture fluid from immune skin explants were assayed by indirect enzyme-linked immunosorbent assay (iELISA), Western blot, indirect immunofluorescent assay (IFA) and flow cytometry (FCM). iELISA showed that cutaneous antibody titres were much lower (1:12) than antiserum titres (1:1458) from intraperitoneally immunized grass carp. The phosphoprotein and matrix protein antigens of purified SMRV proteins were recognized by cutaneous antibodies from skin culture fluid using Western blot. The skin culture fluid produced staining signals in viral assembly sites and cytoplasm of SMRV-infected epithelioma papulosum cyprini (EPC) cells by IFA. FCM showed that 4.39% SMRV-infected EPC cells were detected, while non-specific reaction was seen in 2% of control cells. This is the first description of cutaneous antibodies against SMRV in grass carp.
Collapse
Affiliation(s)
- A-J Lü
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
30
|
Kuzmin IV, Wu X, Tordo N, Rupprecht CE. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res 2008; 136:81-90. [PMID: 18514350 DOI: 10.1016/j.virusres.2008.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/05/2008] [Accepted: 04/22/2008] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to generate complete genome sequences of Aravan (ARAV), Khujand (KHUV), Irkut (IRKV) and West Caucasian bat (WCBV) viruses, and to compare them with genomes of other lyssaviruses. We focused on RNA-dependent RNA-polymerase (L) and non-coding regions, because other genes of these viruses have been described previously. The L protein is organized into six conserved blocks (I-VI), previously detected in all Mononegavirales. Furthermore, lyssaviruses have two additional conserved regions, L1 and L2, located in the COOH part of the L. L1 may be responsible for methylation of viral mRNA cap structures, whereas the significance of L2 is unclear. Phylogenetic patterns based on the L are similar to those described for the nucleoprotein. The WCBV is the most divergent member of the genus. Besides phylogeny, it has a short trailer region (57 nucleotides versus 69-70 nucleotides in other lyssaviruses) and different intergenic region lengths, including an exceptionally long non-coding region of the glycoprotein (697 nucleotides) containing a potential open reading frame of 180 nucleotides. The absence of a flanking transcription initiation signal, as well as Northern and Western blot data, suggests that this region is not independently transcribed but is a part of G mRNA.
Collapse
Affiliation(s)
- Ivan V Kuzmin
- Rabies Program, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-33 Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
31
|
Generation and characterization of monoclonal antibodies against the flounder Paralichthys olivaceus rhabdovirus. J Virol Methods 2008; 148:205-10. [DOI: 10.1016/j.jviromet.2007.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/21/2007] [Accepted: 11/27/2007] [Indexed: 11/18/2022]
|
32
|
Tao JJ, Zhou GZ, Gui JF, Zhang QY. Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF. Virus Res 2007; 132:86-96. [PMID: 18068257 DOI: 10.1016/j.virusres.2007.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.
Collapse
Affiliation(s)
- Jian-Jun Tao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
33
|
Teng Y, Liu H, Lv JQ, Fan WH, Zhang QY, Qin QW. Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. Arch Virol 2007; 152:1457-65. [PMID: 17447109 DOI: 10.1007/s00705-007-0971-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Collapse
Affiliation(s)
- Y Teng
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
Zhou GZ, Li ZQ, Zhang QY. Characterization and Application of Monoclonal Antibodies against Turbot (Scophthalmus maximus) Rhabdovirus. Viral Immunol 2006; 19:637-45. [PMID: 17201659 DOI: 10.1089/vim.2006.19.637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five monoclonal antibodies (mAbs), 1G8, 1H9, 2D2, 2D3, and 2F5, against Scophthalmus maximus rhabdovirus (SMRV) were prepared. Characterization of the mAbs included indirect enzyme-linked immunosorbent assay, isotyping, viral inhibition assay, immunofluorescence staining of virus-infected cell cultures, and Western blot analysis. Isotyping revealed that 1G8 and 1H9 were of the IgG2b subclass and that the other three were IgM. 2D2, 2D3, and 2F5 partially inhibited SMRV infection in epithelioma papulosum cyprinid (EPC) cell culture. Western blotting showed that all five mAbs could react with two SMRV proteins with molecular masses of approximately 30 kDa (P) and 26 kDa (M). These two proteins were localized within the cytoplasm of SMRV-infected EPC cells by immunofluorescence assay. Also, progressive foci of viral replication in cell cultures were monitored from 6 to 24 h, using mAb 2D3 as the primary antibody. A flow cytometry procedure was used to detect and quantify SMRV-infected (0.01 PFU/cell) EPC cells with mAb 2D3, and 10.8% of cells could be distinguished as infected 36 h postinfection. Moreover, mAb 2D3 was successfully applied for the detection of viral antigen in cryosections from flounder tissues by immunohistochemistry tests.
Collapse
Affiliation(s)
- Guang-Zhou Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
35
|
Abstract
RNA viruses infect marine organisms from bacteria to whales, but RNA virus communities in the sea remain essentially unknown. Reverse-transcribed whole-genome shotgun sequencing was used to characterize the diversity of uncultivated marine RNA virus assemblages. A diverse assemblage of RNA viruses, including a broad group of marine picorna-like viruses, and distant relatives of viruses infecting arthropods and higher plants were found. Communities were dominated by distinct genotypes with small genome sizes, and we completely assembled the genomes of several hitherto undiscovered viruses. Our results show that the oceans are a reservoir of previously unknown RNA viruses.
Collapse
Affiliation(s)
- Alexander I Culley
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|