1
|
Yang YZ, Xie L, Gao Q, Nie ZY, Zhang DL, Wang XB, Han CG, Wang Y. A potyvirus provides an efficient viral vector for gene expression and functional studies in Asteraceae plants. PLANT PHYSIOLOGY 2024; 196:842-855. [PMID: 38917205 DOI: 10.1093/plphys/kiae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.
Collapse
Affiliation(s)
- Yi-Zhou Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Qiang Gao
- College of Grassland Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Zhang-Yao Nie
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ding-Liang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Zafirov D, Giovinazzo N, Lecampion C, Field B, Ducassou JN, Couté Y, Browning KS, Robaglia C, Gallois JL. Arabidopsis eIF4E1 protects the translational machinery during TuMV infection and restricts virus accumulation. PLoS Pathog 2023; 19:e1011417. [PMID: 37983287 PMCID: PMC10721207 DOI: 10.1371/journal.ppat.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/14/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.
Collapse
Affiliation(s)
- Delyan Zafirov
- GAFL, INRAE, Montfavet, France
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Karen S. Browning
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | | | | |
Collapse
|
3
|
Rollwage L, Maiss E, Menzel W, Hossain R, Varrelmann M. Beet mosaic virus expression of a betalain transcription factor allows visual virus tracking in Beta vulgaris. MOLECULAR PLANT PATHOLOGY 2023; 24:1319-1329. [PMID: 37410356 PMCID: PMC10502864 DOI: 10.1111/mpp.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
In the field of plant virology, the usage of reverse genetic systems has been reported for multiple purposes. One is understanding virus-host interaction by labelling viral cDNA clones with fluorescent protein genes to allow visual virus tracking throughout a plant, albeit this visualization depends on technical devices. Here we report the first construction of an infectious cDNA full-length clone of beet mosaic virus (BtMV) that can be efficiently used for Agrobacterium-mediated leaf inoculation with high infection rate in Beta vulgaris, being indistinguishable from the natural virus isolate regarding symptom development and vector transmission. Furthermore, the BtMV clone was tagged with the genes for the monomeric red fluorescent protein or the Beta vulgaris BvMYB1 transcription factor, which activates the betalain biosynthesis pathway. The heterologous expression of BvMYB1 results in activation of betalain biosynthesis genes in planta, allowing visualization of the systemic BtMV spread with the naked eye as red pigmentation emerging throughout beet leaves. In the case of BtMV, the BvMYB1 marker system is stable over multiple mechanical host passages, allows qualitative as well as quantitative virus detection and offers an excellent opportunity to label viruses in plants of the order Caryophyllales, allowing an in-depth investigation of virus-host interactions on the whole plant level.
Collapse
Affiliation(s)
| | - Edgar Maiss
- Institute of Horticultural Production SystemsLeibniz University HannoverHannoverGermany
| | - Wulf Menzel
- Plant Virus DepartmentLeibniz Institute DSMZ – German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | | | | |
Collapse
|
4
|
Plum Pox Virus Genome-Based Vector Enables the Expression of Different Heterologous Polypeptides in Nicotiana benthamiana Plants. Processes (Basel) 2022. [DOI: 10.3390/pr10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Plant viral vectors have become a promising tool for the rapid and cost-effective production of recombinant proteins in plants. Among the numerous genera of viruses that have been used for heterologous expression, potyviruses offer several advantages, such as polyprotein expression strategy or a broad host range. In our work, the expression vectors pAD/pAD-agro based on the plum pox virus (PPV) genome were used for the heterologous expression of different foreign polypeptides: alfalfa mosaic virus capsid protein (AMV CP), zucchini yellow mosaic virus capsid protein (ZYMV CP), the small heat-shock protein of Cronobacter sakazakii fused with hexahistidine (sHSP-his), a fragment of influenza A virus hemagglutinin (HA2-2), influenza A virus protein PB1-F2, SARS-CoV-2 nucleocapsid protein (CoN2-his), and its N- and C-terminal fragments (CoN-1-his and CoN3-his, respectively), each fused with a hexahistidine anchor. Particular proteins differed in their accumulation, tissue localization, stability, and solubility. The accumulation rate of produced polypeptides varied from low (N, hemagglutinin fragment) to relatively high (plant viral CPs, N-terminal fragment of N, PB1-F2). Some proteins preferentially accumulated in roots (sHSP, hemagglutinin fragment, PB1-F2), showing signs of proteolytic degradation in leaf tissues. Thus, each expression requires an individual approach and optimization. Here, we summarize our several-year experiments and discuss the usefulness of the pAD/pADep vector system.
Collapse
|
5
|
Rocher M, Simon V, Jolivet MD, Sofer L, Deroubaix AF, Germain V, Mongrand S, German-Retana S. StREM1.3 REMORIN Protein Plays an Agonistic Role in Potyvirus Cell-to-Cell Movement in N. benthamiana. Viruses 2022; 14:574. [PMID: 35336981 PMCID: PMC8951588 DOI: 10.3390/v14030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
REMORIN proteins belong to a plant-specific multigene family that localise in plasma membrane nanodomains and in plasmodesmata. We previously showed that in Nicotiana benthamiana, group 1 StREM1.3 limits the cell-to-cell spread of a potexvirus without affecting viral replication. This prompted us to check whether an effect on viral propagation could apply to potyvirus species Turnip mosaic virus (TuMV) and Potato virus A (PVA). Our results show that StREM1.3 transient or stable overexpression in transgenic lines increases potyvirus propagation, while it is slowed down in transgenic lines underexpressing endogenous NbREMs, without affecting viral replication. TuMV and PVA infection do not alter the membranous localisation of StREM1.3. Furthermore, StREM1.3-membrane anchoring is necessary for its agonist effect on potyvirus propagation. StREM1.3 phosphocode seems to lead to distinct plant responses against potexvirus and potyvirus. We also showed that StREM1.3 interacts in yeast and in planta with the key potyviral movement protein CI (cylindrical inclusion) at the level of the plasma membrane but only partially at plasmodesmata pit fields. TuMV infection also counteracts StREM1.3-induced plasmodesmata callose accumulation at plasmodesmata. Altogether, these results showed that StREM1.3 plays an agonistic role in potyvirus cell-to-cell movement in N. benthamiana.
Collapse
Affiliation(s)
- Marion Rocher
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Vincent Simon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Luc Sofer
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| |
Collapse
|
6
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
7
|
Xie W, Marty DM, Xu J, Khatri N, Willie K, Moraes WB, Stewart LR. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC PLANT BIOLOGY 2021; 21:208. [PMID: 33952221 PMCID: PMC8097858 DOI: 10.1186/s12870-021-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined. RESULTS Infectious clones of an Ohio isolate of MDMV, MDMV OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi). CONCLUSIONS These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.
Collapse
Affiliation(s)
- Wenshuang Xie
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Dee Marie Marty
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Junhuan Xu
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Nitika Khatri
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Kristen Willie
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Lucy R Stewart
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA.
| |
Collapse
|
8
|
Zafirov D, Giovinazzo N, Bastet A, Gallois J. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2021; 22:334-347. [PMID: 33377260 PMCID: PMC7865081 DOI: 10.1111/mpp.13031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 05/04/2023]
Abstract
The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana-potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.
Collapse
|
9
|
Pollari M, De S, Wang A, Mäkinen K. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 2020; 16:e1008965. [PMID: 33031436 PMCID: PMC7575100 DOI: 10.1371/journal.ppat.1008965] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.
Collapse
Affiliation(s)
- Maija Pollari
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Swarnalok De
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| |
Collapse
|
10
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
11
|
Utilization of infectious clones to visualize Cassava brown streak virus replication in planta and gain insights into symptom development. Virus Genes 2019; 55:825-833. [PMID: 31388891 PMCID: PMC6831539 DOI: 10.1007/s11262-019-01697-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava yield losses across eastern and central Africa and is having a severe impact on food security across the region. Despite its importance, relatively little is known about the mechanisms behind CBSD viral infections. We have recently reported the construction of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) infectious clones (IC), which can be used to gain insights into the functions of viral proteins and sequences associated with symptom development. In this study, we perform the first reporter gene tagging of a CBSV IC, with the insertion of green fluorescent protein (GFP) sequence at two different genome positions. Nicotiana benthamiana infections with the CBSV_GFP ICs revealed active CBSV replication in inoculated leaves at 2-5 days post inoculation (dpi) and systemic leaves at 10-14 dpi. We also constructed the chimera CBSV_UCP IC, consisting of the CBSV genome with a UCBSV coat protein (CP) sequence replacement. N. benthamiana infections with CBSV_UCP revealed that the CBSV CP may be associated with high levels of viral accumulation and necrosis development during early infection. These initial manipulations pave the way for U/CBSV ICs to be used to understand U/CBSV biology that will inform vital CBSD control strategies.
Collapse
|
12
|
Mei Y, Liu G, Zhang C, Hill JH, Whitham SA. A sugarcane mosaic virus vector for gene expression in maize. PLANT DIRECT 2019; 3:e00158. [PMID: 31410390 PMCID: PMC6686331 DOI: 10.1002/pld3.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Zea mays L. ssp. mays (maize) is an important crop plant as well as model system for genetics and plant biology. The ability to select among different virus-based platforms for transient gene silencing or protein expression experiments is expected to facilitate studies of gene function in maize and complement experiments with stable transgenes. Here, we describe the development of a sugarcane mosaic virus (SCMV) vector for the purpose of protein expression in maize. An infectious SCMV cDNA clone was constructed, and heterologous genetic elements were placed between the protein 1 (P1) and helper component-proteinase (HC-Pro) cistrons in the SCMV genome. Recombinant SCMV clones engineered to express green fluorescent protein (GFP), β-glucuronidase (GUS), or bialaphos resistance (BAR) protein were introduced into sweet corn (Golden × Bantam) plants. Documentation of developmental time courses spanning maize growth from seedling to tasseling showed that the SCMV genome tolerates insertion of foreign sequences of at least 1,809 nucleotides at the P1/HC-Pro junction. Analysis of insert stability showed that the integrity of GFP and BAR coding sequences was maintained longer than that of the much larger GUS coding sequence. The SCMV isolate from which the expression vector is derived is able to infect several important maize inbred lines, suggesting that this SCMV vector has potential to be a valuable tool for gene functional analysis in a broad range of experimentally important maize genotypes.
Collapse
Affiliation(s)
- Yu Mei
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chunquan Zhang
- Department of AgricultureAlcorn State UniversityLormanMississippi
| | - John H. Hill
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| |
Collapse
|
13
|
Tomlinson KR, Pablo‐Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, Alicai T, Seal SE, Bailey AM, Foster GD. Cassava brown streak virus Ham1 protein hydrolyses mutagenic nucleotides and is a necrosis determinant. MOLECULAR PLANT PATHOLOGY 2019; 20:1080-1092. [PMID: 31154674 PMCID: PMC6640186 DOI: 10.1111/mpp.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
Collapse
Affiliation(s)
- Katie R. Tomlinson
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - José Luis Pablo‐Rodriguez
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- CINVESTAVCampus IrapuatoMexico
| | - Hamidun Bunawan
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan Malaysia, UKMBangi43600Selangor Darul EhsanMalaysia
| | - Sarah Nanyiti
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Patrick Green
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Josie Miller
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Susan E. Seal
- Natural Resources InstituteChatham Maritime, KentME4 4TBUK
| | - Andy M. Bailey
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Gary D. Foster
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| |
Collapse
|
14
|
Modarresi M, Javaran MJ, Shams-bakhsh M, Zeinali S, Behdani M, Mirzaee M. Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech 2018; 8:484. [PMID: 30467531 DOI: 10.1007/s13205-018-1500-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
In human, the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR2) is critical for tumor angiogenesis. This is a vital process for cancer tumor growth and metastasis. Blocking VEGF/VEGFR2 conjugation by antibodies inhibits the neovascularization and tumor metastasis. This investigation designed to use a transient expression platform for production of recombinant anti-VEGFR2 nanobody in tobacco plants. At first, anti-VEGFR2-specific nanobody gene was cloned in a Turnip mosaic virus (TuMV)-based vector, and then, it was expressed in Nicotiana benthamiana and Nicotiana tabacum cv. Xanthi transiently. The expression of nanobody in tobacco plants were confirmed by reverse transcription-polymerase chain reaction (RT-PCR), dot blot, enzyme-linked immunosorbent assays (ELISA), and Western blot analysis. It was shown that tobacco plants could accumulate nanobody up to level 0.45% of total soluble protein (8.3 µg/100 mg of fresh leaf). This is the first report of the successful expression of the camelied anti-VEFGR2 nanobody gene in tobacco plants using a plant viral vector. This system provides a fast solution for production of pharmaceutical and commercial proteins such as anti-cancer nanobodies in tobacco plants.
Collapse
|
15
|
Sun H, Shen L, Qin Y, Liu X, Hao K, Li Y, Wang J, Yang J, Wang F. CLC-Nt1 affects Potato Virus Y infection via regulation of endoplasmic reticulum luminal Ph. THE NEW PHYTOLOGIST 2018; 220:539-552. [PMID: 30022473 DOI: 10.1111/nph.15310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Chloride channel (CLC) proteins are important anion transporters conserved in organisms ranging from bacteria and yeast to plants and animals. According to sequence comparison, some plant CLCs are predicted to function as Cl- /H+ antiporters, but not Cl- channels. However, no direct evidence was provided to verify the role of these plant CLCs in regulating the pH of the intracellular compartment. We identified tobacco CLC-Nt1 interacting with the Potato virus Y (PVY) 6K2 protein. To investigate its physiological function, homologous genes of CLC-Nt1 in Nicotiana benthamiana were knocked out using the CRISPR/Cas9 system. Complementation experiments were subsequently performed by expression of wild-type or point-mutated CLC-Nt1 in knockout mutants. The data presented herein demonstrate that CLC-Nt1 is localized at endoplasmic reticulum (ER). Using a pH-sensitive fluorescent protein (pHluorin), we found that loss of CLC-Nt1 function resulted in a decreased ER luminal pH. Secreted GFP (secGFP) was retained mostly in ER in knockout mutants, indicating that CLC-Nt1 is also involved in protein secretion. PVY infection induced a rise in ER luminal pH, which was dependent on functional CLC-Nt1. By contrast, loss of CLC-Nt1 function inhibited PVY intracellular replication and systemic infection. We propose that PVY alters ER luminal pH for infection in a CLC-Nt1-dependent manner.
Collapse
Affiliation(s)
- Hangjun Sun
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuanxia Qin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kaiqiang Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
16
|
Lee MF, Chiang CH, Li YL, Wang NM, Song PP, Lin SJ, Chen YH. Oral edible plant vaccine containing hypoallergen of American cockroach major allergen Per a 2 prevents roach-allergic asthma in a murine model. PLoS One 2018; 13:e0201281. [PMID: 30059516 PMCID: PMC6066233 DOI: 10.1371/journal.pone.0201281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Background American cockroaches (Periplaneta americana) are an important indoor allergen source and a major risk factor for exacerbations and poor control of asthma. We previously reported that allergen components from American cockroaches exhibit varying levels of pathogenicity. Sensitization to major American cockroach allergen, Per a 2, correlated with more severe clinical phenotypes among patients with allergic airway diseases. Materials and methods In this study, we examined whether oral plant vaccine-encoding full-length Per a 2 clone-996 or its hypoallergenic clone-372 could exert a prophylactic role in Per a 2-sensitized mice. The cDNAs coding Per a 2–996 and Per a 2–372 were inserted into TuMV vector and expressed in Chinese cabbage. Adult female BALB/c mice were fed with the cabbage extracts for 21 days and subsequently underwent two-step sensitization with recombinant Per a 2. Results Per a 2-specific IgE measured by in-house ELISA in the sera of Per a 2-372-treated groups were significantly lower than in the control groups after allergen challenge but not the Per a 2-996-treated group. Moreover, Per a 2–372 vaccine markedly decreased airway hyper-responsiveness and infiltration of inflammatory cells into the lungs, as well as reduced mRNA expression of IL-4 and IL-13 in comparison with the control mice. Conclusion Our data suggest that oral administration of edible plant vaccine encoding Per a 2 hypo-allergen may be used as a prophylactic strategy against the development of cockroach allergy.
Collapse
Affiliation(s)
- Mey-Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Lan Li
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Nancy M. Wang
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Pei-Pong Song
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shyh-Jye Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Bastet A, Lederer B, Giovinazzo N, Arnoux X, German‐Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S, Lemaire O, Robaglia C, Gallois J. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1569-1581. [PMID: 29504210 PMCID: PMC6097130 DOI: 10.1111/pbi.12896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 05/19/2023]
Abstract
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance-breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof-of-concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans-species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad-spectrum and high durability resistance using recent genome editing techniques.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | | | | - Xavier Arnoux
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Sylvie German‐Retana
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Catherine Reinbold
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Véronique Brault
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Damien Garcia
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)UPR 2357StrasbourgFrance
| | - Samia Djennane
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Sophie Gersch
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Olivier Lemaire
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Christophe Robaglia
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | |
Collapse
|
18
|
Abdelkefi H, Sugliani M, Ke H, Harchouni S, Soubigou‐Taconnat L, Citerne S, Mouille G, Fakhfakh H, Robaglia C, Field B. Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:634-646. [PMID: 28220595 PMCID: PMC6638062 DOI: 10.1111/mpp.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/21/2023]
Abstract
Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.
Collapse
Affiliation(s)
- Hela Abdelkefi
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Matteo Sugliani
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Hang Ke
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Seddik Harchouni
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Paris‐Sud, Université Evry, Université Paris‐Saclay, Bâtiment 630Orsay91405France
- Paris Diderot, Sorbonne Paris‐CitéInstitute of Plant Sciences Paris‐Saclay IPS2, Bâtiment 630Orsay91405France
| | - Sylvie Citerne
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Gregory Mouille
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Hatem Fakhfakh
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
| | - Christophe Robaglia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ben Field
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| |
Collapse
|
19
|
Cui H, Wang A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J Virol 2016; 90:5119-5131. [PMID: 26962227 PMCID: PMC4859702 DOI: 10.1128/jvi.00024-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
20
|
Seo JK, Choi HS, Kim KH. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci Rep 2016; 6:22436. [PMID: 26926710 PMCID: PMC4772626 DOI: 10.1038/srep22436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Transient gene expression approaches are valuable tools for rapid introduction of genes of interest and characterization of their functions in plants. Although agroinfiltration is the most effectively and routinely used method for transient expression of multiple genes in various plant species, this approach has been largely unsuccessful in soybean. In this study, we engineered soybean mosaic virus (SMV) as a dual-gene delivery vector to simultaneously deliver and express two genes in soybean cells. We further show the application of the SMV-based dual vector for a bimolecular fluorescence complementation assay to visualize in vivo protein-protein interactions in soybean and for a co-immunoprecipitation assay to identify cellular proteins interacting with SMV helper component protease. This approach provides a rapid and cost-effective tool for transient introduction of multiple traits into soybean and for in vivo characterization of the soybean cellular protein interaction network.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
21
|
Kang M, Seo JK, Choi H, Choi HS, Kim KH. Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered of Zucchini yellow mosaic virus. THE PLANT PATHOLOGY JOURNAL 2016; 32:70-6. [PMID: 26889118 PMCID: PMC4755678 DOI: 10.5423/ppj.nt.08.2015.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 05/06/2023]
Abstract
The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.
Collapse
Affiliation(s)
- Minji Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
- Corresponding author. Phone) +82-2-880-4677, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|
22
|
Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberté JF. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles. J Virol 2015; 89:12441-56. [PMID: 26423955 PMCID: PMC4665257 DOI: 10.1128/jvi.02138-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/26/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.
Collapse
Affiliation(s)
- Juan Wan
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Kaustuv Basu
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
23
|
Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberté JF. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles. J Virol 2015. [PMID: 26423955 DOI: 10.1128/jvi.02138.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
UNLABELLED Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.
Collapse
Affiliation(s)
- Juan Wan
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Kaustuv Basu
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
24
|
Ouibrahim L, Rubio AG, Moretti A, Montané MH, Menand B, Meyer C, Robaglia C, Caranta C. Potyviruses differ in their requirement for TOR signalling. J Gen Virol 2015; 96:2898-2903. [DOI: 10.1099/vir.0.000186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laurence Ouibrahim
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
| | - Ana Giner Rubio
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| | - André Moretti
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| | - Marie-Hélène Montané
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
| | - Benoît Menand
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, Versailles cedex 78026, France
| | - Christophe Robaglia
- CEA, IBEB, Marseille F-13009, France
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
| | - Carole Caranta
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| |
Collapse
|
25
|
Majer E, Navarro JA, Daròs JA. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 2015; 10:1792-802. [PMID: 26147811 DOI: 10.1002/biot.201500042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/11/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
26
|
The Multiplicity of Cellular Infection Changes Depending on the Route of Cell Infection in a Plant Virus. J Virol 2015; 89:9665-75. [PMID: 26178988 DOI: 10.1128/jvi.00537-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The multiplicity of cellular infection (MOI) is the number of virus genomes of a given virus species that infect individual cells. This parameter chiefly impacts the severity of within-host population bottlenecks as well as the intensity of genetic exchange, competition, and complementation among viral genotypes. Only a few formal estimations of the MOI currently are available, and most theoretical reports have considered this parameter as constant within the infected host. Nevertheless, the colonization of a multicellular host is a complex process during which the MOI may dramatically change in different organs and at different stages of the infection. We have used both qualitative and quantitative approaches to analyze the MOI during the colonization of turnip plants by Turnip mosaic virus. Remarkably, different MOIs were observed at two phases of the systemic infection of a leaf. The MOI was very low in primary infections from virus circulating within the vasculature, generally leading to primary foci founded by a single genome. Each lineage then moved from cell to cell at a very high MOI. Despite this elevated MOI during cell-to-cell progression, coinfection of cells by lineages originating in different primary foci is severely limited by the rapid onset of a mechanism inhibiting secondary infection. Thus, our results unveil an intriguing colonization pattern where individual viral genomes initiate distinct lineages within a leaf. Kin genomes then massively coinfect cells, but coinfection by two distinct lineages is strictly limited. IMPORTANCE The MOI is the size of the viral population colonizing cells and defines major phenomena in virus evolution, like the intensity of genetic exchange and the size of within-host population bottlenecks. However, few studies have quantified the MOI, and most consider this parameter as constant during infection. Our results reveal that the MOI can depend largely on the route of cell infection in a systemically infected leaf. The MOI is usually one genome per cell when cells are infected from virus particles moving long distances in the vasculature, whereas it is much higher during subsequent cell-to-cell movement in mesophyll. However, a fast-acting superinfection exclusion prevents cell coinfection by merging populations originating from different primary foci within a leaf. This complex colonization pattern results in a situation where within-cell interactions are occurring almost exclusively among kin and explains the common but uncharacterized phenomenon of genotype spatial segregation in infected plants.
Collapse
|
27
|
Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté JF. The Vesicle-Forming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection. J Virol 2015. [PMID: 25878114 DOI: 10.1128/jvi.00503-515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
UNLABELLED Positive-sense RNA viruses remodel host cell endomembranes to generate quasi-organelles known as "viral factories" to coordinate diverse viral processes, such as genome translation and replication. It is also becoming clear that enclosing viral RNA (vRNA) complexes within membranous structures is important for virus cell-to-cell spread throughout the host. In plant cells infected by turnip mosaic virus (TuMV), a member of the family Potyviridae, peripheral motile endoplasmic reticulum (ER)-derived viral vesicles are produced that carry the vRNA to plasmodesmata for delivery into adjacent noninfected cells. The viral protein 6K2 is responsible for the formation of these vesicles, but how 6K2 is involved in their biogenesis is unknown. We show here that 6K2 is associated with cellular membranes. Deletion mapping and site-directed mutagenesis experiments defined a soluble N-terminal 12-amino-acid stretch, in particular a potyviral highly conserved tryptophan residue and two lysine residues that were important for vesicle formation. When the tryptophan residue was changed into an alanine in the viral polyprotein, virus replication still took place, albeit at a reduced level, but cell-to-cell movement of the virus was abolished. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation experiments showed that 6K2 interacted with Sec24a, a COPII coatomer component. Appropriately, TuMV systemic movement was delayed in an Arabidopsis thaliana mutant line defective in Sec24a. Intercellular movement of TuMV replication vesicles thus requires ER export of 6K2, which is mediated by the interaction of the N-terminal domain of the viral protein with Sec24a. IMPORTANCE Many plant viruses remodel the endoplasmic reticulum (ER) to generate vesicles that are associated with the virus replication complex. The viral protein 6K2 of turnip mosaic virus (TuMV) is known to induce ER-derived vesicles that contain vRNA as well as viral and host proteins required for vRNA synthesis. These vesicles not only sustain vRNA synthesis, they are also involved in the intercellular trafficking of vRNA. In this investigation, we found that the N-terminal soluble domain of 6K2 is required for ER export of the protein and for the formation of vesicles. ER export is not absolutely required for vRNA replication but is necessary for virus cell-to-cell movement. Furthermore, we found that 6K2 physically interacts with the COPII coatomer Sec24a and that an Arabidopsis thaliana mutant line with a defective Sec24a shows a delay in the systemic infection by TuMV.
Collapse
Affiliation(s)
- Jun Jiang
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Camilo Patarroyo
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
28
|
The Vesicle-Forming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection. J Virol 2015; 89:6695-710. [PMID: 25878114 DOI: 10.1128/jvi.00503-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Positive-sense RNA viruses remodel host cell endomembranes to generate quasi-organelles known as "viral factories" to coordinate diverse viral processes, such as genome translation and replication. It is also becoming clear that enclosing viral RNA (vRNA) complexes within membranous structures is important for virus cell-to-cell spread throughout the host. In plant cells infected by turnip mosaic virus (TuMV), a member of the family Potyviridae, peripheral motile endoplasmic reticulum (ER)-derived viral vesicles are produced that carry the vRNA to plasmodesmata for delivery into adjacent noninfected cells. The viral protein 6K2 is responsible for the formation of these vesicles, but how 6K2 is involved in their biogenesis is unknown. We show here that 6K2 is associated with cellular membranes. Deletion mapping and site-directed mutagenesis experiments defined a soluble N-terminal 12-amino-acid stretch, in particular a potyviral highly conserved tryptophan residue and two lysine residues that were important for vesicle formation. When the tryptophan residue was changed into an alanine in the viral polyprotein, virus replication still took place, albeit at a reduced level, but cell-to-cell movement of the virus was abolished. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation experiments showed that 6K2 interacted with Sec24a, a COPII coatomer component. Appropriately, TuMV systemic movement was delayed in an Arabidopsis thaliana mutant line defective in Sec24a. Intercellular movement of TuMV replication vesicles thus requires ER export of 6K2, which is mediated by the interaction of the N-terminal domain of the viral protein with Sec24a. IMPORTANCE Many plant viruses remodel the endoplasmic reticulum (ER) to generate vesicles that are associated with the virus replication complex. The viral protein 6K2 of turnip mosaic virus (TuMV) is known to induce ER-derived vesicles that contain vRNA as well as viral and host proteins required for vRNA synthesis. These vesicles not only sustain vRNA synthesis, they are also involved in the intercellular trafficking of vRNA. In this investigation, we found that the N-terminal soluble domain of 6K2 is required for ER export of the protein and for the formation of vesicles. ER export is not absolutely required for vRNA replication but is necessary for virus cell-to-cell movement. Furthermore, we found that 6K2 physically interacts with the COPII coatomer Sec24a and that an Arabidopsis thaliana mutant line with a defective Sec24a shows a delay in the systemic infection by TuMV.
Collapse
|
29
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
30
|
Seo JK, Kwon SJ, Cho WK, Choi HS, Kim KH. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci Rep 2014; 4:5905. [PMID: 25082428 PMCID: PMC5379993 DOI: 10.1038/srep05905] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023] Open
Abstract
Effector-triggered immunity (ETI) is an active immune response triggered by interactions between host resistance proteins and their cognate effectors. Although ETI is often associated with the hypersensitive response (HR), various R genes mediate an HR-independent process known as extreme resistance (ER). In the soybean-Soybean mosaic virus (SMV) pathosystem, the strain-specific CI protein of SMV functions as an effector of Rsv3-mediated ER. In this study, we used the soybean (Rsv3)-SMV (CI) pathosystem to gain insight into the molecular signaling pathway involved in ER. We used genome-wide transcriptome analysis to identify a subset of the type 2C protein phophatase (PP2C) genes that are specifically up-regulated in Rsv3-mediated ER. Gain-of-function analysis of the most significantly expressed soybean PP2C gene, GmPP2C3a, showed that ABA-induced GmPP2C3a functions as a key regulator of Rsv3-mediated ER. Our results further suggest that the primary mechanism of ER against viruses is the inhibition of viral cell-to-cell movement by callose deposition in an ABA signaling-dependent manner.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sun-Jung Kwon
- Horticultural and Crop Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-310, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
31
|
Majer E, Salvador Z, Zwart MP, Willemsen A, Elena SF, Daròs JA. Relocation of the NIb gene in the tobacco etch potyvirus genome. J Virol 2014; 88:4586-90. [PMID: 24453370 PMCID: PMC3993717 DOI: 10.1128/jvi.03336-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/16/2014] [Indexed: 11/20/2022] Open
Abstract
Potyviruses express most of their proteins from a long open reading frame that is translated into a large polyprotein processed by three viral proteases. To understand the constraints on potyvirus genome organization, we relocated the viral RNA-dependent RNA polymerase (NIb) cistron to all possible intercistronic positions of the Tobacco etch virus (TEV) polyprotein. Only viruses with NIb at the amino terminus of the polyprotein or in between P1 and HC-Pro were viable in tobacco plants.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zaira Salvador
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
32
|
Pille J, Cardinale D, Carette N, Di Primo C, Besong-Ndika J, Walter J, Lecoq H, van Eldijk MB, Smits FCM, Schoffelen S, van Hest JCM, Mäkinen K, Michon T. General Strategy for Ordered Noncovalent Protein Assembly on Well-Defined Nanoscaffolds. Biomacromolecules 2013; 14:4351-9. [DOI: 10.1021/bm401291u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jan Pille
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela Cardinale
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| | - Noëlle Carette
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| | | | - Jane Besong-Ndika
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- Department
of Food and Environmental Sciences, Latokartanonkaari 11, FI-00014 University of Helsinki, Finland
| | - Jocelyne Walter
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- CNRS, Délégation Aquitaine, esplanade des Arts et Métiers, F-33402
Talence Cedex, France
| | - Hervé Lecoq
- UR
407 pathologie Végétale, INRA, F-84140 Montfavet, France
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ferdinanda C. M. Smits
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sanne Schoffelen
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kristiina Mäkinen
- Department
of Food and Environmental Sciences, Latokartanonkaari 11, FI-00014 University of Helsinki, Finland
| | - Thierry Michon
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| |
Collapse
|
33
|
Virus scaffolds as enzyme nano-carriers. Trends Biotechnol 2012; 30:369-76. [PMID: 22560649 DOI: 10.1016/j.tibtech.2012.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 12/15/2022]
Abstract
The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies.
Collapse
|
34
|
Bedoya LC, Martínez F, Orzáez D, Daròs JA. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. PLANT PHYSIOLOGY 2012; 158:1130-8. [PMID: 22238422 PMCID: PMC3291247 DOI: 10.1104/pp.111.192922] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/11/2012] [Indexed: 05/20/2023]
Abstract
Insertion of reporter genes into plant virus genomes is a common experimental strategy to research many aspects of the viral infection dynamics. Their numerous advantages make fluorescent proteins the markers of choice in most studies. However, the use of fluorescent proteins still has some limitations, such as the need of specialized material and facilities to detect the fluorescence. Here, we demonstrate a visual reporter marker system to track virus infection and movement through the plant. The reporter system is based on expression of Antirrhinum majus MYB-related Rosea1 (Ros1) transcription factor (220 amino acids; 25.7 kD) that activates a series of biosynthetic genes leading to accumulation of colored anthocyanins. Using two different tobacco etch potyvirus recombinant clones tagged with Ros1, we show that infected tobacco (Nicotiana tabacum) tissues turn bright red, demonstrating that in this context, the sole expression of Ros1 is sufficient to induce pigment accumulation to a level readily detectable to the naked eye. This marker system also reports viral load qualitatively and quantitatively by means of a very simple extraction process. The Ros1 marker remained stable within the potyvirus genome through successive infectious passages from plant to plant. The main limitation of this marker system is that color output will depend on each particular plant host-virus combination and must be previously tested. However, our experiments demonstrate accurate tracking of turnip mosaic potyvirus infecting Arabidopsis (Arabidopsis thaliana) and either tobacco mosaic virus or potato X virus infecting Nicotiana benthamiana, stressing the general applicability of the method.
Collapse
Affiliation(s)
| | | | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
35
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
36
|
Yap YK, Duangjit J, Panyim S. N-terminal of Papaya ringspot virus type-W (PRSV-W) helper component proteinase (HC-Pro) is essential for PRSV systemic infection in zucchini. Virus Genes 2009; 38:461-7. [PMID: 19322647 DOI: 10.1007/s11262-009-0348-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/09/2009] [Indexed: 11/24/2022]
Abstract
The Papaya ringspot virus (PRSV) is one of the limiting factors affecting papaya and cucurbits production worldwide. PRSV belongs to the potyvirus genus which consists of 30% of known plant viruses. Two serological closely related strains, namely type-P and -W, have been reported. PRSV type-P infects both papaya and cucurbits, while type-W infects only cucurbits. The genome of PRSV Thailand isolate consists of a (+) RNA molecule of 10323 nucleotides, which is first translated into a single polypeptide and further cleaved by three viral encoded proteases into ten gene products. Helper-component proteinase (HC-Pro), which is encoded by the 2nd cistron of the potyviral genome, has been implicated in aphid transmission, viral movement, viral replication and suppression of host viral defense system. Studies of the Tobacco etch virus (TEV), Lettuce mosaic virus (LMV), Onion yellow dwarf virus (OYDV) and Wheat streak mosaic virus (WSMV) indicate that the N-terminal of HC-Pro is dispensable for systemic infection in their respective hosts. However, deletion analysis of the Tobacco vein mottling virus (TVMV) indicates otherwise. In this study, we examined whether HC-Pro is essential for PRSV systemic infection in cucurbits and the role of its N-terminal in systemic infection. Our results indicated that HC-Pro is indispensable for PRSV infection in zucchini. Deletion analysis of PRSV HC-Pro showed that deletion of as few as 54 amino acids at the N-terminal of HC-Pro completely abolished the infectivity of the corresponding cDNA clone. Therefore, it is proposed that the N-terminal of HC-Pro is involved in systemic infection of PRSV, in addition to its conserved function in aphid transmission.
Collapse
Affiliation(s)
- Yun-Kiam Yap
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus, 25/25, Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| | | | | |
Collapse
|
37
|
Seo JK, Lee HG, Kim KH. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of a Soybean mosaic virus-based vector. Arch Virol 2008; 154:87-99. [PMID: 19096905 DOI: 10.1007/s00705-008-0286-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Plant virus-based vectors provide attractive and valuable tools for conventional transgenic technology and gene function studies in plants. In the present study, we established the infectivity of intact plasmid DNA of Soybean mosaic virus (SMV) cDNA upon simple rub-inoculation of soybean leaves by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Furthermore, we engineered this SMV cDNA clone as a gene delivery vector for systemic expression of foreign proteins in soybean. Using this SMV-based vector, several genes with different biological activities were successfully expressed and stably maintained following serial plant passage in soybean. Thus, DNA-mediated gene delivery using this SMV-based vector provides a rapid and cost-effective approach for the overproduction of valuable proteins and for the evaluation of new traits in soybean after simple rub-inoculation onto leaves.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
38
|
Kelloniemi J, Mäkinen K, Valkonen JPT. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res 2008; 135:282-91. [PMID: 18511144 DOI: 10.1016/j.virusres.2008.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 03/25/2008] [Accepted: 04/07/2008] [Indexed: 01/24/2023]
Abstract
Three heterologous proteins were simultaneously expressed from a chimeric potyvirus Potato virus A (PVA) in Nicotiana benthamiana. The genes for green fluorescent protein of Aequoria victoriae ("G"; 714 nucleotides, nt), luciferase of Renilla reniformis ("L", 933 nt) and beta-glucuronidase of Escherichia coli ("U", 1806 nt) were inserted into the engineered cloning sites at the N-terminus of the P1 domain, the junction of P1 and helper component protein (HC-Pro), and the junction of the viral replicase (NIb) and coat protein (CP), respectively, in an infectious PVA cDNA. The proteins were expressed as part of the viral polyprotein and subsequently released by cleavage at the flanking proteolytic cleavage sites by P1 (one site) or the NIa-Pro proteinase (other sites). The engineered viral genome (pGLU, 13311 nt) was 39.2% larger than wild-type PVA (9565 nt) and infected plants of N. benthamiana systemically. pGLU was stable and expressed all three heterologous proteins, also following the second infection cycle initiated by sap-inoculation of new plants with the progeny viruses. The gene for GUS showed some inherent instabilities, as also reported in other studies. Accumulation of pGLU in infected leaves was lower by a magnitude as compared to the vector viruses pG0U and p0LU used to express two heterologous proteins. Hence, pGLU may have reached the maximum genome size that can still function and complete the PVA infection cycle. Examination of virions by electron microscopy indicated that the virion lengths of PVA chimera with various numbers of inserts were directly proportional to their genome lengths.
Collapse
Affiliation(s)
- Jani Kelloniemi
- Department of Applied Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
39
|
Thivierge K, Cotton S, Dufresne PJ, Mathieu I, Beauchemin C, Ide C, Fortin MG, Laliberté JF. Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology 2008; 377:216-25. [PMID: 18501944 DOI: 10.1016/j.virol.2008.04.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/06/2008] [Accepted: 04/16/2008] [Indexed: 11/25/2022]
Abstract
Eukaryotic elongation factor 1-alpha (eEF1A) was identified as an interactor of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp) and VPg-protease (VPg-Pro) using tandem affinity purification and/or in vitro assays. Subcellular fractionation experiments revealed that the level of eEF1A substantially increased in membrane fractions upon TuMV infection. Replication of TuMV occurs in cytoplasmic membrane vesicles, which are induced by 6K-VPg-Pro. Confocal microscopy indicated that eEF1A was included in these vesicles. To confirm that eEF1A was found in replication vesicles, we constructed an infectious recombinant TuMV that contains an additional copy of the 6K protein fused to the green fluorescent protein (GFP). In cells infected with this recombinant TuMV, fluorescence emitted by 6KGFP was associated with cytoplasmic membrane vesicles that contained VPg-Pro, the eukaryotic initiation factor (iso) 4E, the poly(A)-binding protein, the heat shock cognate 70-3 protein, and eEF1A. These results suggest that TuMV-induced membrane vesicles host at least three plant translation factors in addition to the viral replication proteins.
Collapse
Affiliation(s)
- Karine Thivierge
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen CC, Chen TC, Raja JAJ, Chang CA, Chen LW, Lin SS, Yeh SD. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Res 2007; 130:210-27. [PMID: 17689817 DOI: 10.1016/j.virusres.2007.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/09/2007] [Accepted: 06/19/2007] [Indexed: 11/29/2022]
Abstract
The N-terminal (NT) regions of particular protein-coding sequences are generally used for in-frame insertion of heterologous open reading frames (ORFs) in potyviral vectors for protein expression in plants. An infectious cDNA clone of Turnip mosaic virus (TuMV) isolate YC5 was engineered at the generally used NT regions of HC-Pro and CP, and other possibly permissive sites to investigate their effectiveness to express the GFP (jellyfish green fluorescent protein) and Der p 5 (allergen from the dust mite, Dermatophagoides pteronyssinus) ORFs. The results demonstrated the permissiveness of the NT regions of P3, CIP and NIb to carry the ORFs and express the translates as part of the viral polyprotein, the processing of which released free-form proteins in the host cell milieu. However, these sites varied in their permissiveness to retain the ORFs intact and hence affect the heterologous protein expression. Moreover, strong influence of the inserted ORF and host plants in determining the permissiveness of a viral genomic context to stably carry the alien ORFs and hence to support their prolonged expression was also noticed. In general, the engineered sites were relatively more permissive to the GFP ORF than to the Der p 5 ORF. Among the hosts, the local lesion host, Chenopodium quinoa Willd. showed the highest extent of support to TuMV to stably carry the heterologous ORFs at the engineered sites and the protein expression therefrom. Among the systemic hosts, Nicotiana benthamiana Domin proved more supportive to TuMV to carry and express the heterologous ORFs than the Brassica hosts, whereas the protein expression levels were significantly higher and more stable in the plants of Brassica campestris L. var. chinensis and B. campestris L. var. ching-geeng than those in the plants of B. juncea L. and B. campestris L. var. pekinensis.
Collapse
Affiliation(s)
- Chin-Chih Chen
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Tremblay A, Beauchemin C, Séguin A, Laliberté JF. Reactivation of an integrated disabled viral vector using a Cre-loxP recombination system in Arabidopsis thaliana. Transgenic Res 2006; 16:213-22. [PMID: 17103245 DOI: 10.1007/s11248-006-9038-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 08/29/2006] [Indexed: 11/27/2022]
Abstract
We developed an inactivated DNA replicon of Turnip Mosaic Virus (TuMV), which was reactivated by a recombination event based on the Cre-loxP system. Viral replication was prevented by the insertion of a translation terminator sequence flanked by two loxP sites at the junction of the P1-HCPro-coding genes. In vitro recombination was tested with purified Cre, which excised the floxed sequence from the TuMV DNA, leaving a single loxP site in the reactivated viral genome, and restored the open reading frame of the replicon. Arabidopsis thaliana plants were made transgenic for the inactivated TuMV replicon. Removal of the translation terminator sequence was achieved by the controlled expression of Cre. Delivery of the Cre recombinase to the transgenic plants was obtained by three methods: agroinfiltration, PVX-based production, or transgenic chemical-inducible expression. In each case, reactivation of TuMV replication was observed.
Collapse
Affiliation(s)
- Arianne Tremblay
- Centre de foresterie des Laurentides, Ressources naturelles du Canada, Services canadien des forêts, 1055 rue du PEPS, G1V 4C7, Ste-Foy, QC, Canada
| | | | | | | |
Collapse
|
42
|
García JA, Lucini C, García B, Alamillo JM, López-Moya JJ. The use of Plum pox virus as a plant expression vector. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.01012.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kelloniemi J, Mäkinen K, Valkonen JPT. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants. Biochimie 2006; 88:505-13. [PMID: 16431010 DOI: 10.1016/j.biochi.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 10/28/2005] [Indexed: 11/26/2022]
Abstract
Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.
Collapse
Affiliation(s)
- Jani Kelloniemi
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|