1
|
McCoullough LC, Sadauskas T, Sozzi V, Mak KY, Mason H, Littlejohn M, Revill PA. The in vitro replication phenotype of hepatitis B virus (HBV) splice variants Sp3 and Sp9 and their impact on wild-type HBV replication. J Virol 2024; 98:e0153823. [PMID: 38501924 PMCID: PMC11019940 DOI: 10.1128/jvi.01538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. IMPORTANCE The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.
Collapse
Affiliation(s)
- Laura C. McCoullough
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Tomas Sadauskas
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kai Yan Mak
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
2
|
Dobrica MO, Varghese CS, Harris JM, Ferguson J, Magri A, Arnold R, Várnai C, Parish JL, McKeating JA. CTCF regulates hepatitis B virus cccDNA chromatin topology. J Gen Virol 2024; 105. [PMID: 38175123 DOI: 10.1099/jgv.0.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Collapse
Affiliation(s)
- Mihaela Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Christy Susan Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Present address: Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
4
|
Sozzi V, McCoullough L, Mason H, Littlejohn M, Revill P. The in vitro replication phenotype of hepatitis B virus (HBV) splice variant Sp1. Virology 2022; 574:65-70. [DOI: 10.1016/j.virol.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022]
|
5
|
Maslac O, Wagner J, Sozzi V, Mason H, Svarovskaia J, Tan S, Gaggar A, Locarnini S, Yuen L, Littlejohn M, Revill PA. Secreted hepatitis B virus splice variants differ by HBV genotype and across phases of chronic hepatitis B infection. J Viral Hepat 2022; 29:604-615. [PMID: 35582878 PMCID: PMC9544302 DOI: 10.1111/jvh.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/09/2022]
Abstract
Chronic hepatitis B (CHB) is characterized by progression through different phases of hepatitis B virus (HBV) infection and disease. Although not necessary for HBV replication, there is increasing evidence that HBV splice variants are associated with liver disease progression and pathogenesis. However, there have been no studies till date on the frequency or diversity of splice variants for different HBV genotypes across the phases of CHB. Next generation sequencing data from 404 patient samples of HBV genotype A, B, C or D in Phase I, Phase II or Phase IV of CHB was analysed for HBV splice variants using an in house bioinformatics pipeline. HBV splice variants differed in frequency and type by genotype and phase of natural history. Splice variant Sp1 was the most frequently detected (206/404, 51% of patients), followed by Sp13 (151/404 37% of patients). The frequency of variants was generally highest in Phase II (123/165, 75% of patients), a phase typically associated with enhanced immune activation, followed by Phase I (69/99, 70% of patients). Splice variants were associated with reduced hepatitis B e antigen (HBeAg) levels and statistically reduced likelihood of achieving HBsAg loss (functional cure) in Phase II patients for Sp1 and Sp13 (p = .0014 and .0156, respectively). The frequency of HBV splice variants in patient serum differed markedly by HBV genotype and phase of CHB natural history. The increased levels of HBV splice variants detected in CHB phase II patients compared with the higher replicative Phase I in particular warrants further investigation.
Collapse
Affiliation(s)
- Olivia Maslac
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia,Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
| | - Josef Wagner
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Vitina Sozzi
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Hugh Mason
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | | | | | | | - Stephen Locarnini
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Lilly Yuen
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Margaret Littlejohn
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia,Department of Infectious DiseasesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Peter A. Revill
- Division of Molecular Research and DevelopmentVictorian Infectious Diseases Reference LaboratoryPeter Doherty Institute for Infection and ImmunityRoyal Melbourne HospitalMelbourneVictoriaAustralia,Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia,Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Kremsdorf D, Lekbaby B, Bablon P, Sotty J, Augustin J, Schnuriger A, Pol J, Soussan P. Alternative splicing of viral transcripts: the dark side of HBV. Gut 2021; 70:2373-2382. [PMID: 34535538 DOI: 10.1136/gutjnl-2021-324554] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Regulation of alternative splicing is one of the most efficient mechanisms to enlarge the proteomic diversity in eukaryotic organisms. Many viruses hijack the splicing machinery following infection to accomplish their replication cycle. Regarding the HBV, numerous reports have described alternative splicing events of the long viral transcript (pregenomic RNA), which also acts as a template for viral genome replication. Alternative splicing of HBV pregenomic RNAs allows the synthesis of at least 20 spliced variants. In addition, almost all these spliced forms give rise to defective particles, detected in the blood of infected patients. HBV-spliced RNAs have long been unconsidered, probably due to their uneasy detection in comparison to unspliced forms as well as for their dispensable role during viral replication. However, recent data highlighted the relevance of these HBV-spliced variants through (1) the trans-regulation of the alternative splicing of viral transcripts along the course of liver disease; (2) the ability to generate defective particle formation, putative biomarker of the liver disease progression; (3) modulation of viral replication; and (4) their intrinsic propensity to encode for novel viral proteins involved in liver pathogenesis and immune response. Altogether, tricky regulation of HBV alternative splicing may contribute to modulate multiple viral and cellular processes all along the course of HBV-related liver disease.
Collapse
Affiliation(s)
- Dina Kremsdorf
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Pierre Bablon
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jules Sotty
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Aurélie Schnuriger
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| | - Jonathan Pol
- Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics ann Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France .,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| |
Collapse
|
7
|
Liu Y, Veeraraghavan V, Pinkerton M, Fu J, Douglas MW, George J, Tu T. Viral Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Occurrence and Recurrence. Front Microbiol 2021; 12:665201. [PMID: 34194408 PMCID: PMC8236856 DOI: 10.3389/fmicb.2021.665201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the fourth leading cause of cancer-related death. The most common risk factor for developing HCC is chronic infection with hepatitis B virus (HBV). Early stages of HBV-related HCC (HBV-HCC) are generally asymptomatic. Moreover, while serum alpha-fetoprotein (AFP) and abdominal ultrasound are widely used to screen for HCC, they have poor sensitivity. Thus, HBV-HCC is frequently diagnosed at an advanced stage, in which there are limited treatment options and high mortality rates. Serum biomarkers with high sensitivity and specificity are crucial for earlier diagnosis of HCC and improving survival rates. As viral-host interactions are key determinants of pathogenesis, viral biomarkers may add greater diagnostic power for HCC than host biomarkers alone. In this review, we summarize recent research on using virus-derived biomarkers for predicting HCC occurrence and recurrence; including circulating viral DNA, RNA transcripts, and viral proteins. Combining these viral biomarkers with AFP and abdominal ultrasound could improve sensitivity and specificity of early diagnosis, increasing the survival of patients with HBV-HCC. In the future, as the mechanisms that drive HBV-HCC to become clearer, new biomarkers may be identified which can further improve early diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Vaishnavi Veeraraghavan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Monica Pinkerton
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,School of Medical Science, The University of Sydney, Camperdown, NSW, Australia
| | - Jianjun Fu
- Department of Infectious Diseases, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Zhang X, Zhu S, Zhu W, Li A, Zhu N. A Newly Identified Natural Splice Variant ASN Enhances Hepatitis B Virus Amplification. Viral Immunol 2015; 29:27-32. [PMID: 26501888 DOI: 10.1089/vim.2015.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection causes approximately one-third of all the cases of liver cirrhosis and more than three-quarters of hepatocellular carcinoma (HCC) worldwide. There are eight different genotypes (A-H) of HBV, among which B and C are the major types of HBV in China. There is a positive correlation between viral load and level of viral splicing variants and the high risk of HCC. The aim of this study was to investigate the splicing variants of HBV circulating in HCC patients. Twenty-four carcinoma and adjacent liver tissues collected from HCC patients were studied. Using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing, we identified a new type of natural splice variant with nucleotides 2448-489 and 910-2120 deleted, and we named it ASN. We also found that a higher viral load and splicing variant level existed in liver carcinoma tissues compared to paracarcinoma tissues. In the investigation of our splicing variant, we found its enhancing effect on HBV replication in vitro. Although splicing variants are not essential for the replication of HBV, they may have an important influence.
Collapse
Affiliation(s)
- Xiumin Zhang
- 1 Lab of Molecular Immunology, State Key Lab of Genetic Engineering, Institute of Biomedical Sciences (IBS), School of Life Sciences, Fudan University , Shanghai, People's Republic of China
| | - Sibo Zhu
- 1 Lab of Molecular Immunology, State Key Lab of Genetic Engineering, Institute of Biomedical Sciences (IBS), School of Life Sciences, Fudan University , Shanghai, People's Republic of China
| | - Wei Zhu
- 1 Lab of Molecular Immunology, State Key Lab of Genetic Engineering, Institute of Biomedical Sciences (IBS), School of Life Sciences, Fudan University , Shanghai, People's Republic of China
| | - Aijun Li
- 2 Oriental Liver Surgery Hospital, Second Military Medical University , Shanghai, People's Republic of China
| | - Naishuo Zhu
- 1 Lab of Molecular Immunology, State Key Lab of Genetic Engineering, Institute of Biomedical Sciences (IBS), School of Life Sciences, Fudan University , Shanghai, People's Republic of China
| |
Collapse
|
9
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
10
|
Wang YL, Liou GG, Lin CH, Chen ML, Kuo TM, Tsai KN, Huang CC, Chen YL, Huang LR, Chou YC, Chang C. The inhibitory effect of the hepatitis B virus singly-spliced RNA-encoded p21.5 protein on HBV nucleocapsid formation. PLoS One 2015; 10:e0119625. [PMID: 25785443 PMCID: PMC4364729 DOI: 10.1371/journal.pone.0119625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is the smallest DNA virus and the major cause of acute and chronic hepatitis. The 3.2 kb HBV viral genome generates four major species of unspliced viral transcript as well as several alternatively spliced RNAs. A 2.2 kb singly-spliced RNA is the most abundant spliced RNA and is widely expressed among all HBV genotypes. The expression of the singly-spliced RNA, as well as that of its encoded protein HBSP, is strongly associated with hepatopathology during HBV infection. Here, we report a novel inhibitory role of a p21.5 protein, which is encoded by a 2.2 kb singly-spliced RNA, in the modulation of HBV replication. We show that overexpression of the singly-spliced RNA is able to efficiently inhibit HBV replication. Furthermore, a mutation in the ATG start codon of the precore region completely abolishes the inhibitory effect of the singly-spliced RNA, indicating that a viral protein (p21.5) derived from the singly-spliced RNA is the mediator of the inhibition. Furthermore, p21.5 is able to form a homodimer that interacts with core dimers forming hybrid viral assembly components. Sucrose gradient fractionation revealed that co-expression of p21.5 resulted in a spread distribution pattern of core proteins ranging from low to high sucrose densities. When compared with p22, p21.5 is almost ten times more efficient at destabilizing HBV nucleocapsid assembly in Huh7 cells overexpressing either p21.5 or p22 protein. Moreover, in vivo expression of p21.5 protein by tail vein injection was found to decrease the amount of nucleocapsid in the livers of HBV-expressing BALB/c mice. In conclusion, our study reveals that the HBV 2.2 kb singly-spliced RNA encodes a 21.5 kDa viral protein that significantly interferes with the assembly of nucleocapsids during HBV nucleocapsid formation. These findings provide a possible strategy for elimination of HBV particles inside cells.
Collapse
Affiliation(s)
- Yi-Ling Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Hsiung Lin
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Liang Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Tzer-Min Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Choao Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chi Chou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CC); (YCC)
| | - Chungming Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: (CC); (YCC)
| |
Collapse
|
11
|
Ajiro M, Zheng ZM. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 2014; 3:e63. [PMID: 26038756 PMCID: PMC4185361 DOI: 10.1038/emi.2014.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| |
Collapse
|
12
|
Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J Virol 2014; 88:8754-67. [PMID: 24850741 DOI: 10.1128/jvi.01343-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Phosphorylation of serines 157, 164, and 172 within the carboxyl-terminal SPRRR motif of the hepatitis B virus (HBV) core (C) protein modulates HBV replication at multiple stages. Threonine 162 and serines 170 and 178, located within the carboxyl-terminal conserved RRRS/T motif of HBV C protein, have been proposed to be protein kinase A phosphorylation sites. However, in vivo phosphorylation of these residues has never been observed, and their contribution to HBV replication remains unknown. In this study, [(32)P]orthophosphate labeling of cells expressing C proteins followed by immunoprecipitation with anti-HBc antibody revealed that threonine 162 and serines 170 and 178 are phosphoacceptor residues. A triple-alanine-substituted mutant, mimicking dephosphorylation of all three residues, drastically decreased pregenomic RNA (pgRNA) encapsidation, thereby decreasing HBV DNA synthesis. In contrast, a triple-glutamate-substituted mutant, mimicking phosphorylation of these residues, decreased DNA synthesis without significantly decreasing encapsidation. Neither triple mutant affected C protein expression or core particle assembly. Individual alanine substitution of threonine 162 significantly decreased minus-strand, plus-strand, and relaxed-circular DNA synthesis, demonstrating that this residue plays multiple roles in HBV DNA synthesis. Double-alanine substitution of serines 170 and 178 reduced HBV replication at multiple stages, indicating that these residues also contribute to HBV replication. Thus, in addition to serines 157, 164, and 172, threonine 162 and serines 170 and 178 of HBV C protein are also phosphorylated in cells, and phosphorylation and dephosphorylation of these residues play multiple roles in modulation of HBV replication. IMPORTANCE Threonine 162, within the carboxyl-terminal end of the hepatitis B virus (HBV adw) core (C) protein, has long been ignored as a phosphoacceptor, even though it is highly conserved among mammalian hepadnaviruses and in the overlapping consensus RxxS/T, RRxS/T, and TP motifs. Here we show, for the first time, that in addition to the well-known phosphoacceptor serines 157, 164, and 172 in SPRRR motifs, threonine 162 and serines 170 and 178 in the RRRS/T motif are phosphorylated in cells. We also show that, like serines 157, 164, and 172, phosphorylated and dephosphorylated threonine 162 and serines 170 and 178 contribute to multiple steps of HBV replication, including pgRNA encapsidation, minus-strand and plus-strand DNA synthesis, and relaxed-circular DNA synthesis. Of these residues, threonine 162 is the most important. Furthermore, we show that phosphorylation of C protein is required for efficient completion of HBV replication.
Collapse
|
13
|
Huang CC, Kuo TM, Yeh CT, Hu CP, Chen YL, Tsai YL, Chen ML, Chou YC, Chang C. One single nucleotide difference alters the differential expression of spliced RNAs between HBV genotypes A and D. Virus Res 2013; 174:18-26. [PMID: 23501362 DOI: 10.1016/j.virusres.2013.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is generally classified into eight genotypes (A to H) based on genomic sequence divergence. The sequence variation among the different HBV genotypes suggests that the spliced RNAs should be different from genotype to genotype. However, the cis-acting element involved in the modulation of the distinct expression profiles of spliced HBV RNAs remains unidentified. Moreover, the biological role of splicing in the life cycle of HBV is not yet understood. In this study, spliced RNAs generated from genotypes A and D were carefully characterized in transfected HepG2 cells. The species and frequency of the spliced RNAs were dramatically different in the two genotypes. Of note, a population of multiply spliced RNAs with intron 2067-2350 excision was identified in HBV genotype A-transfected HepG2 cells, but not in genotype D transfected HepG2 cells. Further, we found a single nucleotide difference (2335) located within the polypyrimidine tract of the splice acceptor site 2350 between the two genotypes, and a single base substitution at 2335 was able to convert the splicing pattern of genotype D (or genotype A) to that of genotype A (or genotype D). These findings suggest that different unique splice sites may be preferentially used in different HBV genotypes resulting in distinct populations of spliced RNAs. The possible significance of the distinct spliced RNAs generated from the different HBV genotypes in HBV infection is discussed.
Collapse
Affiliation(s)
- Chien-Chiao Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Persistent infection with cancer risk-related viruses leads to molecular, cellular and immune response changes in host organisms that in some cases direct cellular transformation. Alternative splicing is a conserved cellular process that increases the coding complexity of genomes at the pre-mRNA processing stage. Human and other animal tumour viruses use alternative splicing as a process to maximize their transcriptomes and proteomes. Medical therapeutics to clear persistent viral infections are still limited. However, specific lessons learned in some viruses [e.g. HIV and HCV (hepatitis C virus)] suggest that drug-directed inhibition of alternative splicing could be useful for this purpose. The present review describes the basic mechanisms of constitutive and alternative splicing in a cellular context and known splicing patterns and the mechanisms by which these might be achieved for the major human infective tumour viruses. The roles of splicing-related proteins expressed by these viruses in cellular and viral gene regulation are explored. Moreover, we discuss some currently available drugs targeting SR (serine/arginine-rich) proteins that are the main regulators of constitutive and alternative splicing, and their potential use in treatment for so-called persistent viral infections.
Collapse
|
15
|
Jung J, Kim HY, Kim T, Shin BH, Park GS, Park S, Chwae YJ, Shin HJ, Kim K. C-terminal substitution of HBV core proteins with those from DHBV reveals that arginine-rich 167RRRSQSPRR175 domain is critical for HBV replication. PLoS One 2012; 7:e41087. [PMID: 22911745 PMCID: PMC3401125 DOI: 10.1371/journal.pone.0041087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022] Open
Abstract
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221–262 amino acids of DHBV C protein, in place of 146–185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221–241 and 251–262 amino acids of DHBV C, in place of HBV C 146–166 and 176–185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242–250 of DHBV C (242RAGSPLPRS250) introduced in place of 167–175 of HBV C (167RRRSQSPRR175) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich 167RRRSQSPRR175 domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.
Collapse
Affiliation(s)
- Jaesung Jung
- Department of Microbiology, Ajou University School of Medicine, Woncheon-dong, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Identification of a unique splicing regulatory cluster in hepatitis B virus pregenomic RNA. FEBS Lett 2011; 585:3348-53. [DOI: 10.1016/j.febslet.2011.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
|
17
|
Huang C, Xie MH, Liu W, Yang B, Yang F, Huang J, Huang J, Wu Q, Fu XD, Zhang Y. A structured RNA in hepatitis B virus post-transcriptional regulatory element represses alternative splicing in a sequence-independent and position-dependent manner. FEBS J 2011; 278:1533-46. [PMID: 21371260 DOI: 10.1111/j.1742-4658.2011.08077.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) transcripts are subjected to multiple splicing decisions, but the mechanism of splicing regulation remains poorly understood. In this study, we used a well-investigated alternative splicing reporter to dissect splicing regulatory elements residing in the post-transcriptional regulatory element (PRE) of HBV. A strong intronic splicing silencer (ISS) with a minimal functional element of 105 nucleotides (referred to as PRE-ISS) was identified and, interestingly, both the sense and antisense strands of the element were found to strongly suppress alternative splicing in multiple human cell lines. PRE-ISS folds into a double-hairpin structure, in which substitution mutations disrupting the double-hairpin structure abolish the splicing silencer activity. Although it harbors two previously identified binding sites for polypyrimidine tract binding protein, PRE-ISS represses splicing independent of this protein. The silencing function of PRE-ISS exhibited a strong position dependence, decreasing with the distance from affected splice sites. PRE-ISS does not belong to the intronic region of any HBV splicing variants identified thus far, preventing the testing of this intronic silencer function in the regulation of HBV splicing. These findings, together with the identification of multiple sense-antisense ISSs in the HBV genome, support the hypothesis that a sequence-independent and structure-dependent regulatory mechanism may have evolved to repress cryptic splice sites in HBV transcripts, thereby preventing their aberrant splicing during viral replication in the host.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|