1
|
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, Badovinac VP. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:563-575. [PMID: 38149923 PMCID: PMC10872354 DOI: 10.4049/jimmunol.2300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Matthew G Smith
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Anthony SM, Van Braeckel-Budimir N, Moioffer SJ, van de Wall S, Shan Q, Vijay R, Sompallae R, Hartwig SM, Jensen IJ, Varga SM, Butler NS, Xue HH, Badovinac VP, Harty JT. Protective function and durability of mouse lymph node-resident memory CD8 + T cells. eLife 2021; 10:e68662. [PMID: 34143731 PMCID: PMC8213409 DOI: 10.7554/elife.68662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Protective lung tissue-resident memory CD8+T cells (Trm) form after influenza A virus (IAV) infection. We show that IAV infection of mice generates CD69+CD103+and other memory CD8+T cell populations in lung-draining mediastinal lymph nodes (mLNs) from circulating naive or memory CD8+T cells. Repeated antigen exposure, mimicking seasonal IAV infections, generates quaternary memory (4M) CD8+T cells that protect mLN from viral infection better than 1M CD8+T cells. Better protection by 4M CD8+T cells associates with enhanced granzyme A/B expression and stable maintenance of mLN CD69+CD103+4M CD8+T cells, vs the steady decline of CD69+CD103+1M CD8+T cells, paralleling the durability of protective CD69+CD103+4M vs 1M in the lung after IAV infection. Coordinated upregulation in canonical Trm-associated genes occurs in circulating 4M vs 1M populations without the enrichment of canonical downregulated Trm genes. Thus, repeated antigen exposure arms circulating memory CD8+T cells with enhanced capacity to form long-lived populations of Trm that enhance control of viral infections of the mLN.
Collapse
Affiliation(s)
- Scott M Anthony
- Department of Pathology, The University of IowaIowa CityUnited States
| | | | - Steven J Moioffer
- Department of Pathology, The University of IowaIowa CityUnited States
| | | | - Qiang Shan
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Center for Discovery and Innovation, Hackensack Meridian HealthNutleyUnited States
| | - Rahul Vijay
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
| | | | - Stacey M Hartwig
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
| | - Isaac J Jensen
- Department of Pathology, The University of IowaIowa CityUnited States
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| | - Steven M Varga
- Department of Pathology, The University of IowaIowa CityUnited States
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Center for Discovery and Innovation, Hackensack Meridian HealthNutleyUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| | - Vladimir P Badovinac
- Department of Pathology, The University of IowaIowa CityUnited States
- Department of Microbiology and Immunology, The University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| | - John T Harty
- Department of Pathology, The University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Immunology, The University of IowaIowa CityUnited States
| |
Collapse
|
3
|
Han X, Tian Y, Guan R, Gao W, Yang X, Zhou L, Wang H. Infectious Bronchitis Virus Infection Induces Apoptosis during Replication in Chicken Macrophage HD11 Cells. Viruses 2017; 9:v9080198. [PMID: 28933760 PMCID: PMC5580455 DOI: 10.3390/v9080198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 01/21/2023] Open
Abstract
Avian infectious bronchitis has caused huge economic losses in the poultry industry. Previous studies have reported that infectious bronchitis virus (IBV) infection can produce cytopathic effects (CPE) and apoptosis in some mammalian cells and primary cells. However, there is little research on IBV-induced immune cell apoptosis. In this study, chicken macrophage HD11 cells were established as a cellular model that is permissive to IBV infection. Then, IBV-induced apoptosis was observed through a cell viability assay, morphological changes, and flow cytometry. The activity of caspases, the inhibitory efficacy of caspase-inhibitors and the expression of apoptotic genes further suggested the activation of apoptosis through both intrinsic and extrinsic pathways in IBV-infected HD11 cells. Additionally, ammonium chloride (NH₄Cl) pretreated HD11 cells blocked IBV from entering cells and inhibited IBV-induced apoptosis. UV-inactivated IBV also lost the ability of apoptosis induction. IBV replication was increased by blocking caspase activation. This study presents a chicken macrophage cell line that will enable further analysis of IBV infection and offers novel insights into the mechanisms of IBV-induced apoptosis in immune cells.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Yiming Tian
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Ru Guan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Wenqian Gao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Long Zhou
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
- "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern China, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Colchicine aggravates coxsackievirus B3 infection in mice. Int J Cardiol 2016; 216:58-65. [PMID: 27140338 DOI: 10.1016/j.ijcard.2016.04.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is a clinical need for immunosuppressive therapy that can treat myocarditis patients in the presence of an active viral infection. In this study we therefore investigated the effects of colchicine, an immunosuppressive drug which has been used successfully as treatment for pericarditis patients, in a mouse model of coxsackievirus B3(CVB3)-induced myocarditis. METHODS Four groups of C3H mice were included: control mice (n=8), mice infected with CVB3 (1×10(5) PFU, n=10), mice with colchicine administration (2mg/kg i.p, n=5) and mice with combined CVB3 infection and colchicine administration (n=10). After three days, the heart, pancreas and spleen were harvested and evaluated using (immuno)histochemical analysis and CVB3 qPCR. RESULTS Mice were terminated at day 3 post-virus infection as colchicine treatment rapidly resulted in severe illness and mortality in CVB3-infected mice. Colchicine significantly decreased the number of macrophages in the heart in CVB3-infected mice (p<0.01) but significantly increased the number of neutrophils (p<0.01). In the pancreas, colchicine caused complete destruction of the acini in the CVB3-infected mice and also significantly decreased macrophage (p<0.01) and increased neutrophil numbers (p<0.01). In the spleen, colchicine treatment of CVB3-infected mice induced massive apoptosis in the white pulp and significantly inhibited the virus-induced increase of megakaryocytes in the spleen (p<0.001). Finally, we observed that colchicine significantly increased CVB3 levels in both the pancreas and the heart. CONCLUSIONS Colchicine treatment in CVB3-induced myocarditis has a detrimental effect as it causes complete destruction of the exocrine pancreas and enhances viral load in both heart and pancreas.
Collapse
|
5
|
Abstract
Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Pr. Lavrent’eva, 8, Novosibirsk 630090, Russian Federation; E-Mail:
| | - Ronald B. Corley
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-638-0336; Fax: +1-617-638-4286
| |
Collapse
|
6
|
Functional divergence among CD103+ dendritic cell subpopulations following pulmonary poxvirus infection. J Virol 2010; 84:10191-9. [PMID: 20660207 DOI: 10.1128/jvi.00892-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large number of dendritic cell (DC) subsets have now been identified based on the expression of a distinct array of surface markers as well as differences in functional capabilities. More recently, the concept of unique subsets has been extended to the lung, although the functional capabilities of these subsets are only beginning to be explored. Of particular interest are respiratory DCs that express CD103. These cells line the airway and act as sentinels for pathogens that enter the lung, migrating to the draining lymph node, where they add to the already complex array of DC subsets present at this site. Here we assessed the contributions of these individual populations to the generation of a CD8(+) T-cell response following respiratory infection with poxvirus. We found that CD103(+) DCs were the most effective antigen-presenting cells (APC) for naive CD8(+) T-cell activation. Surprisingly, we found no evidence that lymph node-resident or parenchymal DCs could prime virus-specific cells. The increased efficacy of CD103(+) DCs was associated with the increased presence of viral antigen as well as high levels of maturation markers. Within the CD103(+) DCs, we observed a population that expressed CD8alpha. Interestingly, cells bearing CD8alpha were less competent for T-cell activation than their CD8alpha(-) counterparts. These data show that lung-migrating CD103(+) DCs are the major contributors to CD8(+) T-cell activation following poxvirus infection. However, the functional capabilities of cells within this population differ with the expression of CD8, suggesting that CD103(+) cells may be divided further into distinct subsets.
Collapse
|
7
|
Tao R, Li L, Huang W, Zheng L. Activation of human dendritic cells by recombinant modified vaccinia virus Ankara vectors encoding survivin and IL-2 genes in vitro. Hum Gene Ther 2010; 21:98-108. [PMID: 19715401 DOI: 10.1089/hum.2009.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) has attracted significant attention as a safe, promising vector for immunotherapy. However, the precise effects of MVA infection on immune responses in humans remain largely unknown. We constructed recombinant MVA (rMVA) encoding both a human tumor-associated antigen (survivin) and the proinflammatory cytokine interleukin (IL)-2 and investigated their effects on human monocyte-derived dendritic cells (DCs). The results showed that infection with rMVA slightly impaired the upregulation of CD83 and reduced the production of IL-10 in DCs after lipopolysaccharide stimulation. However, rMVA-infected DCs were still able to express high levels of target genes and the costimulatory molecules CD80 and CD86 and to produce significant amounts of the proinflammatory cytokine tumor necrosis factor alpha. Moreover, rMVA-infected DCs exhibited a greater capacity than uninfected cells to stimulate T-cell proliferation and to reverse MVA-induced apoptosis in syngeneic T cells. Coculture of lymphocytes with rMVA-infected DCs significantly increased cytotoxic potential and interferon gamma production by cytotoxic T cells. These findings suggest that rMVA encoding survivin and IL-2 can effectively stimulate the activation of human DCs and overcome defects such as impairment of DC maturation and apoptosis of lymphocytes that are caused by vector alone. Thus, this study may provide a rational basis for further optimization of MVA vector.
Collapse
Affiliation(s)
- Ran Tao
- State Key Laboratory of Biocontrol, Cancer Center, Sun Yat-Sen (Zhongshan) University , Guangzhou 510275, P.R. China
| | | | | | | |
Collapse
|