1
|
Li J, Lv L, Gao Y, Sun Y, Bai J, Wang X, Sun H, Jiang P. Tetraspanin CD81 serves as a functional entry factor for porcine circovirus type 2 infection. J Virol 2025; 99:e0140824. [PMID: 39745447 PMCID: PMC11853000 DOI: 10.1128/jvi.01408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/06/2024] [Indexed: 02/26/2025] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease, clinically resulting in immunosuppression and co-infections with other pathogens in infected pigs. The mechanism of PCV2 infection remains unclear. In this study, we firstly found that the tetraspanin CD81 in PK-15 cells interacts with PCV2 Cap protein by using virus overlay protein-binding assay combined with mass spectrometry. Knockdown of the CD81 significantly reduces the levels of the viral Cap mRNA and protein, and viral internalization in PK-15 cells. The critical interaction regions locate in the large extracellular loop (LEL) domain of CD81 and the CD loop region (82-91aa) of the Cap protein, and a polyclonal antibody against the CD81 LEL domain significantly inhibits PCV2 infection. The transmembrane proteoglycan Syndecan-1 interacts with both CD81 and PCV2 Cap, and co-operates with CD81 to promote PCV2 infection in PK-15 cells. Furthermore, CD81 facilitates RhoA activation and enhances the viral internalization and replication in PK-15 cells. It was concluded that the tetraspanin CD81 is a key host factor for PCV2 invasion into PK-15 cells, thus providing new insights into PCV2 life cycle and identifying a potential target for antiviral drug development.IMPORTANCEPorcine circovirus type 2 (PCV2), a significant economic pathogen in the swine industry, presents persistent challenges in its prevention and treatment. Despite extensive research, the mechanism of PCV2 invading host cells remains unclear. In this study, we found and identified a novel interaction between the tetraspanin CD81 and the viral Cap protein during the PCV2 invading PK-15 cells. The transmembrane proteoglycan Syndecan-1 and RhoA are involved in the infection process through the CD81. Moreover, this is the first time that the role of Syndecan-1 in the PCV2 infection process has been demonstrated. Also, a polyclonal antibody against the CD81 extracellular domain significantly inhibits PCV2 infection in PK-15 cells. It not only enriches our understanding of PCV2 life cycle but also offers new perspectives for the development of antiviral therapeutics against circovirus.
Collapse
Affiliation(s)
- Junshuo Li
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lv
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haifen Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
3
|
Ouyang Y, Nauwynck HJ. PCV2 Uptake by Porcine Monocytes Is Strain-Dependent and Is Associated with Amino Acid Characteristics on the Capsid Surface. Microbiol Spectr 2023; 11:e0380522. [PMID: 36719220 PMCID: PMC10100887 DOI: 10.1128/spectrum.03805-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is associated with several economically important diseases that are described as PCV2-associated diseases (PCVADs). PCV2 is replicating in lymphoblasts, and PCV2 particles are taken up by monocytes without effective replication or complete degradation. Glycosaminoglycans (GAGs) have been demonstrated to be important receptors for PCV2 binding and entry in T-lymphocytes and continuous cell lines. The objective of this study was to determine whether differences exist in viral uptake and outcome among six PCV2 strains from different disease outbreaks in primary porcine monocytes: Stoon-1010 (PCV2a; PMWS), 1121 (PCV2a; abortion), 1147 (PCV2b; PDNS), 09V448 (PCV2d-1; PCVAD with high viral load in lymphoid tissues [PCVADhigh]), DE222-13 (PCV2d-2; PCVADhigh), and 19V245 (PCV2d-2; PCVADhigh). The uptake of PCV2 in peripheral blood monocytes was different among the PCV2 strains. A large number of PCV2 particles were found in the monocytes for Stoon-1010, DE222-13, and 19V245, while a low number was found for 1121, 1147, and 09V448. Competition with, and removal of GAGs on the cell surface, demonstrated an important role of chondroitin sulfate (CS) and dermatan sulfate (DS) in PCV2 entry into monocytes. The mapping of positively/negatively charged amino acids exposed on the surface of PCV2 capsids revealed that their number and distribution could have an impact on the binding of the capsids to GAGs, and the internalization into monocytes. Based on the distribution of positively charged amino acids on PCV2 capsids, phosphacan was hypothesized, and further demonstrated, as an effective candidate to mediate virus attachment to, and internalization in, monocytes. IMPORTANCE PCV2 is present on almost every pig farm in the world and is associated with a high number of diseases (PCV2-associated diseases [PCVADs]). It causes severe economic losses. Although vaccination is successfully applied in the field, there are still a lot of unanswered questions on the pathogenesis of PCV2 infections. This article reports on the uptake difference of various PCV2 strains by peripheral blood monocytes, and reveals the mechanism of the strong viral uptake ability of monocytes of Piétrain pigs. We further demonstrated that: (i) GAGs mediate the uptake of PCV2 particles by monocytes, (ii) positively charged three-wings-windmill-like amino acid patterns on the capsid outer surface are activating PCV2 uptake, and (iii) phosphacan is one of the potential candidates for PCV2 internalization. These results provide new insights into the mechanisms involved in PCVAD and contribute to a better understanding of PCV2 evolution. This may lead to the development of resistant pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Porcine Circovirus Type 2 Hijacks Host IPO5 to Sustain the Intracytoplasmic Stability of Its Capsid Protein. J Virol 2022; 96:e0152222. [PMID: 36409110 PMCID: PMC9749456 DOI: 10.1128/jvi.01522-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nuclear entrance and stability of porcine circovirus type 2 (PCV2), the smallest virus in mammals, are crucial for its infection and replication. However, the mechanisms are not fully understood. Here, we found that the PCV2 virion maintains self-stability via the host importin 5 (IPO5) during infection. Coimmunoprecipitation combined with mass spectrometry and glutathione S-transferase pulldown assays showed that the capsid protein (Cap) of PCV2 binds directly to IPO5. Fine identification demonstrated that the N-terminal residue arginine24 of Cap is the most critical to efficient binding to the proline709 residue of IPO5. Detection of replication ability further showed that IPO5 supports PCV2 replication by promoting the nuclear import of incoming PCV2 virions. Knockdown of IPO5 delayed the nuclear transport of incoming PCV2 virions and significantly decreased the intracellular levels of overexpressed PCV2 Cap, which was reversed by treatment with a proteasome inhibitor or by rescuing IPO5 expression. Cycloheximide treatment showed that IPO5 increases the stability of the PCV2 Cap protein. Taken together, our findings demonstrated that during infection, IPO5 facilitates PCV2 replication by directly binding to the nuclear localization signal of Cap to block proteasome degradation. IMPORTANCE Circovirus is the smallest virus to cause immune suppression in pigs. The capsid protein (Cap) is the only viral structural protein that is closely related to viral infection. The nuclear entry and stability of Cap are necessary for PCV2 replication. However, the molecular mechanism maintaining the stability of Cap during nuclear trafficking of PCV2 is unknown. Here, we report that IPO5 aggregates within the nuclear periphery and combines with incoming PCV2 capsids to promote their nuclear entry. Concurrently, IPO5 inhibits the degradation of newly synthesized Cap protein, which facilitates the synthesis of virus proteins and virus replication. These findings highlight a mechanism whereby IPO5 plays a dual role in PCV2 infection, which not only enriches our understanding of the virus replication cycle but also lays the foundation for the subsequent development of antiviral drugs.
Collapse
|
5
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
6
|
Shi R, Hou L, Wei L, Quan R, Zhou B, Jiang H, Wang J, Zhu S, Song J, Wang D, Liu J. Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Front Microbiol 2021; 12:636307. [PMID: 33679671 PMCID: PMC7928314 DOI: 10.3389/fmicb.2021.636307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) invades multiple tissues and organs of pigs of different ages and are widely spread throughout pig farms, emerging as an important viral pathogen that can potentially damage the pig industry worldwide. Since PCV3 is a newly discovered virus, many aspects of its life cycle remain unknown. Porcine kidney epithelial cells are important host targets for PCV3. Here, we used systematic approaches to dissect the molecular mechanisms underlying the cell entry and intracellular trafficking of PCV3 in PK15 cells, a cell line of porcine kidney epithelial origin. A large number of PCV3 viral particles were found to colocalize with clathrin but not caveolin-1 after entry, and PCV3 infection was significantly decreased when treated with chlorpromazine, dynasore, knockdown of clathrin heavy chain expression via RNA interference, or overexpression of a dominant-negative mutant of EPS15 in PCV3-infected cells. After internalization, the viral particles were further observed to colocalize with Rab5 and Rab7, and knockdown of both expression by RNA interference significantly inhibited PCV3 replication. We also found that PCV3 infection was impeded by ammonium chloride treatment, which indicated the requirement of an acidic environment for viral entry. Taken together, our findings demonstrate that PCV3 enters PK15 cells through a clathrin- and dynamin-2-mediated endocytic pathway, which requires early and late endosomal trafficking, as well as an acidic environment, providing an insightful theoretical basis for further understanding the PCV3 life cycle and its pathogenesis.
Collapse
Affiliation(s)
- Ruihan Shi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Basigin-CyP elevated porcine circovirus type2 replication. Virus Res 2020; 289:198152. [PMID: 32896569 DOI: 10.1016/j.virusres.2020.198152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Porcine circovirus type2 (PCV2) is a member of the circoviridae family. PCV2 was identified as the main pathogen of postweaning multisystemic wasting syndrome (PMWS) in weaned piglets and causes massive economic loss. Basigin, is a transmembrane glycoprotein belonging to the immunoglobulin superfamily; which is also a receptor for cyclophilins. CyP belongs to the immunophilin family that has peptidyl-prolyl cis-trans isomerase activity. Basigin-CyP interaction affects the replication stages of several viruses. In this study, we found that Basigin could elevate the replication of PCV2, and the Basigin only affected the replication stage rather than adsorption or endocytosis stages. In addition, the ligands of Basigin, CyPA and CyPB also elevated the replication of PCV2. Basigin-CyP interation was necessary for elevating PCV2 replication; At last, CyPs were proved to promote the replication of PCV2 by activating ERK signaling.
Collapse
|
8
|
Opriessnig T, Karuppannan AK, Castro AMMG, Xiao CT. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020; 286:198044. [PMID: 32502553 DOI: 10.1016/j.virusres.2020.198044] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Circoviruses (CV) include some of the smallest viruses known. They were named after their circularly arranged single-stranded DNA genome with a gene encoding a conserved replicase protein on the sense strand. Circoviruses are widely distributed in mammals, fish, avian species and even insects. In pigs, four different CVs have been identified and named with consecutive numbers based on the order of their discovery: Porcine circovirus 1 (PCV1), Porcine circovirus 2 (PCV2), Porcine circovirus 3 (PCV3) and most recently Porcine circovirus 4 (PCV4). PCVs are ubiquitous in global pig populations and uninfected herds are rarely found. It is generally accepted that PCV1 is non-pathogenic. In contrast, PCV2 is considered an important, economically challenging pathogen on a global scale with comprehensive vaccination schemes in place. The role of PCV3 is still controversial several years after its discovery. Propagation of PCV3 appears to be challenging and only one successful experimental infection model has been published to date. Similarly to PCV2, PCV3 is widespread and found in many pigs regardless of their health history, including high health herds. PCV4 has only recently been discovered and further information on this virus is required to understand its potential impact. This review summarizes current knowledge on CVs in pigs and aims to contrast and compare known facts on PCVs.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | - Anbu K Karuppannan
- Vaccine Research Centre-Viral Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
9
|
The Carboxyl Terminus of the Porcine Circovirus Type 2 Capsid Protein Is Critical to Virus-Like Particle Assembly, Cell Entry, and Propagation. J Virol 2020; 94:JVI.00042-20. [PMID: 32075927 DOI: 10.1128/jvi.00042-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The capsid protein (Cap) is the sole structural protein and the main antigen of porcine circovirus type 2 (PCV2). Structural loops of the Cap play crucial roles in viral genome packaging, capsid assembly, and virus-host interactions. Although the molecular mechanisms are yet unknown, the carboxyl terminus (CT) of the PCV2 Cap is known to play critical roles in the evolution, pathogenesis, and proliferation of this virus. In this study, we investigated functions of CT. Removal of this loop leads to abrogation of the in vitro Cap self-assembly into virus-like particles (VLPs). Likewise, the mutated virus resists rescue from PK15 cell culture. A conserved PXXP motif in the CT is dispensable for VLP assembly and subsequent cell entry. However, its removal leads to the subsequent failure of virus rescued from PK15 cells. Furthermore, substituting either the PCV1 counterpart or an AXXA for the PXXP motif still supports virus rescue from cell culture but results in a dramatic decrease in viral titers compared with wild type. In particular, a strictly conserved residue (227K) in the CT is essential for VLP entry into PK15 cells, and its mutation to alanine greatly attenuates cell entry of the VLPs, supporting a mechanism for the failure to rescue a mutated PCV2 infectious DNA clone (K227A) from PK15 cell culture. These results suggest the CT of the PCV2 Cap plays critical roles in virus assembly, viral-host cell interaction(s), and virus propagation in vitro IMPORTANCE The carboxyl terminus (CT) of porcine circovirus type 2 (PCV2) capsid protein (Cap) was previously reported to be associated with immunorecognition, alterations of viral titer in swine sera, and pathogenicity. However, the molecular mechanisms underlying these effects remain unknown. In this study, roles of the critical residues and motifs of the CT are investigated with respect to virus-like particle (VLP) assembly, cell entry, and viral proliferation. The results revealed that the positively charged 227K of the CT is essential for both cell entry of PCV2 VLPs and virus proliferation. Our findings, therefore, suggest that the CT should be considered one of the key epitopes, recognized by neutralizing antibodies, for vaccine design and a target for drug development to prevent PCV2-associated diseases (PCVADs). Furthermore, it is important to respect the function of 227K for its role in cell entry if using either PCV2 VLPs for nanoscale DNA/drug cell delivery or using PCV2 VLPs to display a variety of foreign epitopes for immunization.
Collapse
|
10
|
Dai X, Zhang X, Ostrikov K, Abrahamyan L. Host receptors: the key to establishing cells with broad viral tropism for vaccine production. Crit Rev Microbiol 2020; 46:147-168. [PMID: 32202955 PMCID: PMC7113910 DOI: 10.1080/1040841x.2020.1735992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell culture-based vaccine technology is a flexible and convenient approach for vaccine production that requires adaptation of the vaccine strains to the new cells. Driven by the motivation to develop a broadly permissive cell line for infection with a wide range of viruses, we identified a set of the most relevant host receptors involved in viral attachment and entry. This identification was done through a review of different viral entry pathways and host cell lines, and in the context of the Baltimore classification of viruses. In addition, we indicated the potential technical problems and proposed some solutions regarding how to modify the host cell genome in order to meet industrial requirements for mass production of antiviral vaccines. Our work contributes to a finer understanding of the importance of breaking the host–virus recognition specificities for the possibility of creating a cell line feasible for the production of vaccines against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry and Physics and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Levon Abrahamyan
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
11
|
Wang Q, Zhou H, Lin H, Ma Z, Fan H. Porcine circovirus type 2 exploits JNK-mediated disruption of tight junctions to facilitate Streptococcus suis translocation across the tracheal epithelium. Vet Res 2020; 51:31. [PMID: 32106883 PMCID: PMC7047418 DOI: 10.1186/s13567-020-00756-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is considered as the primary pathogen of porcine circovirus-associated disease (PCVAD), which results in significant economic losses worldwide. Clinically, PCV2 often causes disease through coinfection with other bacterial pathogens, including Streptococcus suis (S. suis), and especially the highly prevalent S. suis serotype 2 (SS2). The present study determined that continuous PCV2 infection in piglets down-regulates tight junction proteins (TJ) ZO-1 and occludin in the lungs. Swine tracheal epithelial cells (STEC) were used to explore the mechanisms and consequences of disruption of TJ, and an in vitro tracheal epithelial barrier model was established. Our results show that PCV2 infection in STEC decreases the expression levels of ZO-1 and occludin and increases the permeability of the tracheal epithelial barrier, resulting in easier translocation of SS2. Moreover, Western blot analysis indicates that PCV2 infection activates the JNK/MAPK pathway. The disruption of TJ in SETC and increased permeability of the epithelial barrier induced by PCV2 could be alleviated by inhibition of JNK phosphorylation, which indicates that the JNK/MAPK pathway regulates the expression of ZO-1 and occludin during PCV2 infection. This study allows us to better understand the mechanisms of PCV2 coinfection with bacterial pathogens and provides new insight into controlling the occurrence of PCVAD.
Collapse
Affiliation(s)
- Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
12
|
Conformational Changes and Nuclear Entry of Porcine Circovirus without Disassembly. J Virol 2019; 93:JVI.00824-19. [PMID: 31341057 DOI: 10.1128/jvi.00824-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
A relatively stable and flexible capsid is critical to the viral life cycle. However, the capsid dynamics and cytosol trafficking of porcine circovirus type 2 (PCV2) during its infectious cycle are poorly understood. Here, we report the structural stability and conformation flexibility of PCV2 virions by genome labeling and the use of three monoclonal antibodies (MAbs) against the native capsid of PCV2. Genome labeling showed that the infectivity of the PCV2 virion was not affected by conjugation with deoxy-5-ethynylcytidine (EdC). Heat stability experiments indicated that PCV2 capsids started to disassemble at 65°C, causing binding incompetence for all antibodies, and the viral genome was released without capsid disassembly upon heating at 60°C. Antibody binding experiments with PCV2 showed that residues 186 to 192 were concealed in the early endosomes of epithelial PK-15 and monocytic 3D4/31 cells with or without chloroquine treatment and then exposed in PK-15 cytosol and the 3D4/31 nucleus. Viral propagation and localization experiments showed that PCV2 replication and cytosol trafficking were not significantly affected by microtubule depolymerization in monocytic 3D4/31 cells treated with nocodazole. These findings demonstrated that nuclear targeting of viral capsids involved conformational changes, the PCV2 genome was released from the assembled capsid, and the transit of PCV2 particles was independent of microtubules in 3D4/31 cells.IMPORTANCE Circovirus is the smallest virus known to replicate autonomously. Knowledge of viral genome release may provide understanding of viral replication and a method to artificially inactivate viral particles. Currently, little is known about the release model of porcine circovirus type 2 (PCV2). Here, we report the release of the PCV2 genome from assembled capsid and the intracellular trafficking of infectious PCV2 by alterations in the capsid conformation. Knowledge of PCV2 capsid stability and dynamics is essential to understanding its infectious cycle and lays the foundation for discovering powerful targets for therapeutic and prophylactic intervention.
Collapse
|
13
|
Strain-Dependent Porcine Circovirus Type 2 (PCV2) Entry and Replication in T-Lymphoblasts. Viruses 2019; 11:v11090813. [PMID: 31480752 PMCID: PMC6783876 DOI: 10.3390/v11090813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases (PCVAD). PCV2 targets lymphoblasts, and pigs suffering from PCVAD display lymphocyte depletion in lymphoid tissues. PCV2 infection of lymphoblasts has not been studied. Here, the replication cycle of PCV2 (abortion strain 1121 and PMWS strain Stoon1010) in T-lymphoblasts was examined. The expression of Rep and Cap were found for both viral strains, while progeny virus was detected for Stoon1010 but not for 1121. PCV2 attached to 11–26% (1121-Stoon1010) of the T-lymphoblasts while 2.6–12.7% of cells showed virus internalization. Chondroitin sulfate (CS) was present on 25% of T-lymphoblasts, and colocalized with PCV2 on 31–32% of the PCV2+ cells. Enzymatic removal of CS reduced PCV2 infection. PCV2 infection was decreased by chlorpromazine, cytochalasin D and Clostridium difficile toxin B for both viral strains and by amiloride for 1121 but not for Stoon1010. Inhibiting either endosome acidification or serine proteases strongly reduced PCV2 infection. Three-dimensional analysis of Cap structure demonstrated a better Cap-nucleic acid affinity for Stoon1010 than for 1121. Taken together, PCV2 binds to T-lymphoblasts partially via CS, enters via clathrin-mediated endocytosis, and disassembles under functions of a pH-drop and serine proteases. Strain Stoon1010 displayed an enhanced viral binding, a specific receptor-mediated endocytosis, an increased Cap-nucleic acid affinity, and a more productive infection in T-lymphoblasts than 1121 did, indicating an evolution from 1121 to Stoon1010.
Collapse
|
14
|
Zepeda-Cervantes J, Cruz-Reséndiz A, Sampieri A, Carreón-Nápoles R, Sánchez-Betancourt JI, Vaca L. Incorporation of ORF2 from Porcine Circovirus Type 2(PCV2) into genetically encoded nanoparticles as a novel vaccine using a self-aggregating peptide. Vaccine 2019; 37:1928-1937. [PMID: 30824359 DOI: 10.1016/j.vaccine.2019.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Porcine Circovirus Type 2 (PCV2) is one of the most important pathogens in pigs around the world. PCV2 is a non-enveloped virus and its capsid is formed by a single protein known as open reading frame 2 (ORF2). The aim of this study was to evaluate the antigenicity and immunogenicity of genetically-encoded protein nanoparticles (NPs) containing ORF2 from PCV2 fused to the first 110 amino acids of the N-terminus of polyhedrin from the insect virus Autographa californica nucleopolyhedrovirus (PH(1 -1 1 0)). Our group has previously described that some polyhedrin fragments self-aggregate forming polyhedra-like particles. We identified a self-aggregating signal within the first 110 amino acids from polyhedrin (PH(1 -1 1 0)). Fusing the ORF2 from PCV2 to the carboxyl terminus from PH(1 -1 1 0) results in the formation of NPs which incorporate the antigen of interest. Using this system we synthesized NPs containing PH(1 -1 1 0) fused to ORF2 (PH(1 -1 1 0)PCV2) and purify them to immunize pigs and evaluate the humoral immune response generated by these NPs comparing them to a commercially available vaccine. Pigs immunized with PH(1 -1 1 0)PCV2 NPs produced antibodies against ORF2 from PCV2 as indicated by western blot and ELISA analysis. Antibodies obtained with PH(1 -1 1 0)PCV2 NPs were comparable to those obtained using a commercial PCV2 vaccine. These antibodies neutralized the infection of a recombinant PCV2 expressing the green fluorescent protein (GFP). These results together suggest that the self-aggregating peptide PH(1 -1 1 0) can be used for the synthesis of subunit vaccines against PCV2.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, CDMX, Coyoacán 04510, Mexico
| | - Adolfo Cruz-Reséndiz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico
| | - Alicia Sampieri
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| | - Rosalba Carreón-Nápoles
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| | - José Iván Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| |
Collapse
|
15
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
16
|
Wei R, Trus I, Yang B, Huang L, Nauwynck HJ. Breed Differences in PCV2 Uptake and Disintegration in Porcine Monocytes. Viruses 2018; 10:v10100562. [PMID: 30326643 PMCID: PMC6213064 DOI: 10.3390/v10100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/22/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is associated with various diseases which are designated as PCV2-associated diseases (PCVADs). Their severity varies among breeds. In the diseased pigs, virus is present in monocytes, without replication or full degradation. PCV2 entry and viral outcome in primary porcine monocytes and the role of monocytes in PCV2 genetic susceptibility have not been studied. Here, virus uptake and trafficking were analyzed and compared among purebreds Piétrain, Landrace and Large White and hybrid Piétrain × Topigs20. Viral capsids were rapidly internalized into monocytes, followed by a slow disintegration to a residual level. PCV2 uptake was decreased by chlorpromazine, cytochalasin D and dynasore. The internalized capsids followed the endosomal trafficking pathway, ending up in lysosomes. PCV2 genome was nicked by lysosomal DNase II in vitro, but persisted in monocytes in vivo. Monocytes from purebred Piétrain and the hybrid showed a higher level of PCV2 uptake and disintegration, compared to those from Landrace and Large White. In conclusion, PCV2 entry occurs via clathrin-mediated endocytosis. After entry, viral capsids are partially disintegrated, while viral genomes largely escape from the pathway to avoid degradation. The degree of PCV2 uptake and disintegration differ among pig breeds.
Collapse
Affiliation(s)
- Ruifang Wei
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bo Yang
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Liping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Maduan Street 427, Harbin 150001, China.
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
17
|
Yu W, Zhan Y, Xue B, Dong Y, Wang Y, Jiang P, Wang A, Sun Y, Yang Y. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem 2018; 293:15221-15232. [PMID: 30108178 DOI: 10.1074/jbc.ra118.004823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the smallest, nonenveloped, single-stranded DNA viruses. The PCV2 capsid protein (Cap) is the sole viral structural protein and main antigenic determinant. Previous sequence analysis has revealed that the N terminus of the PCV2 Cap contains a nuclear localization signal (NLS) enriched in positively charged residues. Here, we report that PCV2's NLS can function as a cell-penetrating peptide (CPP). We observed that this NLS can carry macromolecules, e.g. enhanced GFP (EGFP), into cells when they are fused to the NLS, indicating that it can function as a CPP, similar to the classical CPP derived from HIV type 1 transactivator of transcription protein (HIV TAT). We also found that the first 17 residues of the NLS (NLS-A) have a key role in cellular uptake. In addition to entering cells via multiple endocytic processes, NLS-A was also rapidly internalized via direct translocation enabled by increased membrane permeability and was evenly distributed throughout cells when its concentration in cell cultures was ≥10 μm Of note, cellular NLS-A uptake was ∼10 times more efficient than that of HIV TAT. We inferred that the externalized NLS of the PCV2 Cap may accumulate to a high concentration (≥10 μm) at a local membrane area, increasing membrane permeability to facilitate viral entry into the cell to release its genome into a viral DNA reproduction center. We conclude that NLS-A has potential as a versatile vehicle for shuttling foreign molecules into cells, including pharmaceuticals for therapeutic interventions.
Collapse
Affiliation(s)
- Wanting Yu
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zhan
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanpeng Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China, and
| | - Yanfeng Wang
- Tsinghua-Peking Joint Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China, and
| | - Aibing Wang
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China,
| | - Yi Yang
- From the Key Laboratory of Animal Vaccine and Protein Engineering and .,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Mutthi P, Theerawatanasirikul S, Roytrakul S, Paemanee A, Lekcharoensuk C, Hansoongnern P, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Interferon gamma induces cellular protein alteration and increases replication of porcine circovirus type 2 in PK-15 cells. Arch Virol 2018; 163:2947-2957. [DOI: 10.1007/s00705-018-3944-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
|
19
|
Wang D, Zhang S, Zou Y, Yu W, Jiang Y, Zhan Y, Wang N, Dong Y, Yang Y. Structure-Based Design of Porcine Circovirus Type 2 Chimeric VLPs (cVLPs) Displays Foreign Peptides on the Capsid Surface. Front Cell Infect Microbiol 2018; 8:232. [PMID: 30038901 PMCID: PMC6046401 DOI: 10.3389/fcimb.2018.00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Although porcine circovirus-like particles can function as a vector to carry foreign peptides into host cells, displaying foreign peptides on the surface of virus-like particles (VLPs) remains challenging. In this study, a plateau, consisting of the middle portion of Loop CD (MP-Lcd) from two neighboring subunits of PCV2 capsid protein (Cap), was identified as an ideal site to insert various foreign peptides or epitopes and display them on the surface of PCV2 VLPs. One of the goals of this work is to determine if the surface pattern of this plateau can be altered without compromising the neutralizing activity against PCV2 infections. Therefore, biological roles of MP-Lcd regarding VLPs assembly, cell entry, and antigenicity were investigated to determine whether this was a universal site for insertion of foreign functional peptides. Three-dimensional (3D) structure simulations and mutation assays revealed MP-Lcd was dispensable for PCV2 Cap assembly into VLPs and their entry into host cells. Notably, substitution of MP-Lcd with a foreign peptide, caused surface pattern changes around two-fold axes of PCV2 VLPs based on 3D structure simulation, but was not detrimental to VLPs assembly and cell entry. Moreover, this substitution had no adverse effect on eliciting neutralizing antibodies (NAbs) against PCV2 infection in pigs. In conclusion, MP-Lcd of the PCV2 Cap was a promising site to accommodate and display foreign epitopes or functional peptides on the surface of PCV2 VLPs. Furthermore, chimeric VLPs (cVLPs) would have potential as bivalent or multivalent vaccines and carriers to deliver functional peptides to target cells.
Collapse
Affiliation(s)
- Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Sujiao Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yawen Zou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wanting Yu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yifan Jiang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yanpeng Dong
- Jiangsu Nannong Hi-Tech Co., Ltd, Jiangyin, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Hua T, Zhang X, Tang B, Chang C, Liu G, Feng L, Yu Y, Zhang D, Hou J. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. BMC Vet Res 2018; 14:138. [PMID: 29699558 PMCID: PMC5921416 DOI: 10.1186/s12917-018-1457-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Result Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Conclusion Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yang Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Bistolas KSI, Rudstam LG, Hewson I. Gene expression of benthic amphipods (genus: Diporeia) in relation to a circular ssDNA virus across two Laurentian Great Lakes. PeerJ 2017; 5:e3810. [PMID: 28966890 PMCID: PMC5621510 DOI: 10.7717/peerj.3810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 01/15/2023] Open
Abstract
Circular rep-encoding ssDNA (CRESS-DNA) viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transcriptional profile of benthic amphipods of genus Diporeia and the presence of the CRESS-DNA virus, LM29173, in the Laurentian Great Lakes to provide potential insight into the influence of these viruses on invertebrate gene expression. Twelve transcriptomes derived from Diporeia were compared, representing organisms from two amphipod haplotype clades (Great Lakes Michigan and Superior, defined by COI barcode sequencing) with varying viral loads (up to 3 × 106 genome copies organism−1). Read recruitment to de novo assembled transcripts revealed 2,208 significantly over or underexpressed contigs in transcriptomes with above average LM29173 load. Of these contigs, 31.5% were assigned a putative function. The greatest proportion of annotated, differentially expressed transcripts were associated with functions including: (1) replication, recombination, and repair, (2) cell structure/biogenesis, and (3) post-translational modification, protein turnover, and chaperones. Contigs putatively associated with innate immunity displayed no consistent pattern of expression, though several transcripts were significantly overexpressed in amphipods with high viral load. Quantitation (RT-qPCR) of target transcripts, non-muscular myosin heavy chain, β-actin, and ubiquitin-conjugating enzyme E2, corroborated transcriptome analysis and indicated that Lake Michigan and Lake Superior amphipods with high LM29173 load exhibit lake-specific trends in gene expression. While this investigation provides the first comparative survey of the transcriptional profile of invertebrates of variable CRESS-DNA viral load, additional inquiry is required to define the scope of host-specific responses to potential infection.
Collapse
Affiliation(s)
| | - Lars G Rudstam
- Department of Natural Resources and the Cornell Biological Field Station, Cornell University, Bridgeport, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
HMGCR inhibits the early stage of PCV2 infection, while PKC enhances the infection at the late stage*. Virus Res 2017; 229:41-47. [DOI: 10.1016/j.virusres.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/26/2023]
|
23
|
Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Res 2017; 227:143-149. [DOI: 10.1016/j.virusres.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/25/2023]
|
24
|
Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules. Arch Virol 2016; 162:677-686. [PMID: 27858289 DOI: 10.1007/s00705-016-3140-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/28/2016] [Indexed: 10/25/2022]
Abstract
Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0-12 hour post inoculation (hpi) while at 20-24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8-12 hpi. At 20-24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.
Collapse
|
25
|
Wang N, Zhan Y, Wang A, Zhang L, Khayat R, Yang Y. In silico analysis of surface structure variation of PCV2 capsid resulting from loop mutations of its capsid protein (Cap). J Gen Virol 2016; 97:3331-3344. [PMID: 27902320 DOI: 10.1099/jgv.0.000634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Outbreaks of porcine circovirus (PCV) type 2 (PCV2)-associated diseases have caused substantial economic losses worldwide in the last 20 years. The PCV capsid protein (Cap) is the sole structural protein and main antigenic determinant of this virus. In this study, not only were phylogenetic trees reconstructed, but variations of surface structure of the PCV capsid were analysed in the course of evolution. Unique surface patterns of the icosahedral fivefold axes of the PCV2 capsid were identified and characterized, all of which were absent in PCV type 1 (PCV1). Icosahedral fivefold axes, decorated with Loops BC, HI and DE, were distinctly different between PCV2 and PCV1. Loops BC, determining the outermost surface around the fivefold axes of PCV capsids, had limited homology between Caps of PCV1 and PCV2. A conserved tyrosine phosphorylation motif in Loop HI that might be recognized by non-receptor tyrosine kinase(s) in vivo was present only in PCV2. Particularly, the concurrent presence of 60 pairs of the conserved tyrosine and a canonical PXXP motif on the PCV2 capsid surface could be a mechanism for PXXP motif binding to and activation of an SH3-domain-containing tyrosine kinase in host cells. Additionally, a conserved cysteine in Loop DE of the PCV2 Cap was substituted by an arginine in PCV1, indicating potentially distinct assembly mechanisms of the capsid in vitro between PCV1 and PCV2. Therefore, these unique patterns on the PCV2 capsid surface, absent in PCV1 isolates, might be related to cell entry, virus function and pathogenesis.
Collapse
Affiliation(s)
- Naidong Wang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, PR China
| | - Yang Zhan
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, PR China
| | - Aibing Wang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, PR China
| | | | - Reza Khayat
- Department of Chemistry, City College of New York, NY, USA
- PhD Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, NY, USA
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, PR China
| |
Collapse
|
26
|
Ren L, Chen X, Ouyang H. Interactions of porcine circovirus 2 with its hosts. Virus Genes 2016; 52:437-44. [DOI: 10.1007/s11262-016-1326-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
27
|
Yang X, Ma T, Ouyang H, Chen F, Peng Z, Li C, Ma Y, Chen X, Li B, Pang D, Ren L. Effect of atovastatin treatment on porcine circovirus 2 infection in BALB/c mice. Clin Exp Pharmacol Physiol 2015; 42:817-21. [DOI: 10.1111/1440-1681.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/13/2015] [Accepted: 05/24/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xin Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Teng Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Fuwang Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Zhiyuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Chun Li
- The Chinese Peoples' Liberation Army 208 Hospital; Changchun China
| | - Yunzhi Ma
- Heping Campus; Jilin University; Changchun Jilin China
| | - Xinrong Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Boyu Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Daxing Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering; College of Animal Sciences; Changchun Jilin China
| |
Collapse
|
28
|
Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 2014; 89:2777-91. [PMID: 25540360 DOI: 10.1128/jvi.03117-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Microtubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo. IMPORTANCE Incoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.
Collapse
|
29
|
Yan M, Zhu L, Yang Q. Infection of porcine circovirus 2 (PCV2) in intestinal porcine epithelial cell line (IPEC-J2) and interaction between PCV2 and IPEC-J2 microfilaments. Virol J 2014; 11:193. [PMID: 25407967 PMCID: PMC4237784 DOI: 10.1186/s12985-014-0193-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Porcine circovirus-associated disease (PCVAD) is caused by a small pathogenic DNA virus, Porcine circovirus type 2 (PCV2), and is responsible for severe economic losses. PCV2-associated enteritis appears to be a distinct clinical manifestation of PCV2. Most studies of swine enteritis have been performed in animal infection models, but none have been conducted in vitro using cell lines of porcine intestinal origin. An in vitro system would be particularly useful for investigating microfilaments, which are likely to be involved in every stage of the viral lifecycle. METHODS We confirmed that PCV2 infects the intestinal porcine epithelial cell line IPEC-J2 by means of indirect immunofluorescence, transmission electron microscopy, flow cytometry and qRT-PCR. PCV2 influence on microfilaments in IPEC-J2 cells was detected by fluorescence microscopy and flow cytometry. We used Cytochalasin D or Cucurbitacin E to reorganize microfilaments, and observed changes in PCV2 invasion, replication and release in IPEC-J2 cells by qRT-PCR. RESULTS PCV2 infection changes the ultrastructure of IPEC-J2 cells. PCV2 copy number in IPEC-J2 cells shows a rising trend as infection proceeds. Microfilaments are polymerized at 1 h p.i., but densely packed actin stress fibres are disrupted and total F-actin increases at 24, 48 and 72 h p.i. After Cytochalasin D treatment, invasion of PCV2 is suppressed, while invasion is facilitated by Cucurbitacin E. The microfilament drugs have opposite effects on viral release. CONCLUSION PCV2 infects and proliferates in IPEC-J2 cells, demonstrating that IPEC-J2 cells can serve as a cell intestinal infection model for PCV2 pathogenesis. Furthermore, PCV2 rearranges IPEC-J2 microfilaments and increases the quantity of F-actin. Actin polymerization may facilitate the invasion of PCV2 in IPEC-J2 cells and the dissolution of cortical actin may promote PCV2 egress.
Collapse
Affiliation(s)
| | | | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
30
|
Yang X, Ouyang H, Chen F, Pang D, Dong M, Yang S, Liu X, Peng Z, Wang F, Zhang X, Ren L. HMG-CoA reductase is negatively associated with PCV2 infection and PCV2-induced apoptotic cell death. J Gen Virol 2014; 95:1330-1337. [DOI: 10.1099/vir.0.063644-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the role of HMG-CoA reductase (HMGCR) during porcine circovirus 2 (PCV2) infection. The results demonstrated that levels of endogenous HMGCR were not significantly different in PCV2-infected cells and mock-infected cells. However, the level of phosphorylated HMGCR, an inactivated form of HMGCR, was increased in PCV2-infected cells. Furthermore, HMGCR was upregulated by overexpression, silenced by siRNA or inactivated using its dominant-negative form in PK-15 cells. The results showed that PCV2 infection was inhibited by HMGCR overexpression, whereas it was significantly increased in HMGCR-silenced cells and HMGCR inhibitor-treated cells. Moreover, there was a robust apoptotic response at 48 h post-infection (p.i.) in HMGCR-inactivated cells, and this response was significantly greater than that observed in PK-15 cells. A modest apoptotic response was also observed in HMGCR-silenced cells. Caspase-3 activity was also analysed in PCV2-infected cells at 48 h p.i. As expected, caspase-3 activity was significantly increased in HMGCR-inactivated and -silenced cells compared with PK-15 cells. PCV2 replication was dose-dependently increased in HMGCR-inactivated cells when treated with increasing amounts of caspase-3 inhibitor. Altogether, HMGCR was negatively associated with PCV2 infection and PCV2-induced apoptotic cell death. These data demonstrated that HMGCR can be used as a candidate target for PCV2 disease control and antivirus research. Furthermore, the cells generated in this study can be used to evaluate the potential effects of HMGCR on PCV2 replication.
Collapse
Affiliation(s)
- Xin Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Fuwang Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Daxing Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Meichen Dong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Susu Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Xiaoyun Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Zhiyuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Fei Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Xiao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, PR China
| |
Collapse
|
31
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
32
|
Cruz TF, Araujo JP. Cultivation of PCV2 in swine testicle cells using the shell vial technique and monitoring of viral replication by qPCR and RT-qPCR. J Virol Methods 2013; 196:82-5. [PMID: 24183921 DOI: 10.1016/j.jviromet.2013.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022]
Abstract
Porcine circovirus type 2 (PCV2) is difficult to isolate. Currently, no published articles have used the shell vial technique to isolate PCV2. In addition, the action of d-glucosamine on swine testicle cells (ST) has not been evaluated properly. Thus, the aim of this study was to determine an optimal concentration of d-glucosamine and to test the shell vial technique for PCV2 propagation in ST cells. The optimal concentration of d-glucosamine was determined to be 100mM. Because PCV2 is noncytopathic, the traditional adsorption was compared to the shell vial technique for 15 passages by qPCR, and RT-qPCR for passages 12 through 15. The quantities of viral DNA (P=0.013) and ORF1-mRNA detected with the shell vial technique were two-fold higher than the obtained with traditional adsorption. The levels of ORF2-mRNA were similar for both methods; however, by passage 15, a six-fold increase in levels was observed with the shell vial technique. Therefore, the shell vial technique was more efficient for the cultivation of PCV2, and qPCR/RT-qPCR can be used to monitor viral replication. In addition, a high viral load (>2.7×10(10) DNA copies/ml) and high levels of viral mRNA expression indicated that the ST cells were persistently infected.
Collapse
Affiliation(s)
- Taís F Cruz
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu 18618-970, São Paulo, Brazil.
| | - João P Araujo
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu 18618-970, São Paulo, Brazil.
| |
Collapse
|
33
|
Zhang J, Hu YH, Xiao ZZ, Sun L. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential. J Proteomics 2013; 91:430-43. [PMID: 23933595 DOI: 10.1016/j.jprot.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
34
|
Yang X, Chen F, Cao Y, Pang D, Ouyang H, Ren L. Comparative analysis of different methods to enhance porcine circovirus 2 replication. J Virol Methods 2013; 187:368-71. [DOI: 10.1016/j.jviromet.2012.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/11/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
35
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.
Collapse
Affiliation(s)
- Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;
| |
Collapse
|
36
|
Trible BR, Ramirez A, Suddith A, Fuller A, Kerrigan M, Hesse R, Nietfeld J, Guo B, Thacker E, Rowland RRR. Antibody responses following vaccination versus infection in a porcine circovirus-type 2 (PCV2) disease model show distinct differences in virus neutralization and epitope recognition. Vaccine 2012; 30:4079-85. [PMID: 22521847 DOI: 10.1016/j.vaccine.2012.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/13/2012] [Accepted: 04/03/2012] [Indexed: 01/02/2023]
Abstract
Porcine circovirus associated disease (PCVAD) encompasses a group of syndromes linked to infection with porcine circovirus type 2 (PCV2). Based on the hypothesis that the immune responses to vaccination versus infection are quantitatively and qualitatively different, the objective of this study was to evaluate immunity, virus replication and disease protection in pigs vaccinated with PCV2 capsid protein (CP) and during infection. The disease model included dual infection with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV), a virus known to enhance disease progression and severity. The principal effect of PRRSV infection was to increase peak PCV2 viremia by almost 40-fold; however, PCV2 failed to show a reciprocal effect on PRRSV. In vaccinated pigs, there was no evidence of disease or PCV2 replication following dual virus challenge. Immunity following vaccination favored PCV2 neutralizing activity; whereas, PCV2 infection and disease produced high levels of non-neutralizing antibody, primarily directed against a polypeptide in the C-terminal region of CP. These results support the notion that the magnitude of the total antibody response cannot be used as a measure of protective immunity. Furthermore, protection versus disease lies in the immunodominance of specific epitopes. Epitope specificity should be taken into consideration when designing PCV2 vaccines.
Collapse
Affiliation(s)
- Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nauwynck H, Sanchez R, Meerts P, Lefebvre D, Saha D, Huang L, Misinzo G. Cell tropism and entry of porcine circovirus 2. Virus Res 2012; 164:43-5. [DOI: 10.1016/j.virusres.2011.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/27/2022]
|
38
|
Ramírez-Boo M, Núnez E, Jorge I, Navarro P, Fernandes LT, Segalés J, Garrido JJ, Vázquez J, Moreno Á. Quantitative proteomics by 2-DE, 16O/18O labelling and linear ion trap mass spectrometry analysis of lymph nodes from piglets inoculated by porcine circovirus type 2. Proteomics 2011; 11:3452-69. [DOI: 10.1002/pmic.201000610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/18/2011] [Accepted: 05/30/2011] [Indexed: 12/13/2022]
|
39
|
Efficacy of different protocols of vaccination against porcine circovirus type 2 (PCV2) in a farm affected by postweaning multisystemic wasting syndrome (PMWS). Comp Immunol Microbiol Infect Dis 2010; 33:e1-5. [DOI: 10.1016/j.cimid.2009.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 11/22/2022]
|
40
|
Ear necrosis reduction in pigs after vaccination against PCV2. Res Vet Sci 2010; 91:125-128. [PMID: 20889175 DOI: 10.1016/j.rvsc.2010.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/19/2010] [Accepted: 08/26/2010] [Indexed: 11/20/2022]
Abstract
The influence of sows vaccination against PCV2 on the prevalence of ear necrosis syndrome (ENS) reduction among weaners was analyzed using 12,931 piglets from 45 consecutive batches, born to both, vaccinated and non-vaccinated sows. The results were statistically tested with a nonparametric Kruskal-Wallis and Chi-square tests. The results show that vaccination against PCV2 significantly reduced the prevalence of ENS (p<0.05). The percentage of affected pigs born to vaccinated sows was about over two times lower than in both groups of pigs born to non-vaccinated females (before the vaccination implementation and after its withdrawing). Even more distinct were the differences in the intensity of the lesions (p<0.05). In the group of pigs born to vaccinated sows, the percentage of severe lesions was three times lower than in the pigs born to non-vaccinated sows. It conclusion, it could statement that vaccination against PCV2 might be effective in reduction of ENS.
Collapse
|
41
|
Rodríguez-Cariño C, Duffy C, Sánchez-Chardi A, McNeilly F, Allan GM, Segalés J. Porcine circovirus type 2 morphogenesis in a clone derived from the l35 lymphoblastoid cell line. J Comp Pathol 2010; 144:91-102. [PMID: 20800239 DOI: 10.1016/j.jcpa.2010.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/29/2010] [Accepted: 07/03/2010] [Indexed: 11/28/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the essential infectious agent of post-weaning multisystemic wasting syndrome (PMWS), one of the most important diseases of swine. Although several studies have described different biological properties of the virus, some aspects of its replication cycle, including ultrastructural alterations, remain unknown. The aim of the present study was to describe for the first time a complete morphogenesis study of PCV2 in a clone of the lymphoblastoid L35 cell line at the ultrastructural level using electron microscopy techniques. Cells were infected with PCV2 at a multiplicity of infection of 10 and examined at 0, 6, 12, 24, 48, 60 and 72h post-infection. PCV2 was internalized by endocytosis, after which the virus aggregated in intracytoplasmic inclusion bodies (ICIs). Subsequently, PCV2 was closely associated with mitochondria, completing a first cytoplasmic phase. The virus entered the nucleus for replication and virus assembly and encapsidation occurred with the participation of the nuclear membrane. Immature virions left the nucleus and formed ICIs in a second cytoplasmic phase. The results suggest that at the end of the replication cycle (between 24 and 48h), PCV2 was released either by budding of mature virion clusters or by lysis of apoptotic or dead cells. In conclusion, the L35-derived clone represents a suitable in-vitro model for PCV2 morphogenesis studies and characterization of the PCV2 replication cycle.
Collapse
Affiliation(s)
- C Rodríguez-Cariño
- Centre de Recerca en Sanitat Animal, Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Gold S, Monaghan P, Mertens P, Jackson T. A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells. PLoS One 2010; 5:e11360. [PMID: 20613878 PMCID: PMC2894058 DOI: 10.1371/journal.pone.0011360] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/01/2010] [Indexed: 11/22/2022] Open
Abstract
Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819–4827). Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the ‘aa’ splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.
Collapse
Affiliation(s)
- Sarah Gold
- Pirbright Laboratory, Institute for Animal Health, Woking, United Kingdom
| | - Paul Monaghan
- Pirbright Laboratory, Institute for Animal Health, Woking, United Kingdom
| | - Peter Mertens
- Pirbright Laboratory, Institute for Animal Health, Woking, United Kingdom
| | - Terry Jackson
- Pirbright Laboratory, Institute for Animal Health, Woking, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Abstract
Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 2010; 8:5111-9. [PMID: 19708719 DOI: 10.1021/pr900488q] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which is an emerging swine immunosuppressive disease. To uncover cellular protein responses in PCV2-infected PK-15 cells, the comprehensive proteome profiles were analyzed utilizing two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification. Multiple comparisons of 2-DE revealed that the majority of changes in protein expression occurred at 48-96 h after PCV2 infection. A total of 34 host-encoded proteins, including 15 up-regulated and 19 down-regulated proteins, were identified by MALDI-TOF/TOF analysis. According to cellular function, the differential expression proteins could be sorted into several groups: cytoskeleton proteins, stress response, macromolecular biosynthesis, energy metabolism, ubiquitin-proteasome pathway, signal transduction, gene regulation. Western blot analysis demonstrated the changes of alpha tubulin, beta actin, and cytokeratin 8 during infection. Colocalization and coimmunoprecipitation analyses confirmed that the cellular alpha tubulin interacts with the Cap protein of PCV2 in the infected PK-15 cells. These identified cellular constituents have important implications for understanding the host interactions with PCV2 and brings us a step closer to defining the cellular requirements for the underlying mechanism of PCV2 replication and pathogenesis.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tomás A, Fernandes LT, Sánchez A, Segalés J. Time course differential gene expression in response to porcine circovirus type 2 subclinical infection. Vet Res 2009; 41:12. [PMID: 19825344 PMCID: PMC2781716 DOI: 10.1051/vetres/2009060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 10/12/2009] [Indexed: 12/29/2022] Open
Abstract
This study was aimed at characterizing the potential differences in gene expression in piglets inoculated with Porcine circovirus type 2 (PCV2), the essential causative agent of postweaning multisystemic wasting syndrome. Seven-day-old caesarean-derived, colostrum-deprived piglets were distributed into two groups: control (n = 8) and pigs inoculated with 105.2 TCID50 of the Burgos PCV2 isolate (n = 16). One control and three inoculated pigs were necropsied on days 1, 2, 5, and 8 post-infection (p.i.). The remaining pigs (four of each group) were sequentially bled on days 0, 7, 14, 21, and 29 p.i. (necropsy). Total RNA from the mediastinal lymph node (MLN) and lysed whole blood (LWB) samples were hybridized to Affymetrix Porcine GeneChip®. Forty-three probes were differentially expressed (DE) in MLN samples (FDR < 0.1, fold change > 2) and were distributed into three clusters: globally down-regulated genes, and up-regulated genes at early (first week p.i.) and late (day 29 p.i.) stages of infection. In LWB samples, maximal differences were observed at day 7 p.i., with 54 probes DE between control and inoculated pigs. Main Gene Ontology biological processes assigned to up-regulated genes were related to the immune response. Six common genes were found in both types of samples, all of which belonged to the interferon signaling antiviral effector pathway. Down-regulated genes were mainly related to cell adhesion and migration in MLN, and cellular organization and biogenesis in LWB. Microarray results were validated by quantitative real-time PCR. This study provides, for the first time, the characterization of the early and late molecular events taking place in response to a subclinical PCV2 infection.
Collapse
Affiliation(s)
- Anna Tomás
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|