1
|
Murhububa IS, Bragard C, Tougeron K, Hance T. Preference of Pentalonia nigronervosa for infected banana plants tends to reverse after Banana bunchy top virus acquisition. Sci Rep 2024; 14:2993. [PMID: 38316887 PMCID: PMC10844331 DOI: 10.1038/s41598-024-53205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) is the vector of the Banana Bunchy Top Virus (BBTV), the most serious viral disease of banana (Musa spp.) in the world. Before acquiring the virus, the vector is more attracted to infected banana plants in response to the increased emissions of volatile organic compounds (VOCs). Here, we test the hypothesis that BBTV acquisition directly modifies the preference of P. nigronervosa for infected banana plants, and that the change in preference results from the alteration of the organs linked to the VOC detection or to the behaviour of the vector. We found that the preference of P. nigronervosa for infected banana plants reverses after virus acquisition in dessert banana, while it remains similar between healthy and infected banana plants before and after the acquisition of BBTV. At the same time, aphids reared on infected bananas had smaller forewing areas and hind tibia length than aphids reared on healthy bananas, although the number of secondary rhinaria on the antennae was lower on dessert banana-reared aphids than plantain-reared aphids, this was not affected by the infection status of the aphid. These results support the "vector manipulation hypothesis-VMH" of pathogens to promote their spread. They have implications for the BBTV management.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium.
- Département de l'Environnement et Sciences Agronomiques, Faculté des Sciences, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo.
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo.
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires de Walungu, Walungu, Democratic Republic of the Congo.
| | - Claude Bragard
- Applied Microbiology, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Kévin Tougeron
- Ecology of Interactions and Global Change, Research Institute in Biosciences, Université de Mons, 7000, Mons, Belgium
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Singh V, Adil S, Quraishi A. Elimination of BBTV via a systemic in vitro electrotherapy approach. J Virol Methods 2021; 300:114367. [PMID: 34822911 DOI: 10.1016/j.jviromet.2021.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/20/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Banana bunchy top virus (BBTV) is the most destructive etiological agent limiting banana cultivation areas globally. This study attempted BBTV elimination by traditional shoot-tip culture (control) and alternative shoot-tip + electrotherapy (treated) techniques. Shoot-tip culture from Musa acuminata cv. 'Grand Naine' infected sources were exposed to 100 mA electric current for different time intervals (20-60 min). Virus indexing (via PCR) and genetic fidelity (by ISSR assay) from the cultures were tested, alongside the physio-biochemical parameters. Exposure of electric current for less than 50 min was ineffective for BBTV elimination. Still, a rise in the duration from 50 min or more led to eradicating the virus from some explants. Elimination of BBTV was complete from 100 % of explants exposed to 100 mA for 60 min, as confirmed by lack of BBTV detection even at six months after acclimatization. In the control treatment, the maximum efficiency of BBTV elimination was 28 % after eight subcultures. On the other hand, improved survival % was observed in the treated culture. Moreover, homogenous ISSR patterns were there between the treated and the mother plant and similar physio-biochemical activities were seen in electro-exposed cultures and healthy ones. Thus, the study reports complete BBTV-elimination from banana with international compliances, for the first time, via electrotherapy while maintaining genomic template and biochemical stability.
Collapse
Affiliation(s)
- Vikram Singh
- School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India.
| | - Smriti Adil
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India.
| | - Afaque Quraishi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India.
| |
Collapse
|
3
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
5
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
6
|
Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M, Gaafar Y, Ziebell H, Michalakis Y, Zeddam JL, Blanc S. Route of a Multipartite Nanovirus across the Body of Its Aphid Vector. J Virol 2020; 94:e01998-19. [PMID: 32102876 PMCID: PMC7163135 DOI: 10.1128/jvi.01998-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.
Collapse
Affiliation(s)
- Jérémy Di Mattia
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Mathilde Villegas
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | | - Jean-Louis Zeddam
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- UMR IPME, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Stéphane Blanc
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Di Mattia J, Ryckebusch F, Vernerey MS, Pirolles E, Sauvion N, Peterschmitt M, Zeddam JL, Blanc S. Co-Acquired Nanovirus and Geminivirus Exhibit a Contrasted Localization within Their Common Aphid Vector. Viruses 2020; 12:E299. [PMID: 32164363 PMCID: PMC7150979 DOI: 10.3390/v12030299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA (ssDNA) plant viruses belong to the families Geminiviridae and Nanoviridae. They are transmitted by Hemipteran insects in a circulative, mostly non-propagative, manner. While geminiviruses are transmitted by leafhoppers, treehoppers, whiteflies and aphids, nanoviruses are transmitted exclusively by aphids. Circulative transmission involves complex virus-vector interactions in which epithelial cells have to be crossed and defense mechanisms counteracted. Vector taxa are considered a relevant taxonomic criterion for virus classification, indicating that viruses can evolve specific interactions with their vectors. Thus, we predicted that, although nanoviruses and geminiviruses represent related viral families, they have evolved distinct interactions with their vector. This prediction is also supported by the non-structural Nuclear Shuttle Protein (NSP) that is involved in vector transmission in nanoviruses but has no similar function in geminiviruses. Thanks to the recent discovery of aphid-transmitted geminiviruses, this prediction could be tested for the geminivirus alfalfa leaf curl virus (ALCV) and the nanovirus faba bean necrotic stunt virus (FBNSV) in their common vector, Aphis craccivora. Estimations of viral load in midgut and head of aphids, precise localization of viral DNA in cells of insect vectors and host plants, and virus transmission tests revealed that the pathway of the two viruses across the body of their common vector differs both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Jérémy Di Mattia
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Faustine Ryckebusch
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | | | - Elodie Pirolles
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Nicolas Sauvion
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Michel Peterschmitt
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Jean-Louis Zeddam
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34398 Montpellier, France
| | - Stéphane Blanc
- UMR BGPI, Univ. Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| |
Collapse
|
8
|
Ji XL, Yu NT, Qu L, Li BB, Liu ZX. Banana bunchy top virus (BBTV) nuclear shuttle protein interacts and re-distributes BBTV coat protein in Nicotiana benthamiana. 3 Biotech 2019; 9:121. [PMID: 30863700 DOI: 10.1007/s13205-019-1656-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
Banana bunchy top virus (BBTV) is a circular single-stranded DNA virus with multi-components. The knowledge about interaction between viral proteins and pathogenesis mechanism of BBTV remains unclear. In this study, the coat protein gene (CP, ORF 516 bp) and nuclear shuttle protein gene (NSP, ORF 465 bp) from BBTV B2 isolate of the Southeast-Asia group were cloned. The intracellular localization analysis showed the CP locates in the cell nucleus of tobacco cells, while the NSP distributes in the cell nucleus and cytoplasm. Co-localization analysis indicated the NSP itself does not change distribution, but CP re-distributes to the cell nucleus and cytoplasm, suggesting that NSP interacts with CP and re-locates the CP in the cell. The interaction between CP and NSP was further verified by co-immunoprecipitation (Co-IP) in tobacco protoplasts. The study will help us to understand the interaction between viral proteins and pathogenesis mechanism of BBTV in host plants.
Collapse
Affiliation(s)
- Xiao-Long Ji
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Nai-Tong Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Ling Qu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Bin-Bin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Zhi-Xin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
9
|
Grigoras I, Vetten HJ, Commandeur U, Ziebell H, Gronenborn B, Timchenko T. Nanovirus DNA-N encodes a protein mandatory for aphid transmission. Virology 2018; 522:281-291. [PMID: 30071404 DOI: 10.1016/j.virol.2018.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Nanoviruses possess a multipartite single-stranded DNA genome and are naturally transmitted to plants by various aphid species in a circulative non-propagative manner. Using the cloned genomic DNAs of faba bean necrotic stunt virus (FBNSV) for reconstituting nanovirus infections we analyzed the necessity of different virus components for infection and transmission by aphids. We found that in the absence of DNA-U1 and DNA-U2 symptom severity decreased, and in the absence of DNA-U1 the transmission efficiency decreased. Most significantly, we demonstrated that the protein encoded by DNA-N (NSP) is mandatory for aphid transmission. Moreover, we showed that the NSP of FBNSV could substitute for that of a distantly related nanovirus, pea necrotic yellow dwarf virus. Altering the FBNSV NSP by adding 13 amino acids to its carboxy-terminus resulted in an infectious but non-transmissible virus. We demonstrate that the NSP acts as a nanovirus transmission factor, the existence of which had been hypothesized earlier.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Heiko Ziebell
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
10
|
Watanabe S, Borthakur D, Bressan A. Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. INSECT SCIENCE 2016; 23:591-602. [PMID: 25728903 DOI: 10.1111/1744-7917.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
| |
Collapse
|
11
|
Wickramaarachchi WART, Shankarappa KS, Rangaswamy KT, Maruthi MN, Rajapakse RGAS, Ghosh S. Molecular characterization of banana bunchy top virus isolate from Sri Lanka and its genetic relationship with other isolates. Virusdisease 2016; 27:154-60. [PMID: 27366766 DOI: 10.1007/s13337-016-0311-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022] Open
Abstract
Bunchy top disease of banana caused by Banana bunchy top virus (BBTV, genus Babuvirus family Nanoviridae) is one of the most important constraints in production of banana in the different parts of the world. Six genomic DNA components of BBTV isolate from Kandy, Sri Lanka (BBTV-K) were amplified by polymerase chain reaction (PCR) with specific primers using total DNA extracted from banana tissues showing typical symptoms of bunchy top disease. The amplicons were of expected size of 1.0-1.1 kb, which were cloned and sequenced. Analysis of sequence data revealed the presence of six DNA components; DNA-R, DNA-U3, DNA-S, DNA-N, DNA-M and DNA-C for Sri Lanka isolate. Comparisons of sequence data of DNA components followed by the phylogenetic analysis, grouped Sri Lanka-(Kandy) isolate in the Pacific Indian Oceans (PIO) group. Sri Lanka-(Kandy) isolate of BBTV is classified a new member of PIO group based on analysis of six components of the virus.
Collapse
Affiliation(s)
- W A R T Wickramaarachchi
- Division of Plant Pathology, Department of Agriculture, Horticulture Crops Research and Development Institute, Gannoruwa, Peradeniya, 20400 Sri Lanka
| | - K S Shankarappa
- Department of Plant Pathology, K. R. C. College of Horticulture, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka India
| | - K T Rangaswamy
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560 065 India
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - R G A S Rajapakse
- Division of Plant Pathology, Department of Agriculture, Horticulture Crops Research and Development Institute, Gannoruwa, Peradeniya, 20400 Sri Lanka
| | - Saptarshi Ghosh
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
12
|
Montero-Astúa M, Ullman DE, Whitfield AE. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology 2016; 493:39-51. [PMID: 26999025 DOI: 10.1016/j.virol.2016.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/21/2022]
Abstract
Tomato spotted wilt virus (TSWV) is transmitted by thrips in a propagative manner; however, progression of virus infection in the insect is not fully understood. The goal of this work was to study the morphology and infection of thrips salivary glands. The primary salivary glands (PSG) are complex, with three distinct regions that may have unique functions. Analysis of TSWV progression in thrips revealed the presence of viral proteins in the foregut, midgut, ligaments, tubular salivary glands (TSG), and efferent duct and filament structures connecting the TSG and PSG of first and second instar larvae. The primary site of virus infection shifted from the midgut and TSG in the larvae to the PSG in adults, suggesting that tissue tropism changes with insect development. TSG infection was detected in advance of PSG infection. These findings support the hypothesis that the TSG are involved in trafficking of TSWV to the PSG.
Collapse
Affiliation(s)
- Mauricio Montero-Astúa
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, United States
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, CA 95616-5270, United States
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, United States.
| |
Collapse
|
13
|
Wei J, Liu H, Liu F, Zhu M, Zhou X, Xing D. Miniaturized paper-based gene sensor for rapid and sensitive identification of contagious plant virus. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22577-84. [PMID: 25412341 DOI: 10.1021/am506695g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant viruses cause significant production and economic losses in the agricultural industry worldwide. Rapid and early identification of contagious plant viruses is an essential prerequisite for the effective control of further spreading of infection. In this work, we describe a miniaturized paper-based gene sensor for the rapid and sensitive identification of a contagious plant virus. Our approach makes use of hybridization-mediated target capture based on a miniaturized lateral flow platform and gold nanoparticle colorimetric probes. The captured colorimetric probes on the test line and control line of the gene sensor produce characteristic red bands, enabling visual detection of the amplified products within minutes without the need for sophisticated instruments or the multiple incubation and washing steps performed in most other assays. Quantitative analysis is realized by recording the optical intensity of the test line. The sensor was used successfully for the identification of banana bunchy top virus (BBTV). The detection limit was 0.13 aM of gene segment, which is 10 times higher than that of electrophoresis and provides confirmation of the amplified products. We believe that this simple, rapid, and sensitive bioactive platform has great promise for warning against plant diseases in agricultural production.
Collapse
Affiliation(s)
- Jitao Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | | | | | | | | | | |
Collapse
|
14
|
Kumar PL, Selvarajan R, Iskra-Caruana ML, Chabannes M, Hanna R. Biology, etiology, and control of virus diseases of banana and plantain. Adv Virus Res 2014; 91:229-69. [PMID: 25591881 DOI: 10.1016/bs.aivir.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review.
Collapse
Affiliation(s)
- P Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, Nigeria.
| | - Ramasamy Selvarajan
- National Research Center for Banana, Tiruchirapalli, PIN # 620102, TN, India
| | | | | | | |
Collapse
|
15
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
16
|
Bocklitz T, Kämmer E, Stöckel S, Cialla-May D, Weber K, Zell R, Deckert V, Popp J. Single virus detection by means of atomic force microscopy in combination with advanced image analysis. J Struct Biol 2014; 188:30-8. [PMID: 25196422 DOI: 10.1016/j.jsb.2014.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
In the present contribution virions of five different virus species, namely Varicella-zoster virus, Porcine teschovirus, Tobacco mosaic virus, Coliphage M13 and Enterobacteria phage PsP3, are investigated using atomic force microscopy (AFM). From the resulting height images quantitative features like maximal height, area and volume of the viruses could be extracted and compared to reference values. Subsequently, these features were accompanied by image moments, which quantify the morphology of the virions. Both types of features could be utilized for an automatic discrimination of the five virus species. The accuracy of this classification model was 96.8%. Thus, a virus detection on a single-particle level using AFM images is possible. Due to the application of advanced image analysis the morphology could be quantified and used for further analysis. Here, an automatic recognition by means of a classification model could be achieved in a reliable and objective manner.
Collapse
Affiliation(s)
- Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany.
| | - Evelyn Kämmer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Stephan Stöckel
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| |
Collapse
|
17
|
Lack of evidence for an interaction between Buchnera GroEL and Banana bunchy top virus (Nanoviridae). Virus Res 2013; 177:98-102. [DOI: 10.1016/j.virusres.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/03/2013] [Accepted: 06/08/2013] [Indexed: 11/23/2022]
|
18
|
Ng JCK. A Quantum Dot-Immunofluorescent Labeling Method to Investigate the Interactions between a Crinivirus and Its Whitefly Vector. Front Microbiol 2013; 4:77. [PMID: 23577009 PMCID: PMC3616251 DOI: 10.3389/fmicb.2013.00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022] Open
Abstract
Successful vector-mediated plant virus transmission entails an intricate but poorly understood interplay of interactions among virus, vector, and plant. The complexity of interactions requires continually improving/evaluating tools and methods for investigating the determinants that are central to mediating virus transmission. A recent study using an organic fluorophore (Alexa Fluor)-based immunofluorescent localization assay demonstrated that specific retention of Lettuce infectious yellows virus (LIYV) virions in the anterior foregut or cibarium of its whitefly vector is required for virus transmission. Continuous exposure of organic fluorophore to high excitation light intensity can result in diminished or loss of signals, potentially confounding the identification of important interactions associated with virus transmission. This limitation can be circumvented by incorporation of photostable fluorescent nanocrystals, such as quantum dots (QDs), into the assay. We have developed and evaluated a QD-immunofluorescent labeling method for the in vitro and in situ localization of LIYV virions based on the recognition specificity of streptavidin-conjugated QD605 (S-QD605) for biotin-conjugated anti-LIYV IgG (B-αIgG). IgG biotinylation was verified in a blot overlay assay by probing SDS-PAGE separated B-αIgG with S-QD605. Immunoblot analyses of LIYV using B-αIgG and S-QD605 resulted in a virus detection limit comparable to that of DAS-ELISA. In membrane feeding experiments, QD signals were observed in the anterior foregut or cibarium of virion-fed whitefly vectors but absent in those of virion-fed whitefly non-vectors. Specific virion retention in whitefly vectors corresponded with successful virus transmission. A fluorescence photobleaching assay of viruliferous whiteflies fed B-αIgG and S-QD605 vs. those fed anti-LIYV IgG and Alexa Fluor 488-conjugated IgG revealed that QD signal was stable and deteriorated approx. seven- to eight-fold slower than that of Alexa Fluor.
Collapse
Affiliation(s)
- James C. K. Ng
- Department of Plant Pathology and Microbiology, Center for Disease Vector Research, University of CaliforniaRiverside, CA, USA
| |
Collapse
|
19
|
Watanabe S, Greenwell AM, Bressan A. Localization, concentration, and transmission efficiency of Banana bunchy top virus in four asexual lineages of Pentalonia aphids. Viruses 2013; 5:758-76. [PMID: 23435241 PMCID: PMC3640525 DOI: 10.3390/v5020758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 02/01/2023] Open
Abstract
Banana bunchy top virus (BBTV) is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta), heliconia (Heliconia spp.), red ginger (Alpinia purpurata), and banana (Musa sp.). Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822; USA; E-Mail: (S.W.)
| | - April M. Greenwell
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- NSF-Center for Integrated Pest Management, North Carolina State University, USDA APHIS PPQ office, Honolulu, HI 96850, USA; E-Mail: (A.M.G.)
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
20
|
Watanabe S, Bressan A. Tropism, compartmentalization and retention of banana bunchy top virus (Nanoviridae) in the aphid vector Pentalonia nigronervosa. J Gen Virol 2012; 94:209-219. [PMID: 23015741 DOI: 10.1099/vir.0.047308-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plant viruses of the families Luteoviridae and Geminiviridae rely on hemipteran vectors for the infection of their hosts. Several lines of evidence have revealed that these viruses are transmitted by competent vectors in a circulative manner, involving entry into the vector's body and the crossing of epithelial tissues forming the alimentary tract and the salivary glands. Similar to luteovirids and geminiviruses, a third family of plant viruses, the family Nanoviridae, have also been reported to be transmitted by aphids in a circulative manner. However, there is limited direct evidence of a possible path of translocation through the aphid vectors. Here, we used time-course experiments and transmission assays coupled with real-time PCR and immunofluorescence assays on dissected tissues to examine the translocation, compartmentalization and retention of banana bunchy top virus (BBTV) into the aphid vector Pentalonia nigronervosa. Our results indicate that BBTV translocates rapidly through the aphid vector; it is internalized into the anterior midgut in which it accumulates and is retained at concentrations higher than either the haemolymph or the principal salivary glands. Despite the large increase in viral concentration, we have failed to detect BBTV transcripts with RT-PCR. When tissues were not permeabilized, BBTV localized as distinct puncta in the proximity of the basal surface of the cells forming the anterior midgut and principal salivary glands, suggesting an on-going process of virion escape and internalization, respectively. Interestingly, we document that those organs can have direct contact within the aphid body, suggesting a possible haemolymph-independent translocation path.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall 96822 Honolulu, HI, USA.,Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall 96822 Honolulu, HI, USA
| |
Collapse
|
21
|
Blanc S, Uzest M, Drucker M. New research horizons in vector-transmission of plant viruses. Curr Opin Microbiol 2011; 14:483-91. [DOI: 10.1016/j.mib.2011.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
22
|
Kumar PL, Hanna R, Alabi OJ, Soko MM, Oben TT, Vangu GHP, Naidu RA. Banana bunchy top virus in sub-Saharan Africa: investigations on virus distribution and diversity. Virus Res 2011; 159:171-82. [PMID: 21549775 DOI: 10.1016/j.virusres.2011.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Banana bunchy top virus (BBTV) was first reported from sub-Saharan Africa (SSA) from Democratic Republic of Congo (DRC) in the 1950s, has become invasive and spread into 11 countries in the region. To determine the potential threat of BBTV to the production of bananas and plantains (Musa spp.) in the sub-region, field surveys were conducted for the presence of banana bunchy top disease (BBTD) in the DRC, Angola, Cameroon, Gabon and Malawi. Using the DNA-S and DNA-R segments of the virus genome, the genetic diversity of BBTV isolates was also determined from these countries relative to virus isolates across the banana-growing regions around the world. The results established that BBTD is widely prevalent in all parts of DRC, Malawi, Angola and Gabon, in south and western part of Cameroon. Analysis of the nucleotide sequences of DNA-S and DNA-R indicate that BBTV isolates from these countries are genetically identical forming a unique clade within the 'South Pacific' phylogroup that includes isolates from Australia, Egypt, South Asia and South Pacific. These results imply that farmers' traditional practice of transferring vegetative propagules within and between countries, together with virus spread by the widely prevalent banana aphid vector, Pentalonia nigronervosa, could have contributed to the geographic expansion of BBTV in SSA. The results provided a baseline to explore sanitary measures and other 'clean' plant programs for sustainable management of BBTV and its vector in regions where the disease has already been established and prevent the spread of the virus to as yet unaffected regions in SSA.
Collapse
Affiliation(s)
- P Lava Kumar
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria.
| | | | | | | | | | | | | |
Collapse
|