1
|
Bakhanashvili M. The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions. Cells 2024; 13:1512. [PMID: 39329696 PMCID: PMC11429533 DOI: 10.3390/cells13181512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The virus-host relationship is indispensable for executing successful viral infection. The pathogenesis of HIV is determined by an intricate interaction between the host and the virus for the regulation of HIV infection, thereby influencing various aspects, including the regulation of signaling pathways. High mutation rates and population heterogeneity characterize HIV with consequences for viral pathogenesis and the potential to escape the immune system and anti-viral inhibitors used in therapy. The origin of the high mutation rates exhibited by HIV may be attributed to a limited template-copied fidelity that likely operates in the cytoplasm. HIV-1 infection induces upregulation and activation of tumor suppressor p53 protein in the early stages of HIV-1 infection. p53 plays a multifaceted role in the context of HIV infection, thereby affecting viral replication. p53 is involved in maintaining genetic integrity, actively participating in various DNA repair processes through its various biochemical activities and via its ability to interact with components of the repair machinery. This report focuses on the impact of the p53 protein on the HIV-1 reverse transcription process while incorporating various incorrect and non-canonical nucleotides. The presence of functional host-coded p53 protein with proofreading-repair activities in the cytoplasm may lead to various biological outcomes.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
2
|
Schulze WJ, Gregory DA, Johnson MC, Lange MJ. Genome-wide CRISPR/Cas9 screen reveals JunB downmodulation of HIV co-receptor CXCR4. Front Microbiol 2024; 15:1342444. [PMID: 38835488 PMCID: PMC11149427 DOI: 10.3389/fmicb.2024.1342444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
HIV-1 relies extensively on host cell machinery for replication. Identification and characterization of these host-virus interactions is vital to our understanding of viral replication and the consequences of infection in cells. Several prior screens have identified host factors important for HIV replication but with limited replication of findings, likely due to differences in experimental design and conditions. Thus, unidentified factors likely exist. To identify novel host factors required for HIV-1 infection, we performed a genome-wide CRISPR/Cas9 screen using HIV-induced cell death as a partitioning method. We created a gene knockout library in TZM-GFP reporter cells using GeCKOv2, which targets 19,050 genes, and infected the library with a lethal dose of HIV-1NL4-3. We hypothesized that cells with a knockout of a gene critical for HIV infection would survive while cells with a knockout of a non-consequential gene would undergo HIV-induced death and be lost from the population. Surviving cells were analyzed by high throughput sequencing of the integrated CRISPR/Cas9 cassette to identify the gene knockout. Of the gene targets, an overwhelming majority of the surviving cells harbored the guide sequence for the AP-1 transcription factor family protein, JunB. Upon the generation of a clonal JunB knockout cell line, we found that HIV-1NL4-3 infection was blocked in the absence of JunB. The phenotype resulted from downregulation of CXCR4, as infection levels were recovered by reintroduction of CXCR4 in JunB KO cells. Thus, JunB downmodulates CXCR4 expression in TZM-GFP cells, reducing CXCR4-tropic HIV infection.
Collapse
Affiliation(s)
| | | | | | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Bi M, Kang W, Sun Y. Expression of HSPA14 in patients with acute HIV-1 infection and its effect on HIV-1 replication. Front Immunol 2023; 14:1123600. [PMID: 36845091 PMCID: PMC9947146 DOI: 10.3389/fimmu.2023.1123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Heat shock protein (HSPs) are important intracellular factors, which are often involved in the regulation of viral replication including HIV-1 in infected individuals as molecular chaperone proteins. Heat shock proteins 70 (HSP70/HSPA) family play important roles in HIV replication, but this family contain many subtypes, and it is unclear how these subtypes participate in and affect HIV replication. Methods To detect the interaction between HSPA14 and HspBP1 by CO-IP. Simulating HIV infection status in vitro to detect the change of intracellular HSPA14 expression after HIV infection in different cells. Constructing HSPA14 overexpression or knockdown cells to detect intracellular HIV replication levels after in vitro infection. Detecting the difference of HSPA expression levels in CD4+ T cells of untreated acute HIV-infected patients with different viral load. Results In this study, we found that HIV infection can lead to changes in the transcriptional level of many HSPA subtypes, among which HSPA14 interacts with HIV transcriptional inhibitor HspBP1. The expression of HSPA14 in Jurkat and primary CD4+T cells infected with HIV were inhibited, overexpression of HSPA14 inhibited HIV replication, while knocking down HSPA14 promoted HIV replication. We also found that the expression level of HSPA14 is higher in peripheral blood CD4+T cells of untreated acute HIV infection patients with low viral load. Conclusion HSPA14 is a potential HIV replication inhibitor and may restrict HIV replication by regulating the transcriptional inhibitor HspBP1. Further studies are needed to determine the specific mechanism by which HSPA14 regulates viral replication.
Collapse
Affiliation(s)
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Gene Therapy and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:235-254. [DOI: 10.1007/978-981-19-5642-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Temereanca A, Ruta S. Strategies to overcome HIV drug resistance-current and future perspectives. Front Microbiol 2023; 14:1133407. [PMID: 36876064 PMCID: PMC9978142 DOI: 10.3389/fmicb.2023.1133407] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The availability of combined antiretroviral therapy (cART) has revolutionized the course of HIV infection, suppressing HIV viremia, restoring the immune system, and improving the quality of life of HIV infected patients. However, the emergence of drug resistant and multidrug resistant strains remains an important contributor to cART failure, associated with a higher risk of HIV-disease progression and mortality. According to the latest WHO HIV Drug Resistance Report, the prevalence of acquired and transmitted HIV drug resistance in ART naive individuals has exponentially increased in the recent years, being an important obstacle in ending HIV-1 epidemic as a public health threat by 2030. The prevalence of three and four-class resistance is estimated to range from 5 to 10% in Europe and less than 3% in North America. The new drug development strategies are focused on improved safety and resistance profile within the existing antiretroviral classes, discovery of drugs with novel mechanisms of action (e.g., attachment/post-attachment inhibitors, capsid inhibitors, maturation inhibitors, nucleoside reverse transcriptase translocation inhibitors), combination therapies with improved adherence, and treatment simplification with infrequent dosing. This review highlight the current progress in the management of salvage therapy for patients with multidrug-resistant HIV-1 infection, discussing the recently approved and under development antiretroviral agents, as well as the new drug targets that are providing a new avenue for the development of therapeutic interventions in HIV infection.
Collapse
Affiliation(s)
- Aura Temereanca
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Simona Ruta
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| |
Collapse
|
7
|
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys Rev 2022; 14:1109-1140. [PMID: 36249860 PMCID: PMC9552142 DOI: 10.1007/s12551-022-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022] Open
Abstract
Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
8
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Salinero AC, Emerson S, Cormier TC, Yin J, Morse RH, Curcio MJ. Reliance of Host-Encoded Regulators of Retromobility on Ty1 Promoter Activity or Architecture. Front Mol Biosci 2022; 9:896215. [PMID: 35847981 PMCID: PMC9283973 DOI: 10.3389/fmolb.2022.896215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The Ty1 retrotransposon family is maintained in a functional but dormant state by its host, Saccharomyces cerevisiae. Several hundred RHF and RTT genes encoding co-factors and restrictors of Ty1 retromobility, respectively, have been identified. Well-characterized examples include MED3 and MED15, encoding subunits of the Mediator transcriptional co-activator complex; control of retromobility by Med3 and Med15 requires the Ty1 promoter in the U3 region of the long terminal repeat. To characterize the U3-dependence of other Ty1 regulators, we screened a library of 188 known rhf and rtt mutants for altered retromobility of Ty1his3AI expressed from the strong, TATA-less TEF1 promoter or the weak, TATA-containing U3 promoter. Two classes of genes, each including both RHFs and RTTs, were identified. The first class comprising 82 genes that regulated Ty1his3AI retromobility independently of U3 is enriched for RHF genes that restrict the G1 phase of the cell cycle and those involved in transcriptional elongation and mRNA catabolism. The second class of 51 genes regulated retromobility of Ty1his3AI driven only from the U3 promoter. Nineteen U3-dependent regulators (U3DRs) also controlled retromobility of Ty1his3AI driven by the weak, TATA-less PSP2 promoter, suggesting reliance on the low activity of U3. Thirty-one U3DRs failed to modulate PPSP2-Ty1his3AI retromobility, suggesting dependence on the architecture of U3. To further investigate the U3-dependency of Ty1 regulators, we developed a novel fluorescence-based assay to monitor expression of p22-Gag, a restriction factor expressed from the internal Ty1i promoter. Many U3DRs had minimal effects on levels of Ty1 RNA, Ty1i RNA or p22-Gag. These findings uncover a role for the Ty1 promoter in integrating signals from diverse host factors to modulate Ty1 RNA biogenesis or fate.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Simey Emerson
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Tayla C. Cormier
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - John Yin
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - M. Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
- *Correspondence: M. Joan Curcio,
| |
Collapse
|
10
|
Mete B, Pekbilir E, Bilge BN, Georgiadou P, Çelik E, Sutlu T, Tabak F, Sahin U. Human immunodeficiency virus type 1 impairs sumoylation. Life Sci Alliance 2022; 5:5/6/e202101103. [PMID: 35181598 PMCID: PMC8860096 DOI: 10.26508/lsa.202101103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
The HIV type 1 dampens host cell sumoylation in vitro and reduces the expression of UBA2 protein, a subunit of the SUMO E1–activating enzyme. In vivo, infection in patients is associated with diminished global leukocyte sumoylation activity. During infection, the human immunodeficiency virus type 1 (HIV-1) manipulates host cell mechanisms to its advantage, thereby controlling its replication or latency, and evading immune responses. Sumoylation is an essential post-translational modification that controls vital cellular activities including proliferation, stemness, or anti-viral immunity. SUMO peptides oppose pathogen replication and mediate interferon-dependent anti-viral activities. In turn, several viruses and bacteria attack sumoylation to disarm host immune responses. Here, we show that HIV-1 impairs cellular sumoylation and targets the host SUMO E1–activating enzyme. HIV-1 expression in cultured HEK293 cells or in CD4+ Jurkat T lymphocytes diminishes sumoylation by both SUMO paralogs, SUMO1 and SUMO2/3. HIV-1 causes a sharp and specific decline in UBA2 protein levels, a subunit of the heterodimeric SUMO E1 enzyme, which likely serves to reduce the efficiency of global protein sumoylation. Furthermore, HIV-1–infected individuals display a significant reduction in total leukocyte sumoylation that is uncoupled from HIV-induced cytopenia. Because sumoylation is vital for immune function, T-cell expansion and activity, loss of sumoylation during HIV disease may contribute to immune system deterioration in patients.
Collapse
Affiliation(s)
- Bilgül Mete
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Emre Pekbilir
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Bilge Nur Bilge
- Department of Medical Biology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Panagiota Georgiadou
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Elif Çelik
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Tolga Sutlu
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
11
|
Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev Med Virol 2021; 31:e2232. [PMID: 33792105 PMCID: PMC9286481 DOI: 10.1002/rmv.2232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.
Collapse
Affiliation(s)
- Sonia Romero‐Cordero
- Faculty of MedicinePompeu Fabra UniversityBarcelonaSpain
- Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antoni Noguera‐Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Francesc Cardellach
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Constanza Morén
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| |
Collapse
|
12
|
Addressing Antiretroviral Drug Resistance with Host-Targeting Drugs-First Steps towards Developing a Host-Targeting HIV-1 Assembly Inhibitor. Viruses 2021; 13:v13030451. [PMID: 33802145 PMCID: PMC8001593 DOI: 10.3390/v13030451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The concerning increase in HIV-1 resistance argues for prioritizing the development of host-targeting antiviral drugs because such drugs can offer high genetic barriers to the selection of drug-resistant viral variants. Targeting host proteins could also yield drugs that act on viral life cycle events that have proven elusive to inhibition, such as intracellular events of HIV-1 immature capsid assembly. Here, we review small molecule inhibitors identified primarily through HIV-1 self-assembly screens and describe how all act either narrowly post-entry or broadly on early and late events of the HIV-1 life cycle. We propose that a different screening approach could identify compounds that specifically inhibit HIV-1 Gag assembly, as was observed when a potent rabies virus inhibitor was identified using a host-catalyzed rabies assembly screen. As an example of this possibility, we discuss an antiretroviral small molecule recently identified using a screen that recapitulates the host-catalyzed HIV-1 capsid assembly pathway. This chemotype potently blocks HIV-1 replication in T cells by specifically inhibiting immature HIV-1 capsid assembly but fails to select for resistant viral variants over 37 passages, suggesting a host protein target. Development of such small molecules could yield novel host-targeting antiretroviral drugs and provide insight into chronic diseases resulting from dysregulation of host machinery targeted by these drugs.
Collapse
|
13
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
14
|
Knoener R, Evans E, Becker JT, Scalf M, Benner B, Sherer NM, Smith LM. Identification of host proteins differentially associated with HIV-1 RNA splice variants. eLife 2021; 10:e62470. [PMID: 33629952 PMCID: PMC7906601 DOI: 10.7554/elife.62470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein 'interactomes' is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.
Collapse
Affiliation(s)
- Rachel Knoener
- Department of Chemistry, University of WisconsinMadisonUnited States
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Edward Evans
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Mark Scalf
- Department of Chemistry, University of WisconsinMadisonUnited States
| | - Bayleigh Benner
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Lloyd M Smith
- Department of Chemistry, University of WisconsinMadisonUnited States
| |
Collapse
|
15
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 2020; 77:5079-5099. [PMID: 32577796 PMCID: PMC7674201 DOI: 10.1007/s00018-020-03561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Drug Repurposing Approaches to Combating Viral Infections. J Clin Med 2020; 9:jcm9113777. [PMID: 33238464 PMCID: PMC7700377 DOI: 10.3390/jcm9113777] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Development of novel antiviral molecules from the beginning costs an average of $350 million to $2 billion per drug, and the journey from the laboratory to the clinic takes about 10–15 years. Utilization of drug repurposing approaches has generated substantial interest in order to overcome these drawbacks. A drastic reduction in the failure rate, which otherwise is ~92%, is achieved with the drug repurposing approach. The recent exploration of the drug repurposing approach to combat the COVID-19 pandemic has further validated the fact that it is more beneficial to reinvestigate the in-practice drugs for a new application instead of designing novel drugs. The first successful example of drug repurposing is zidovudine (AZT), which was developed as an anti-cancer agent in the 1960s and was later approved by the US FDA as an anti-HIV therapeutic drug in the late 1980s after fast track clinical trials. Since that time, the drug repurposing approach has been successfully utilized to develop effective therapeutic strategies against a plethora of diseases. Hence, an extensive application of the drug repurposing approach will not only help to fight the current pandemics more efficiently but also predict and prepare for newly emerging viral infections. In this review, we discuss in detail the drug repurposing approach and its advancements related to viral infections such as Human Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Collapse
|
18
|
Genetic variations in the host dependency factors ALCAM and TPST2 impact HIV-1 disease progression. AIDS 2020; 34:1303-1312. [PMID: 32287057 DOI: 10.1097/qad.0000000000002540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Recently, the activated leukocyte cell adhesion molecule (ALCAM) and tyrosylprotein sulfotransferase 2 (TPST2) have been identified as important host dependency factors (HDFs) for in-vitro HIV-1 replication. To determine whether these genes play a role in HIV-1 pathogenesis, we analysed whether naturally occurring genetic variations were associated with the clinical course of infection. DESIGN/METHODS Single nucleotide polymorphisms (SNPs) in ALCAM and TPST2 were analysed in a cohort of 304 HIV-1-infected men who have sex with men and survival analysis was used to determine their effect on the outcome of untreated HIV-1 infection. Flowcytometry was used to determine the effect of SNPs on CD4 T-cell activation prior to HIV-1 infection and 1 and 5 years after infection. In-vitro HIV-1 infections were performed to analyse the effect of the SNPs on HIV-1 replication. RESULTS We observed that the minor allele of rs1344861 in ALCAM was associated with accelerated disease progression, whereas the minor allele of rs9613199 in TPST2 was associated with delayed disease progression. In-vitro infection assays did not demonstrate any differences in HIV-1 replication associated with rs9613199. However, the increase in CD4 T-cell immune activation levels during HIV-1 infection was less pronounced in infected individuals homozygous for rs9613199, which is in agreement with delayed disease progression. CONCLUSION Our data demonstrate that ALCAM and TPST2 play a role in HIV-1 pathogenesis. SNPs in these genes, without known functional implications, had a major effect on disease progression, and therefore, these HDFs may be attractive and effective targets for new treatment strategies.
Collapse
|
19
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
20
|
Trivedi J, Alam A, Joshi S, Kumar TP, Chippala V, Mainkar PS, Chandrasekhar S, Chattopadhyay S, Mitra D. A novel isothiocyanate derivative inhibits HIV-1 gene expression and replication by modulating the nuclear matrix associated protein SMAR1. Antiviral Res 2019; 173:104648. [PMID: 31706900 DOI: 10.1016/j.antiviral.2019.104648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
The essential role of SMAR1 in HIV-1 transcription and LTR driven gene expression suggests SMAR1 as an HIV dependency factor (HDF) and a potential anti-HIV therapeutic target. Here, we report for the first time, anti-HIV activity of 8 novel isothiocyanate (ITC) derivatives that differentially stabilise SMAR1. Out of 8 novel ITC derivatives, SCS-OCL-381 was observed to inhibit HIV-1 replication most significantly at the noncytotoxic concentration in reporter T-cell line, CEM-GFP. Further, the highly conserved anti-HIV activity of SCS-OCL-381 is a cell type, virus isolate and viral load independent phenomena and is approximately 3 fold more effective than the representative ITC, Sulforaphane (SFN). Further, SCS-OCL-381 does not hamper the activity of viral enzymes reverse transcriptase, integrase and protease. Mechanistically, SCS-OCL-381 stabilises SMAR1 which, otherwise undergoes proteasomal degradation upon HIV-1 infection in T-cells. This stabilisation results in the recruitment of repressor complex on HIV-1 LTR resulting in repression of LTR mediated transcription and gene expression. These inhibitory consequences were further confirmed by reporter based LTR activity assays in different cell lines. Taken together, these findings highlight the anti-HIV potential of novel ITC derivatives by the stabilisation of SMAR1 and strongly support further in vivo characterisation and potential translational applications of SCS-OCL-381.
Collapse
Affiliation(s)
- Jay Trivedi
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | - Aftab Alam
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | - Shruti Joshi
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | | | | | - Prathama S Mainkar
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.
| | | | - Samit Chattopadhyay
- National Centre for Cell Science, Pune University Campus, Pune, India; CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | - Debashis Mitra
- National Centre for Cell Science, Pune University Campus, Pune, India; Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.
| |
Collapse
|
21
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
22
|
Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol 2018; 9:2738. [PMID: 30524389 PMCID: PMC6262318 DOI: 10.3389/fmicb.2018.02738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication. Human immunodeficiency virus-1 (HIV-1) is one of the most dreadful viruses which has rapidly spread throughout the world and caused high mortality due to its high evolution rate. Here, we review the various mechanisms adopted by HIV-1 to exploit the cellular proteasomal machinery in order to escape the host restriction factors and components of host immune system for supporting its own multiplication, and successfully created an infection.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
23
|
Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proc Natl Acad Sci U S A 2018; 115:12453-12458. [PMID: 30455316 DOI: 10.1073/pnas.1811195115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The "shock-and-kill" strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat-transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the "block and lock" strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.
Collapse
|
24
|
Milev MP, Yao X, Berthoux L, Mouland AJ. Impacts of virus-mediated manipulation of host Dynein. DYNEINS 2018. [PMCID: PMC7150161 DOI: 10.1016/b978-0-12-809470-9.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In general viruses' modus operandi to propagate is achieved by the co-opting host cell components, membranes, proteins, and machineries to their advantage. This is true for virtually every aspect of a virus' replication cycle from virus entry to the budding or release of progeny virus particles. In this chapter, we will discuss new information on the impacts of virus-mediated manipulation of Dynein motor complexes and associated machineries and factors. We will highlight how these host cell components impact on pathogenicity and immune responses, as many of the virus-mediated hijacked components also play pivotal roles in immune responses to pathogen insult. There are several comprehensive reviews that define virus–Dynein interactions including the first edition of this book that describes how viruses manipulate the host cell machineries their advantage. An updated table is included to summarize these virus–host interactions. Notably, barriers to intracellular translocation represent major hurdles to viral components during de novo infection and during active replication and the generation of progeny virus particles. Clearly, the subversion of host cell molecular motor protein activities takes advantage of constitutive and regulated membrane trafficking events and will target virus components to intracytoplasmic locales and membrane assembly. Broadening our understanding of the interplay between viruses, Dynein and the cytoskeleton will likely inform on new types of therapies. Continual enhancement of the breadth of new information on how viruses manipulate host cell biology will inevitably aid in the identification of new targets that can be poisoned to block old, new, and emerging viruses alike in their tracks.
Collapse
|
25
|
Abstract
Human immunodeficiency virus (HIV) is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection. Although highly active antiretroviral therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS patients, controlling HIV infections still remains a global health priority. HIV access to the CNS serves as the natural viral preserve because most antiretroviral (ARV) drugs possess inadequate or zero delivery across the brain barriers. The structure of the blood-brain barrier (BBB), the presence of efflux pumps, and the expression of metabolic enzymes pose hurdles for ARV drug-brain entry. Thus, development of target-specific, effective, safe, and controllable drug delivery approach is an important health priority for global elimination of AIDS progression. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release, and ingress across the barrier. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This review focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed NanoART, across the BBB and affect the biodistribution and clinical benefit for NeuroAIDS.
Collapse
|
26
|
Yoshida T, Hamano A, Ueda A, Takeuchi H, Yamaoka S. Human SMOOTHENED inhibits human immunodeficiency virus type 1 infection. Biochem Biophys Res Commun 2017; 493:132-138. [PMID: 28917838 DOI: 10.1016/j.bbrc.2017.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Human SMOOTHENED (SMO) was identified by expression cloning as a new host factor that inhibits HIV-1 infection. Forced expression of SMO inhibited HIV-1 replication and infection with a single-round lentiviral vector, but not infection with a murine leukemia virus-based retroviral vector in human MT-4 T cells. Quantitative PCR analyses revealed that stable expression of SMO impaired formation of the integrated form of lentiviral DNA, but did not interrupt reverse transcription. This inhibition was evident in MT-4 and HUT102 human T cell lines expressing low levels of SMO mRNA, but not in SupT1 or Jurkat T cell lines expressing higher levels of SMO mRNA. Depletion of SMO mRNA in Jurkat cells facilitated HIV-1 vector infection, suggesting that endogenous SMO plays a role in limiting lentiviral infection. These results suggest that SMO inhibits HIV-1 replication after completion of reverse transcription but before integration.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Akiko Hamano
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asuka Ueda
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
27
|
Anti-HIV Activities and Mechanism of 12-O-Tricosanoylphorbol-20-acetate, a Novel Phorbol Ester from Ostodes katharinae. Molecules 2017; 22:molecules22091498. [PMID: 28885587 PMCID: PMC6151696 DOI: 10.3390/molecules22091498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
APOBEC3G is a member of the human cytidine deaminase family that restricts Vif-deficient viruses by being packaged with progeny virions and inducing the G to A mutation during the synthesis of HIV-1 viral DNA when the progeny virus infects new cells. HIV-1 Vif protein resists the activity of A3G by mediating A3G degradation. Phorbol esters are plant-derived organic compounds belonging to the tigliane family of diterpenes and could activate the PKC pathway. In this study, we identified an inhibitor 12-O-tricosanoylphorbol-20-acetate (hop-8), a novel ester of phorbol which was isolated from Ostodes katharinae of the family Euphorbiaceae, that inhibited the replication of wild-type HIV-1 and HIV-2 strains and drug-resistant strains broadly both in C8166 cells and PBMCs with low cytotoxicity and the EC50 values ranged from 0.106 μM to 7.987 μM. One of the main mechanisms of hop-8 is to stimulate A3G expressing in HIV-1 producing cells and upregulate the A3G level in progeny virions, which results in reducing the infectivity of the progeny virus. This novel mechanism of hop-8 inhibition of HIV replication might represents a promising approach for developing new therapeutics for HIV infection.
Collapse
|
28
|
Abstract
A CRISPR screen conducted in a CD4+ T cell leukemia line has identified host factors required for HIV infection but dispensable for cellular survival. The results highlight sulfation on the HIV co-receptor CCR5 and cellular aggregation as potential targets for therapeutic intervention.
Collapse
|
29
|
Zhang L, Jia X, Jin JO, Lu H, Tan Z. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders. GENOMICS, PROTEOMICS & BIOINFORMATICS 2017; 15:110-120. [PMID: 28391008 PMCID: PMC5415375 DOI: 10.1016/j.gpb.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as well as subcellular proteomics and investigation of posttranslational modifications. Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues for the diagnosis and treatment of HIV infection and the related diseases.
Collapse
Affiliation(s)
- Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
30
|
Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P, Monel B, Schumann K, Yu H, Krupzcak KM, Garcia-Beltran W, Piechocka-Trocha A, Krogan NJ, Marson A, Sabatini DM, Lander ES, Hacohen N, Walker BD. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 2016; 49:193-203. [PMID: 27992415 DOI: 10.1038/ng.3741] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4+ T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan J Park
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Tim Wang
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Dylan Koundakjian
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Blandine Monel
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrin Schumann
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Haiyan Yu
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Kevin M Krupzcak
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA.,Diabetes Center, University of California at San Francisco, San Francisco, California, USA.,Department of Medicine, University of California at San Francisco, San Francisco, California, USA.,Innovative Genomics Initiative (IGI), University of California, Berkeley, Berkeley, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA
| | - David M Sabatini
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Targeting the rhesus macaque TRIM5α gene to enhance the susceptibility of CD4 + T cells to HIV-1 infection. Arch Virol 2016; 162:793-798. [PMID: 27888407 DOI: 10.1007/s00705-016-3169-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
The host range of human immunodeficiency virus type 1 (HIV-1) is extremely narrow, which has hampered the establishment of non-human primate models for HIV-1 infection. The species-specific innate immune factor tripartite motif 5 alpha (TRIM5α) is a key molecule that confers potent resistance against HIV-1 infection. In this study, we targeted the TRIM5α gene of rhesus macaques (rhTRIM5α) using the transcription activator-like effector nuclease (TALEN) to study the effect on HIV-1 infection. CD4+ T cells were separated from the peripheral blood of rhesus macaques by magnetic cell sorting, and the positive rate was greater than 99%. TALEN plasmids targeting rhTRIM5α were constructed and introduced into CD4+ T cells by electroporation, with a transfection efficiency of approximately 25%. The genome of the targeted cells was extracted, and the target efficiency was analyzed by T7E1 enzyme digestion. After sorting the positive transductants, the TALENs induced rhTRIM5α mutations at a rate of more than 40%. The ability of the HIV-1 virus to infect the targeted cells was demonstrated by ELISA. The results showed that targeting rhTRIM5α enhanced the susceptibility to HIV-1 infection. This finding will pave the way for further establishment of a new rhesus macaque model for HIV-1 studies.
Collapse
|
32
|
Cele FN, Ramesh M, Soliman ME. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1365-77. [PMID: 27114700 PMCID: PMC4833373 DOI: 10.2147/dddt.s95533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel virtual screening approach is implemented herein, which is a further improvement of our previously published "target-bound pharmacophore modeling approach". The generated pharmacophore library is based only on highly contributing amino acid residues, instead of arbitrary pharmacophores, which are most commonly used in the conventional approaches in literature. Highly contributing amino acid residues were distinguished based on free binding energy contributions obtained from calculation from molecular dynamic (MD) simulations. To the best of our knowledge; this is the first attempt in the literature using such an approach; previous approaches have relied on the docking score to generate energy-based pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present a model for a per-residue energy decomposition, constructed from MD simulation ensembles generating a more trustworthy pharmacophore model, which can be applied in drug discovery workflow. This work is aimed at introducing a more rational approach to the field of drug design, rather than comparing the validity of this approach against those previously reported. We recommend additional computational and experimental work to further validate this approach. This approach was used to screen for potential reverse transcriptase inhibitors using the pharmacophoric features of compound GSK952. The complex was subjected to docking, thereafter, MD simulation confirmed the stability of the system. Experimentally determined inhibitors with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. Two potential hits (ZINC46849657 and ZINC54359621) showed a significant potential with regard to free binding energy. Reported results obtained from this work confirm that this new approach is favorable in the future of the drug design industry.
Collapse
Affiliation(s)
- Favourite N Cele
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud Es Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
33
|
Swann J, Murry J, Young JAT. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages. Virol J 2016; 13:30. [PMID: 26906565 PMCID: PMC4765207 DOI: 10.1186/s12985-016-0491-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background The cellular sulfonation pathway modulates key steps of virus replication. This pathway comprises two main families of sulfonate-conjugating enzymes: Golgi sulfotransferases, which sulfonate proteins, glycoproteins, glycolipids and proteoglycans; and cytosolic sulfotransferases (SULTs), which sulfonate various small molecules including hormones, neurotransmitters, and xenobiotics. Sulfonation controls the functions of numerous cellular factors such as those involved in cell-cell interactions, cell signaling, and small molecule detoxification. We previously showed that the cellular sulfonation pathway regulates HIV-1 gene expression and reactivation from latency. Here we show that a specific cellular sulfotransferase can regulate HIV-1 replication in primary human monocyte-derived macrophages (MDMs) by yet another mechanism, namely reverse transcription. Methods MDMs were derived from monocytes isolated from donor peripheral blood mononuclear cells (PBMCs) obtained from the San Diego Blood Bank. After one week in vitro cell culture under macrophage-polarizing conditions, MDMs were transfected with sulfotranserase-specific or control siRNAs and infected with HIV-1 or SIV constructs expressing a luciferase reporter. Infection levels were subsequently monitored by luminescence. Western blotting was used to assay siRNA knockdown and viral protein levels, and qPCR was used to measure viral RNA and DNA products. Results We demonstrate that the cytosolic sulfotransferase SULT1A1 is highly expressed in primary human MDMs, and through siRNA knockdown experiments, we show that this enzyme promotes infection of MDMs by single cycle VSV-G pseudotyped human HIV-1 and simian immunodeficiency virus vectors and by replication-competent HIV-1. Quantitative PCR analysis revealed that SULT1A1 affects HIV-1 replication in MDMs by modulating the kinetics of minus-strand DNA elongation during reverse transcription. Conclusions These studies have identified SULT1A1 as a cellular regulator of HIV-1 reverse transcription in primary human MDMs. The normal substrates of this enzyme are small phenolic-like molecules, raising the possibility that one or more of these substrates may be involved. Targeting SULT1A1 and/or its substrate(s) may offer a novel host-directed strategy to improve HIV-1 therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0491-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justine Swann
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jeff Murry
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94401, USA.
| | - John A T Young
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
34
|
Maubert ME, Pirrone V, Rivera NT, Wigdahl B, Nonnemacher MR. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease. Front Microbiol 2016; 6:1512. [PMID: 26793168 PMCID: PMC4707230 DOI: 10.3389/fmicb.2015.01512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/15/2015] [Indexed: 02/02/2023] Open
Abstract
In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.
Collapse
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Nina T Rivera
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
35
|
Chaudhary P, Khan SZ, Rawat P, Augustine T, Raynes DA, Guerriero V, Mitra D. HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Res 2015; 44:1613-29. [PMID: 26538602 PMCID: PMC4770212 DOI: 10.1093/nar/gkv1151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host–viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication. In the present study, we have identified HSP70 binding protein 1 (HspBP1) as a host-intrinsic inhibitor of HIV-1. HspBP1 level was found to be significantly down modulated during HIV-1 infection and virus production inversely co-related with HspBP1 expression. Our results further demonstrate that HspBP1 inhibits HIV-1 long terminal repeat (LTR) promoter activity. Gel shift and chromatin immunoprecipitation assays revealed that HspBP1 was recruited on HIV-1 LTR at NF-κB enhancer region (κB sites). The binding of HspBP1 to κB sites obliterates the binding of NF-κB hetero-dimer (p50/p65) to the same region, leading to repression in NF-κB mediated activation of LTR-driven gene-expression. HspBP1 also plays an inhibitory role in the reactivation of latently infected cells, corroborating its repressive effect on NF-κB pathway. Thus, our results clearly show that HspBP1 acts as an endogenous negative regulator of HIV-1 gene-expression and replication by suppressing NF-κB-mediated activation of viral transcription.
Collapse
Affiliation(s)
| | | | - Pratima Rawat
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tracy Augustine
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deborah A Raynes
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Vince Guerriero
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
36
|
Colquhoun DR, Lyashkov AE, Ubaida Mohien C, Aquino VN, Bullock BT, Dinglasan RR, Agnew BJ, Graham DRM. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection. Proteomics 2015; 15:2066-77. [PMID: 25914232 DOI: 10.1002/pmic.201500063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/15/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023]
Abstract
Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.
Collapse
Affiliation(s)
- David R Colquhoun
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexey E Lyashkov
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ceereena Ubaida Mohien
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Veronica N Aquino
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian J Agnew
- Biosciences Group, Thermo Fisher Scientific, Eugene, OR, USA
| | - David R M Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Liu Y, Zhou J, Pan JA, Mabiala P, Guo D. A novel approach to block HIV-1 coreceptor CXCR4 in non-toxic manner. Mol Biotechnol 2015; 56:890-902. [PMID: 24845753 DOI: 10.1007/s12033-014-9768-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chemokine receptor CXCR4 is one of the major coreceptors for human immunodeficiency virus type 1 (HIV-1) and considered as an important therapeutic target. Knockdown of CXCR4 by RNA interference has emerged as a promising strategy for combating HIV-1 infection. However, there is a potential drawback to this strategy as undesired side effects may occur due to the loss of natural function of CXCR4. In this study, we developed a novel approach using a single lentiviral vector to express simultaneously CXCR4 dual-shRNAs and an shRNA-resistant CXCR4 mutant possessing the most possible natural functions of CXCR4 and reduced HIV-1 coreceptor activity. Via this approach we achieved the replacement of endogenous CXCR4 by CXCR4 mutant P191A that could compensate the functional loss of endogenous CXCR4 and significant reduction of HIV-1 replication by 59.2 %. Besides, we demonstrated that construction of recombinant lentiviral vector using 2A peptide-based strategy has significant advantages over using additional promoter-based strategy, including increase of lentivirus titer and avoidance of promoter competition. Therefore, the novel approach to block HIV-1 coreceptor CXCR4 without impairing its normal function provides a new strategy for CXCR4-targeted therapeutics for HIV-1 infection and potential universal applications to knock down a cellular protein in non-toxic manner.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
The Road Less Traveled: HIV's Use of Alternative Routes through Cellular Pathways. J Virol 2015; 89:5204-12. [PMID: 25762730 DOI: 10.1128/jvi.03684-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathogens such as HIV-1, with their minimalist genomes, must navigate cellular networks and rely on hijacking and manipulating the host machinery for successful replication. Limited overlap of host factors identified as vital for pathogen replication may be explained by considering that pathogens target, rather than specific cellular factors, crucial cellular pathways by targeting different, functionally equivalent, protein-protein interactions within that pathway. The ability to utilize alternative routes through cellular pathways may be essential for pathogen survival when restricted and provide flexibility depending on the viral replication stage and the environment in the infected host. In this minireview, we evaluate evidence supporting this notion, discuss specific HIV-1 examples, and consider the molecular mechanisms which allow pathogens to flexibly exploit different routes.
Collapse
|
39
|
Li M. Proteomics in the investigation of HIV-1 interactions with host proteins. Proteomics Clin Appl 2015; 9:221-34. [PMID: 25523935 DOI: 10.1002/prca.201400101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023]
Abstract
Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
40
|
Human immunodeficiency virus type 1 employs the cellular dynein light chain 1 protein for reverse transcription through interaction with its integrase protein. J Virol 2015; 89:3497-511. [PMID: 25568209 DOI: 10.1128/jvi.03347-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150(Glued) in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150(Glued), resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs (52)GQVD and (250)VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1IN(Q53A/Q252A)) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1IN(Q53A/Q252A) mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150(Glued) proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps.
Collapse
|
41
|
Takahashi M, Burnett JC, Rossi JJ. Aptamer–siRNA Chimeras for HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:211-34. [DOI: 10.1007/978-1-4939-2432-5_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
43
|
Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication. Virus Res 2014; 192:92-102. [PMID: 25179963 DOI: 10.1016/j.virusres.2014.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022]
Abstract
All viruses require host cell factors to replicate. A large number of host factors have been identified that participate at numerous points of the human immunodeficiency virus 1 (HIV-1) life cycle. Recent evidence supports a role for components of the trans-Golgi network (TGN) in mediating early steps in the HIV-1 life cycle. The conserved oligomeric Golgi (COG) complex is a heteroctamer complex that functions in coat protein complex I (COPI)-mediated intra-Golgi retrograde trafficking and plays an important role in the maintenance of Golgi structure and integrity as well as glycosylation enzyme homeostasis. The targeted silencing of components of lobe B of the COG complex, namely COG5, COG6, COG7 and COG8, inhibited HIV-1 replication. This inhibition of HIV-1 replication preceded late reverse transcription (RT) but did not affect viral fusion. Silencing of the COG interacting protein the t-SNARE syntaxin 5, showed a similar defect in late RT product formation, strengthening the role of the TGN in HIV replication.
Collapse
|
44
|
Lin YJ, Chen CY, Jeang KT, Liu X, Wang JH, Hung CH, Tsang H, Lin TH, Liao CC, Huang SM, Lin CW, Ho MW, Chien WK, Chen JH, Ho TJ, Tsai FJ. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture. Cell Biosci 2014; 4:40. [PMID: 25126410 PMCID: PMC4131809 DOI: 10.1186/2045-3701-4-40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/29/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus (HIV-1) exploits host proteins to complete its life cycle. Genome-wide siRNA approaches suggested that host proteins affect HIV-1 replication. However, the results barely overlapped. RING finger protein 39 (RNF39) has been identified from genome-wide association studies. However, its function during HIV-1 replication remains unclear. METHODS AND RESULTS We investigated the relationship between common RNF39 genetic variants and HIV-1 viral loads. The effect of RNF39 protein knockdown or overexpression on HIV-1 replication was then investigated in different cell lines. Two genetic variants were associated with HIV-1 viral loads. Patients with the ht1-GG/GG haplotype presented lower RNF39 expression levels and lower HIV-1 viral load. RNF39 knockdown inhibited HIV-1 expression. CONCLUSIONS RNF39 protein may be involved in HIV-1 replication as observed in genetic studies on patients with HIV-1 and in in vitro cell cultures.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Yen Chen
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jen-Hsien Wang
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Chiayi, Taiwan
| | - Hsinyi Tsang
- The Laboratory of Molecular Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuei Chien
- Biostatistics Center, China Medical University, Taichung, Taiwan.,Biostatistics Center, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, China Medical University, Taichung, Taiwan.,Biostatistics Center, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan.,Division of Chinese Medicine, Tainan Municipal An-Nan Hospital -China Medical University, Tainan, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
45
|
Blond A, Ennifar E, Tisné C, Micouin L. The design of RNA binders: targeting the HIV replication cycle as a case study. ChemMedChem 2014; 9:1982-96. [PMID: 25100137 DOI: 10.1002/cmdc.201402259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 01/08/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) replication cycle is finely tuned with many important steps involving RNA-RNA or protein-RNA interactions, all of them being potential targets for the development of new antiviral compounds. This cycle can also be considered as a good benchmark for the evaluation of early-stage strategies aiming at designing drugs that bind to RNA, with the possibility to correlate in vitro activities with antiviral properties. In this review, we highlight different approaches developed to interfere with four important steps of the HIV-1 replication cycle: the early stage of reverse transcription, the transactivation of viral transcription, the nuclear export of partially spliced transcripts and the dimerization step.
Collapse
Affiliation(s)
- Aurélie Blond
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 Rue des Saints Pères, 75006 Paris (France)
| | | | | | | |
Collapse
|
46
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
47
|
Veselovsky AV, Zharkova MS, Poroikov VV, Nicklaus MC. Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:457-471. [PMID: 24716798 DOI: 10.1080/1062936x.2014.898689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein-protein interactions (PPI) are involved in most of the essential processes that occur in organisms. In recent years, PPI have become the object of increasing attention in drug discovery, particularly for anti-HIV drugs. Although the use of combinations of existing drugs, termed highly active antiretroviral therapy (HAART), has revolutionized the treatment of HIV/AIDS, problems with these agents, such as the rapid emergence of drug-resistant HIV-1 mutants and serious adverse effects, have highlighted the need for further discovery of new drugs and new targets. Numerous investigations have shown that PPI play a key role in the virus's life cycle and that blocking or modulating them has a significant therapeutic potential. Here we summarize the recent progress in computer-aided design of PPI inhibitors, mainly focusing on the selection of the drug targets (HIV enzymes and virus entry machinery) and the utilization of peptides and small molecules to prevent a variety of protein-protein interactions (viral-viral or viral-host) that play a vital role in the progression of HIV infection.
Collapse
Affiliation(s)
- A V Veselovsky
- a Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences , Moscow , Russia
| | | | | | | |
Collapse
|
48
|
Meyerson NR, Rowley PA, Swan CH, Le DT, Wilkerson GK, Sawyer SL. Positive selection of primate genes that promote HIV-1 replication. Virology 2014; 454-455:291-8. [PMID: 24725956 DOI: 10.1016/j.virol.2014.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022]
Abstract
Evolutionary analyses have revealed that most host-encoded restriction factors against HIV have experienced virus-driven selection during primate evolution. However, HIV also depends on the function of many human proteins, called host factors, for its replication. It is not clear whether virus-driven selection shapes the evolution of host factor genes to the extent that it is known to shape restriction factor genes. We show that five out of 40 HIV host factor genes (13%) analyzed do bear strong signatures of positive selection. Some of these genes (CD4, NUP153, RANBP2/NUP358) have been characterized with respect to the HIV lifecycle, while others (ANKRD30A/NY-BR-1 and MAP4) remain relatively uncharacterized. One of these, ANKRD30A, shows the most rapid evolution within this set of genes and is induced by interferon stimulation. We discuss how evolutionary analysis can aid the study of host factors for viral replication, just as it has the study of host immunity systems.
Collapse
Affiliation(s)
- Nicholas R Meyerson
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1191, USA
| | - Paul A Rowley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1191, USA
| | - Christina H Swan
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1191, USA; Regents School of Austin, 3230 Travis Country Circle, Austin, TX, USA
| | - Dona T Le
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1191, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, Michale E Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sara L Sawyer
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1191, USA.
| |
Collapse
|
49
|
Li G, Endsley MA, Somasunderam A, Gbota SL, Mbaka MI, Murray JL, Ferguson MR. The dual role of tetraspanin CD63 in HIV-1 replication. Virol J 2014; 11:23. [PMID: 24507450 PMCID: PMC3944621 DOI: 10.1186/1743-422x-11-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/05/2014] [Indexed: 01/24/2023] Open
Abstract
Background Previously, we showed that the tetraspanin membrane protein CD63 mediates both early and post-integration stages of the HIV-1 replication cycle. The temporal roles of CD63 were discerned using monoclonal antibodies and small interfering RNAs (siRNAs) to block CD63 function, and determining which of the sequential steps in HIV-1 replication were disrupted. Inhibition was shown to occur during early infection, suggestive of involvement in virus entry or reverse transcription. In addition, we have shown that treatment with CD63 siRNA post-infection, significantly inhibited virus production in supernatant, suggesting an important role for CD63 in macrophages during HIV-1 replication events occurring after proviral integration, and possibly during egress. Results In this study we used CD63 siRNA to investigate the infectivity of pseudotyped viruses (carrying an NL4-3 Env-negative luciferase backbone) in primary human macrophages. We demonstrated that lab adapted R5- and R5X4-tropic HIV-1 strains are significantly inhibited by CD63 silencing. However, the infectivity of MLV or VSV-pseudotyped strains, which enter though receptor-mediated endocytosis, is unaffected by silencing CD63. These results indicate that CD63 may support Env-mediated entry or fusion events facilitated though CD4 and CCR5. Also, antibody and siRNA-based CD63 inhibition studies indicate a potential role for CD63 following proviral integration. Further, we show that CD63 expression is key for efficient replication in primary CD4+ T cells, complementing our prior studies with primary human macrophages and immortalized cell lines. Conclusions Collectively, these findings indicate that CD63 may support Env-mediated fusion as well as a late (post-integration) step in the HIV-1 replication cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Monique R Ferguson
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0435, USA.
| |
Collapse
|
50
|
Fleta-Soriano E, Martinez JP, Hinkelmann B, Gerth K, Washausen P, Diez J, Frank R, Sasse F, Meyerhans A. The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 2014; 13:17. [PMID: 24475978 PMCID: PMC3910686 DOI: 10.1186/1475-2859-13-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear export of unspliced and partially spliced HIV-1 mRNA is mediated by the recognition of a leucine-rich nuclear export signal (NES) in the HIV Rev protein by the host protein CRM1/Exportin1. This makes the CRM1-Rev complex an attractive target for the development of new antiviral drugs. Here we tested the anti-HIV efficacy of ratjadone A, a CRM1 inhibitor derived from myxobacteria. RESULTS Ratjadone A inhibits HIV infection in vitro in a dose-dependent manner with EC₅₀ values at the nanomolar range. The inhibitory effect of ratjadone A occurs around 12 hours post-infection and is specific for the Rev/CRM1-mediated nuclear export pathway. By using a drug affinity responsive target stability (DARTS) assay we could demonstrate that ratjadone A interferes with the formation of the CRM1-Rev-NES complex by binding to CRM1 but not to Rev. CONCLUSION Ratjadone A exhibits strong anti-HIV activity but low selectivity due to toxic effects. Although this limits its potential use as a therapeutic drug, further studies with derivatives of ratjadones might help to overcome these difficulties in the future.
Collapse
Affiliation(s)
- Eric Fleta-Soriano
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Gerth
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Washausen
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|