1
|
Wang Y, Shi Y, Li H, Chang J. Understanding Citrus Viroid Interactions: Experience and Prospects. Viruses 2024; 16:577. [PMID: 38675919 PMCID: PMC11053686 DOI: 10.3390/v16040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Citrus is the natural host of at least eight viroid species, providing a natural platform for studying interactions among viroids. The latter manifests as antagonistic or synergistic phenomena. The antagonistic effect among citrus viroids intuitively leads to reduced symptoms caused by citrus viroids, while the synergistic effect leads to an increase in symptom severity. The interaction phenomenon is complex and interesting, and a deep understanding of the underlying mechanisms induced during this viroid interaction is of great significance for the prevention and control of viroid diseases. This paper summarizes the research progress of citrus viroids in recent years, focusing on the interaction phenomenon and analyzing their interaction mechanisms. It points out the core role of the host RNA silencing mechanism and viroid-derived siRNA (vd-siRNA), and provides suggestions for future research directions.
Collapse
Affiliation(s)
- Yafei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (J.C.)
| | | | | | | |
Collapse
|
2
|
Koonin EV. Circular RNAs from linear viral RNA genomes: A distinct dimension in the virus world. Proc Natl Acad Sci U S A 2024; 121:e2401335121. [PMID: 38349885 PMCID: PMC10895248 DOI: 10.1073/pnas.2401335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894
| |
Collapse
|
3
|
Nie Y, Zhang Y, Wu J. The Secondary Structure of Potato Spindle Tuber Viroid Determines Its Infectivity in Nicotiana benthamiana. Viruses 2023; 15:2307. [PMID: 38140547 PMCID: PMC10748084 DOI: 10.3390/v15122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
The function of RNAs is determined by their structure. However, studying the relationship between RNA structure and function often requires altering RNA sequences to modify the structures, which leads to the neglect of the importance of RNA sequences themselves. In our research, we utilized potato spindle tuber viroid (PSTVd), a circular-form non-coding infectious RNA, as a model with which to investigate the role of a specific rod-like structure in RNA function. By generating linear RNA transcripts with different start sites, we established 12 PSTVd forms with different secondary structures while maintaining the same sequence. The RNA secondary structures were predicted using the mfold tool and validated through native PAGE gel electrophoresis after in vitro RNA folding. Analysis using plant infection assays revealed that the formation of a correct rod-like structure is crucial for the successful infection of PSTVd. Interestingly, the inability of PSTVd forms with non-rod-like structures to infect plants could be partially compensated by increasing the amount of linear viroid RNA transcripts, suggesting the existence of additional RNA secondary structures, such as the correct rod-like structure, alongside the dominant structure in the RNA inoculum of these forms. Our study demonstrates the critical role of RNA secondary structures in determining the function of infectious RNAs.
Collapse
Affiliation(s)
| | | | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Y.N.); (Y.Z.)
| |
Collapse
|
4
|
Morgan SW, Read DA, Burger JT, Pietersen G. Diversity of viroids infecting grapevines in the South African Vitis germplasm collection. Virus Genes 2023; 59:244-253. [PMID: 36745286 DOI: 10.1007/s11262-023-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Seven viroid species and one putative viroid species have been reported to infect grapevine namely, hop stunt viroid (HSVd), grapevine yellow speckle viroid 1 (GYSVd-1), grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Japanese grapevine viroid (JGVd), grapevine latent viroid (GLVd), and citrus exocortis viroid (CEVd), as well as a grapevine hammerhead viroid-like RNA (GHVd), so far. In this study, RNA sequence (RNA-Seq) data, from 229 Vitis accessions from the field-maintained vineyard of the South African Vitis germplasm collection, were analysed to determine the diversity of the viroids present. Five of the seven known grapevine-infecting viroids and one putative grapevine-infecting viroid species were very commonly found, with 214 of the 229 samples containing at least one viroid species. HSVd, GYSVd-1, GYSVd-2, AGVd, and JGVd, as well as GHVd, were identified in the RNA-Seq data of the samples and confirmed using RT-PCR and Sanger sequencing. The HSVd sequences indicated the presence of two variants, with one showing multiple nucleotide insertions. AGVd and GYSVd-2 did not display significant sequence diversity, confirming past international studies. GYSVd-1 occurs as four major variants worldwide and representatives of all four variants were identified in this vineyard. This is the first report on the diversity of viroids infecting grapevine in South Africa and the first report of JGVd outside of Japan and GHVd in South Africa. Further studies are needed to fully assess the population and to identify potentially new viroid species.
Collapse
Affiliation(s)
- Seamus W Morgan
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - David A Read
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Pretoria, 0110, South Africa
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
5
|
Marquez-Molins J, Juarez-Gonzalez VT, Gomez G, Pallas V, Martinez G. Occurrence of RNA post-transcriptional modifications in plant viruses and viroids and their correlation with structural and functional features. Virus Res 2023; 323:198958. [PMID: 36209921 PMCID: PMC10194119 DOI: 10.1016/j.virusres.2022.198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-transcriptional modifications of RNA bases are widespread across all the tree of life and have been linked to RNA maturation, stability, and molecular interactions. RNA modifications have been extensively described in endogenous eukaryotic mRNAs, however, little is known about the presence of RNA modifications in plant viral and subviral RNAs. Here, we used a computational approach to infer RNA modifications in plant-pathogenic viruses and viroids using high-throughput annotation of modified ribonucleotides (HAMR), a software that predicts modified ribonucleotides using high-throughput RNA sequencing data. We analyzed datasets from representative members of different plant viruses and viroids and compared them to plant-endogenous mRNAs. Our approach was able to predict potential RNA chemical modifications (RCMs) in all analyzed pathogens. We found that both DNA and RNA viruses presented a wide range of RCM proportions while viroids had lowest values. Furthermore, we found that for viruses with segmented genomes, some genomic RNAs had a higher proportion of RCM. Interestingly, nuclear-replicating viroids showed most of the predicted modifications located in the pathogenesis region, pointing towards a possible functional role of RCMs in their infectious cycle. Thus, our results strongly suggest that plant viral and subviral RNAs might contain a variety of previously unreported RNA modifications, thus opening a new perspective in the multifaceted process of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden.
| |
Collapse
|
6
|
Identification and primary distribution of Citrus viroid V in citrus in Punjab, Pakistan. Mol Biol Rep 2022; 49:11433-11441. [PMID: 36002656 DOI: 10.1007/s11033-022-07677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Citrus plants are prone to infection by different viroids which deteriorate their vigor and production. Citrus viroid V (CVd-V) is among the six citrus viroids, belongs to genus Apscaviroid (family Pospiviroidae) which induces symptoms of mild necrotic lesions on branches and cracks on trunk portion. METHODS AND RESULTS A survey was conducted to evaluate the prevalence of CVd-V in core and non-core citrus cultivated areas of Punjab, Pakistan. A total of 154 samples from different citrus cultivars were tested for CVd-V infection by RT-PCR. The results revealed 66.66% disease incidence of CVd-V. Citrus cultivars Palestinia Sweet lime, Roy Ruby, Olinda Valencia, Kaghzi lime, and Dancy were identified as new citrus hosts of CVd-V for the first time from Pakistan. The viroid infection was confirmed by biological indexing on indicator host Etrog citron. The reported primers used for the detection of CVd-V did not amplify, rather showed non-specific amplification, which led to the designing of new primers. Whereas, new back-to-back designed primers (CVd-V AF1/CVd-V AR1) detected CVd-V successfully and obtained an expected amplified product of CVd-V with 294 bp. Sequencing analysis confirmed the new host of CVd-V showing 98-100% nucleotide sequence homology with those reported previously from other countries while 100% sequence homology to the isolates reported from Pakistan. Based on phylogenetic analysis using all CVd-V sequences in GenBank, two main CVd-V groups (I and II) were identified, and newly identified isolates during this study fall in the group I. CONCLUSION The study revealed that there are some changes in the nucleotide sequences of CVd-V which made difficult for their detection using reported primers. All isolates of Pakistan showed high sequence homology with other isolates of CVd-V from Iran and USA whereas; the isolates from China, Japan, Tunisia, and Africa are distantly related. It is evident that CVd-V is spreading in all citrus cultivars in Pakistan.
Collapse
|
7
|
Carbonell A. RNAi tools for controlling viroid diseases. Virus Res 2022; 313:198729. [DOI: 10.1016/j.virusres.2022.198729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022]
|
8
|
Viroids and Viroid-like Circular RNAs: Do They Descend from Primordial Replicators? LIFE (BASEL, SWITZERLAND) 2022; 12:life12010103. [PMID: 35054497 PMCID: PMC8781251 DOI: 10.3390/life12010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Viroids are a unique class of plant pathogens that consist of small circular RNA molecules, between 220 and 450 nucleotides in size. Viroids encode no proteins and are the smallest known infectious agents. Viroids replicate via the rolling circle mechanism, producing multimeric intermediates which are cleaved to unit length either by ribozymes formed from both polarities of the viroid genomic RNA or by coopted host RNAses. Many viroid-like small circular RNAs are satellites of plant RNA viruses. Ribozyviruses, represented by human hepatitis delta virus, are larger viroid-like circular RNAs that additionally encode the viral nucleocapsid protein. It has been proposed that viroids are direct descendants of primordial RNA replicons that were present in the hypothetical RNA world. We argue, however, that much later origin of viroids, possibly, from recently discovered mobile genetic elements known as retrozymes, is a far more parsimonious evolutionary scenario. Nevertheless, viroids and viroid-like circular RNAs are minimal replicators that are likely to be close to the theoretical lower limit of replicator size and arguably comprise the paradigm for replicator emergence. Thus, although viroid-like replicators are unlikely to be direct descendants of primordial RNA replicators, the study of the diversity and evolution of these ultimate genetic parasites can yield insights into the earliest stages of the evolution of life.
Collapse
|
9
|
Abstract
Systemic RNA trafficking widely exists in plants and is critical for integrating the healthy development and responses to environmental cues. Viroids, single-stranded circular noncoding RNAs that infect plants, have been used as a model to delineate the mechanism underlying systemic RNA trafficking. Recent work on viroids has shown that structural motifs are critical to direct RNA trafficking through distinct cellular boundaries. Here, we describe the methods for generating mutational variants using site-directed mutagenesis and infection assays to unravel the function of RNA motifs. This approach can be modified to study other RNA motif-based biological processes.
Collapse
Affiliation(s)
- Heather N Smith
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
10
|
Mudiyanselage SDD, Wang Y. Fluorescein-Based Electrophoretic Mobility Shift Assay. Methods Mol Biol 2022; 2316:133-140. [PMID: 34845691 DOI: 10.1007/978-1-0716-1464-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
RNA-protein complexes are functionally important in biology. Electrophoretic mobility shift assays (EMSA) have been widely used to study the molecular basis of protein-RNA interactions. Previous methods for EMSA mostly relied on radioactive RNA substrates, raising health and environmental concerns. Here, we describe a method based on fluorescein-labeled RNA for EMSA. In addition, we simplified the protocol to efficiently purify RNA-binding proteins from bacterial expression systems.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
11
|
Serra P. Gel Blot Hybridization for Viroids. Methods Mol Biol 2022; 2316:97-109. [PMID: 34845689 DOI: 10.1007/978-1-0716-1464-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Northern blot analysis reveals information about RNA identity, size, and abundance. This technique has become an essential tool for the knowledge developed about viroids and also an excellent method for viroid detection. Here we describe the methodology of a Northern blot based in polyacrylamide gel electrophoresis under denaturing conditions, hybridized with a viroid full-length riboprobe labeled with chemiluminescence. Viroid detection with this approach entails positive signals, specific migration, and the differentiation of their circular and linear forms.
Collapse
Affiliation(s)
- Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
13
|
Hadjieva N, Apostolova E, Baev V, Yahubyan G, Gozmanova M. Transcriptome Analysis Reveals Dynamic Cultivar-Dependent Patterns of Gene Expression in Potato Spindle Tuber Viroid-Infected Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122687. [PMID: 34961158 PMCID: PMC8706270 DOI: 10.3390/plants10122687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Potato spindle tuber viroid (PSTVd) infects various plants. PSTVd pathogenesis is associated with interference with the cellular metabolism and defense signaling pathways via direct interaction with host factors or via the transcriptional or post-transcriptional modulation of gene expression. To better understand host defense mechanisms to PSTVd infection, we analyzed the gene expression in two pepper cultivars, Capsicum annuum Kurtovska kapia (KK) and Djulunska shipka (DS), which exhibit mild symptoms of PSTVd infection. Deep sequencing-based transcriptome analysis revealed differential gene expression upon infection, with some genes displaying contrasting expression patterns in KK and DS plants. More genes were downregulated in DS plants upon infection than in KK plants, which could underlie the more severe symptoms seen in DS plants. Gene ontology enrichment analysis revealed that most of the downregulated differentially expressed genes in both cultivars were enriched in the gene ontology term photosynthesis. The genes upregulated in DS plants fell in the biological process of gene ontology term defense response. We validated the expression of six overlapping differentially expressed genes that are involved in photosynthesis, plant hormone signaling, and defense pathways by quantitative polymerase chain reaction. The observed differences in the responses of the two cultivars to PSTVd infection expand the understanding of the fine-tuning of plant gene expression that is needed to overcome the infection.
Collapse
|
14
|
Škorić D, Černi S, Ćurković-Perica M, Ježić M, Krajačić M, Šeruga Musić M. Legacy of Plant Virology in Croatia-From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses 2021; 13:2339. [PMID: 34960609 PMCID: PMC8707422 DOI: 10.3390/v13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This paper showcases the development of plant virology in Croatia at the University of Zagreb, Faculty of Science, from its beginning in the 1950s until today, more than 70 years later. The main achievements of the previous and current group members are highlighted according to various research topics and fields. Expectedly, some of those accomplishments remained within the field of plant virology, but others make part of a much-extended research spectrum exploring subviral pathogens, prokaryotic plant pathogens, fungi and their viruses, as well as their interactions within ecosystems. Thus, the legacy of plant virology in Croatia continues to contribute to the state of the art of microbiology far beyond virology. Research problems pertinent for directing the future research endeavors are also proposed in this review.
Collapse
Affiliation(s)
- Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.Č.); (M.Ć.-P.); (M.J.); (M.K.); (M.Š.M.)
| | | | | | | | | | | |
Collapse
|
15
|
Marquez-Molins J, Navarro JA, Seco LC, Pallas V, Gomez G. Might exogenous circular RNAs act as protein-coding transcripts in plants? RNA Biol 2021; 18:98-107. [PMID: 34392787 PMCID: PMC8677015 DOI: 10.1080/15476286.2021.1962670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as experimental tools to explore the coding potential of plant-circRNAs. Our work supports that the analysed viroids contain putative ORFs able to encode peptides carrying subcellular localization signals coincident with the corresponding replication-specific organelle. Bioassays in well-established hosts revealed that mutations in these ORFs diminish their biological efficiency. Interestingly, circular forms of HSVd and ELVd were found to co-sediment with polysomes, revealing their physical interaction with the translational machinery of the plant cell. Based on this evidence we hypothesize about the possibility that plant circRNAs in general, and viroids in particular, can act, under certain cellular conditions, as non-canonical translatable transcripts.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Luis Cervera Seco
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| |
Collapse
|
16
|
Li S, Zhang Z, Zhou C, Li S. RNA-dependent RNA polymerase 1 delays the accumulation of viroids in infected plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1195-1208. [PMID: 34296816 PMCID: PMC8435232 DOI: 10.1111/mpp.13104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) is essential for plant antiviral defence, but its role in plant defence against viroid infection remains unknown. The present study aimed to identify the function and mechanism of RDR1 in plant resistance to viroid infection. Overexpression of Nicotiana tabacum RDR1 (NtRDR1) delayed the accumulation of potato spindle tuber viroid (PSTVd) genomic RNA and PSTVd-derived small RNA (sRNA) in Nicotiana benthamiana plants at the early invasion stage, but not in the late stage of infection. Conversely, virus-induced gene silencing of tomato RDR1 (SlRDR1a) increased the susceptibility to PSTVd infection (increased viroid accumulation). Salicylic acid (SA) pretreatment induced SlRDR1a expression and enhanced the defence against PSTVd infection in tomato plants. Our study demonstrated that RDR1 is involved in SA-mediated defence and restricts the early systemic invasion by PSTVd in plants. The decreased PSTVd accumulation in N. benthamiana was not caused by efficient accumulation of PSTVd sRNAs. These results deepen our understanding of the mechanism of RDR1 in plant defence responses to viroid attack.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Citrus Research InstituteChinese Academy of Agricultural Sciences/Southwest UniversityChongqingChina
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteChinese Academy of Agricultural Sciences/Southwest UniversityChongqingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Environment and Plant Protection InstituteChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
17
|
Symptom Severity, Infection Progression and Plant Responses in Solanum Plants Caused by Three Pospiviroids Vary with the Inoculation Procedure. Int J Mol Sci 2021; 22:ijms22126189. [PMID: 34201240 PMCID: PMC8273692 DOI: 10.3390/ijms22126189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious viroid clones consist of dimeric cDNAs used to generate transcripts which mimic the longer-than-unit replication intermediates. These transcripts can be either generated in vitro or produced in vivo by agro-inoculation. We have designed a new plasmid, which allows both inoculation methods, and we have compared them by infecting Solanum lycopersicum and Solanum melongena with clones of Citrus exocortis virod (CEVd), Tomato chlorotic dwarf viroid (TCDVd), and Potato spindle tuber viroid (PSTVd). Our results showed more uniform and severe symptoms in agro-inoculated plants. Viroid accumulation and the proportion of circular and linear forms were different depending on the host and the inoculation method and did not correlate with the symptoms, which correlated with an increase in PR1 induction, accumulation of the defensive signal molecules salicylic (SA) and gentisic (GA) acids, and ribosomal stress in tomato plants. The alteration in ribosome biogenesis was evidenced by both the upregulation of the tomato ribosomal stress marker SlNAC082 and the impairment in 18S rRNA processing, pointing out ribosomal stress as a novel signature of the pathogenesis of nuclear-replicating viroids. In conclusion, this updated binary vector has turned out to be an efficient and reproducible method that will facilitate the studies of viroid–host interactions.
Collapse
|
18
|
Li S, Yang Y, Xing F, Che HY, Cao XR, Zhang ZX, Khoo YW, Zhou CY, Li SF. A rapid sap-direct reverse transcription-polymerase chain reaction method for detection of dendrobium viroid in Dendrobium plants. Lett Appl Microbiol 2021; 73:26-30. [PMID: 33786882 DOI: 10.1111/lam.13470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Abstract
Dendrobium viroid (DVd) was first reported in China in 2020, and it is the only viroid known to infect Orchidaceae family plants. In this study, we developed a simple reverse transcription-polymerase chain reaction (RT-PCR) method for the rapid detection of DVd in Dendrobium plants. When extracting the sap template from the leaves, they are first clamped between two layers of plastic film, and the sap is pressed out and collected with a pipette. Using this sap, DVd was detected by dot-blot and RT-PCR methods and, the expected amplicons were confirmed by sequencing analysis. The batch analysis of field samples revealed that this method can be used to detect DVd rapidly. The detection method also reduces cross-contamination between different samples and minimizes false positives. Thus, this sap-direct RT-PCR method allows effective and rapid DVd detection in the study of Orchidaceae plants.
Collapse
Affiliation(s)
- S Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, China
| | - Y Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - F Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Y Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - X R Cao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Z X Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y W Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - C Y Zhou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, China
| | - S F Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
19
|
Navarro B, Gisel A, Serra P, Chiumenti M, Di Serio F, Flores R. Degradome Analysis of Tomato and Nicotiana benthamiana Plants Infected with Potato Spindle Tuber Viroid. Int J Mol Sci 2021; 22:3725. [PMID: 33918424 PMCID: PMC8038209 DOI: 10.3390/ijms22073725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are infectious non-coding RNAs that infect plants. During infection, viroid RNAs are targeted by Dicer-like proteins, generating viroid-derived small RNAs (vd-sRNAs) that can guide the sequence specific cleavage of cognate host mRNAs via an RNA silencing mechanism. To assess the involvement of these pathways in pathogenesis associated with nuclear-replicating viroids, high-throughput sequencing of sRNAs and degradome analysis were carried out on tomato and Nicotiana benthamiana plants infected by potato spindle tuber viroid (PSTVd). Both hosts develop similar stunting and leaf curling symptoms when infected by PSTVd, thus allowing comparative analyses. About one hundred tomato mRNAs potentially targeted for degradation by vd-sRNAs were initially identified. However, data from biological replicates and comparisons between mock and infected samples reduced the number of bona fide targets-i.e., those identified with high confidence in two infected biological replicates but not in the mock controls-to only eight mRNAs that encode proteins involved in development, transcription or defense. Somewhat surprisingly, results of RT-qPCR assays revealed that the accumulation of only four of these mRNAs was inhibited in the PSTVd-infected tomato. When these analyses were extended to mock inoculated and PSTVd-infected N. benthamiana plants, a completely different set of potential mRNA targets was identified. The failure to identify homologous mRNA(s) targeted by PSTVd-sRNA suggests that different pathways could be involved in the elicitation of similar symptoms in these two species. Moreover, no significant modifications in the accumulation of miRNAs and in the cleavage of their targeted mRNAs were detected in the infected tomato plants with respect to the mock controls. Taken together, these data suggest that stunting and leaf curling symptoms induced by PSTVd are elicited by a complex plant response involving multiple mechanisms, with RNA silencing being only one of the possible components.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy;
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
| | - Pedro Serra
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Ricardo Flores
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| |
Collapse
|
20
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
21
|
Flores R, Navarro B, Delgado S, Serra P, Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 2021; 44:386-398. [PMID: 32379313 DOI: 10.1093/femsre/fuaa011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250-430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
22
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
23
|
Chiumenti M, Navarro B, Candresse T, Flores R, Di Serio F. Reassessing species demarcation criteria in viroid taxonomy by pairwise identity matrices. Virus Evol 2021; 7:veab001. [PMID: 33623708 PMCID: PMC7887442 DOI: 10.1093/ve/veab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With a small, circular and non-protein coding RNA genome, viroids are the smallest infectious agents. They invade plants, which in turn may develop symptoms. Since their discovery about 50 years ago, more than thirty viroids have been reported and classified using as species demarcation less than 90 per cent sequence identity on the overall genome and evidence of biological divergence with respect to the closest related viroids. In the last few years, new viroids have been identified that infect latently their (frequently) woody hosts and have a narrow experimental hosts range, complicating and slowing down studies on their biology. As a consequence, several viroids are still waiting for classification. Moreover, the number of new viroids is expected to increase in the next years due to the use of high-throughput sequencing technologies with diagnostics purposes. Therefore, establishment of reliable species demarcation criteria mainly based on molecular features of viroids is needed. Here, viroid classification is reassessed and a scheme based on pairwise sequence identity matrices is developed. After identifying a threshold pairwise identity score (PWIS) for each viroid genus, to be used as a species demarcation criterion, we show that most of those yet unclassified viroids can be assigned to a known or to a new species, thus limiting the need for additional biological evidence to only a few more complex situations. The advantages of this PWIS-based method are that the proposed identity thresholds for species demarcations are not arbitrarily established and evidence for biological divergence is not mandatory. Importantly, the current classification is not essentially modified. A protocol for a tentative fast classification of new viroids according to the proposed approach is also provided.
Collapse
Affiliation(s)
- Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon Cedex, CS20032 33882, France
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
24
|
A Singular and Widespread Group of Mobile Genetic Elements: RNA Circles with Autocatalytic Ribozymes. Cells 2020; 9:cells9122555. [PMID: 33260527 PMCID: PMC7761336 DOI: 10.3390/cells9122555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Circular DNAs, such as most prokaryotic and phage genomes, are a frequent form of nucleic acids, whereas circular RNAs had been regarded as unusual macromolecules until very recently. The first reported RNA circles were the family of small infectious genomes of viroids and circular RNA (circRNA) satellites of plant viruses, some of which contain small self-cleaving RNA motifs, such as the hammerhead (HHR) and hairpin ribozymes. A similar infectious circRNA, the unique human hepatitis delta virus (HDV), is another viral satellite that also encodes self-cleaving motifs called HDV ribozymes. Very recently, different animals have been reported to contain HDV-like circRNAs with typical HDV ribozymes, but also conserved HHR motifs, as we describe here. On the other hand, eukaryotic and prokaryotic genomes encode sequences able to self-excise as circRNAs, like the autocatalytic Group I and II introns, which are widespread genomic mobile elements. In the 1990s, the first circRNAs encoded in a mammalian genome were anecdotally reported, but their abundance and importance have not been unveiled until recently. These gene-encoded circRNAs are produced by events of alternative splicing in a process generally known as backsplicing. However, we have found a second natural pathway of circRNA expression conserved in numerous plant and animal genomes, which efficiently promotes the accumulation of small non-coding RNA circles through the participation of HHRs. Most of these genome-encoded circRNAs with HHRs are the transposition intermediates of a novel family of non-autonomous retrotransposons called retrozymes, with intriguing potential as new forms of gene regulation.
Collapse
|
25
|
Wang M, Gao S, Zeng W, Yang Y, Ma J, Wang Y. Plant Virology Delivers Diverse Toolsets for Biotechnology. Viruses 2020; 12:E1338. [PMID: 33238421 PMCID: PMC7700544 DOI: 10.3390/v12111338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over a hundred years of research on plant viruses has led to a detailed understanding of viral replication, movement, and host-virus interactions. The functions of vast viral genes have also been annotated. With an increased understanding of plant viruses and plant-virus interactions, various viruses have been developed as vectors to modulate gene expressions for functional studies as well as for fulfilling the needs in biotechnology. These approaches are invaluable not only for molecular breeding and functional genomics studies related to pivotal agronomic traits, but also for the production of vaccines and health-promoting carotenoids. This review summarizes the latest progress in these forefronts as well as the available viral vectors for economically important crops and beyond.
Collapse
Affiliation(s)
- Mo Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shilei Gao
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wenzhi Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| |
Collapse
|
26
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
27
|
Olmedo-Velarde A, Navarro B, Hu JS, Melzer MJ, Di Serio F. Novel Fig-Associated Viroid-Like RNAs Containing Hammerhead Ribozymes in Both Polarity Strands Identified by High-Throughput Sequencing. Front Microbiol 2020; 11:1903. [PMID: 33013728 PMCID: PMC7461866 DOI: 10.3389/fmicb.2020.01903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Based on high-throughput sequencing (HTS) data, the existence of viroid-like RNAs (Vd-LRNAs) associated with fig trees grown in the Hawaiian Islands has been predicted. One of these RNAs has been characterized as a circular RNA ranging in size from 357 to 360 nucleotides. Structural and biochemical features of this RNA, tentatively named fig hammerhead viroid-like RNA (FHVd-LR), markedly resemble those previously reported for several viroids and viroid-like satellite RNAs (Vd-LsatRNAs), which are non-protein-coding RNAs infecting their hosts autonomously and in combination with a helper virus, respectively. The full-length sequence of FHVd-LR variants was determined by RT-PCR, cloning, and sequencing. Despite a low global sequence identity with known viroids and Vd-LsatRNAs, FHVd-LR contains a hammerhead ribozyme (HRz) in each polarity strand. Northern blot hybridization assays identified the circular and linear forms of both polarity strands of FHVd-LR and showed that one strand, assigned the (+) polarity, accumulates at higher levels than the (-) polarity strand in vivo. The (+) polarity RNA assumes a rod-like secondary structure of minimal free energy with the conserved domains of the HRzs located in opposition to each other, a feature typical of several viroids and Vd-LRNAs. The HRzs of both FHVd-LR polarity strands were shown to be active in vitro during transcription, self-cleaving the RNAs at the predicted sites. These data, together with the sequence variability observed in the cloned and sequenced full-length variants, indicate that FHVd-LR is a novel viroid or Vd-LsatRNA. According to HTS data, the coexistence of FHVd-LR of different sizes in the same host cannot be excluded. The relationships of FHVd-LR with previously reported viroids and Vd-LsatRNAs, and the need to perform bioassays to conclusively clarify the biological nature of this circular RNA, are discussed.
Collapse
Affiliation(s)
- Alejandro Olmedo-Velarde
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - John S. Hu
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Michael J. Melzer
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
28
|
Więsyk A, Lirski M, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Differences in gene expression profiles at the early stage of Solanum lycopersicum infection with mild and severe variants of potato spindle tuber viroid. Virus Res 2020; 286:198090. [PMID: 32634444 DOI: 10.1016/j.virusres.2020.198090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Viroids with small, non-coding circular RNA genome can induce diseases in many plant species. The extend of infection symptoms depends on environmental conditions, viroid strain, and host plant species and cultivar. Pathogen recognition leads to massive transcriptional reprogramming to favor defense responses over normal cellular functions. To better understand the interaction between plant host and potato spindle tuber viroid (PSTVd) variants that differ in their virulence, comparative transcriptomic analysis was performed by an RNA-seq approach. The changes of gene expression were analyzed at the time point when subtle symptoms became visible in plants infected with the severe PSTVd-S23 variant, while those infected with the mild PSTVd-M variant looked like non-infected healthy plants. Over 3000 differentially expressed genes (DEGs) were recognized in both infections, but the majority of them were specific for infection with the severe variant. In both infections recognized DEGs were mainly related to biotic stress, hormone metabolism and signaling, transcription regulation, protein degradation, and transport. The DEGs related to cell cycle and microtubule were uniquely down-regulated only in the PSTVd-S23-infected plants. Similarly, expression of transcription factors from C2C2-GATA and growth-regulating factor (GRF) families was only altered upon infection with the severe variant. Both PSTVd variants triggered plant immune response; however expression of genes encoding crucial factors of this process was markedly more changed in the plants infected with the severe variant than in those with the mild one.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
29
|
Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. Root Transcriptomic Analysis Reveals Global Changes Induced by Systemic Infection of Solanum lycopersicum with Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2019; 11:v11110992. [PMID: 31671783 PMCID: PMC6893655 DOI: 10.3390/v11110992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach. Analysis indicated differential expression of genes related to various Gene Ontology categories depending on the stage of infection and PSTVd variant. A majority of cell-wall-related genes were down-regulated at early infection stages, but at the late stage, the number of up-regulated genes increased significantly. Along with observed alterations of many lignin-related genes, performed lignin quantification indicated their disrupted level in PSTVd-infected roots. Altered expression of genes related to biosynthesis and signaling of auxin and cytokinin, which are crucial for lateral root development, was also identified. Comparison of both PSTVd infections showed that transcriptional changes induced by the severe variant were stronger than those caused by the mild variant, especially at the late infection stage. Taken together, we showed that similarly to aboveground plant parts, PSTVd infection in the underground tissues activates the plant immune response.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
30
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
31
|
High-Throughput Sequencing Analysis of Small RNAs Derived from Coleus Blumei Viroids. Viruses 2019; 11:v11070619. [PMID: 31284471 PMCID: PMC6669434 DOI: 10.3390/v11070619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Characterization of viroid-derived small RNAs (vd-sRNAs) is important to understand viroid–host interactions; however, vd-sRNAs belonging to the genus Coleviroid are yet to be identified and characterized. Herein, we used coleus plants singly infected with coleus blumei viroid (CbVd)-1, -5, or -6 and doubly infected with CbVd-1 and -5 to identify and analyze their vd-sRNAs. We found sense and antisense vd-sRNAs for CbVd-1, -5 and -6, and 22-nt vd-sRNAs were the most abundant; moreover, the 5′-terminal nucleotides (nts) of CbVd-1, -5, and -6 were biased toward U and C, and sRNAs derived from these three viroids were unevenly distributed along their genomes. We also noted that CbVd-5 and -6 share a fragment that forms the right half of the rod-like secondary structure of these viroids, which implied that they generated almost the same type of vd-sRNAs. This finding indicated that vd-sRNA biogenesis is mainly determined by the primary sequence of their substrates. More importantly, we found two complementary vd-sRNAs (22 nt) that were generated from the central conserved region (CCR) of these three viroids, suggesting an important role of CCR in vd-sRNA biogenesis. In conclusion, our results provide novel insight into the biogenesis of vd-sRNAs and the biological roles of CCR.
Collapse
|
32
|
Štajner N, Radišek S, Mishra AK, Nath VS, Matoušek J, Jakše J. Evaluation of Disease Severity and Global Transcriptome Response Induced by Citrus bark cracking viroid, Hop latent viroid, and Their Co-Infection in Hop ( Humulus lupulus L.). Int J Mol Sci 2019; 20:E3154. [PMID: 31261625 PMCID: PMC6651264 DOI: 10.3390/ijms20133154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
Viroids are small non-capsidated, single-stranded, covalently-closed circular noncoding RNA replicons of 239-401 nucleotides that exploit host factors for their replication, and some cause disease in several economically important crop plants, while others appear to be benign. The proposed mechanisms of viroid pathogenesis include direct interaction of the genomic viroid RNA with host factors and post-transcriptional or transcriptional gene silencing via viroid-derived small RNAs (vd-sRNAs) generated by the host defensive machinery. Humulus lupulus (hop) plants are hosts to several viroids among which Hop latent viroid (HLVd) and Citrus bark cracking viroid (CBCVd) are attractive model systems for the study of viroid-host interactions due to the symptomless infection of the former and severe symptoms induced by the latter in this indicator host. To better understand their interactions with hop plant, a comparative transcriptomic analysis based on RNA sequencing (RNA-seq) was performed to reveal the transcriptional alterations induced as a result of single HLVd and CBCVd infection in hop. Additionally, the effect of HLVd on the aggressiveness of CBCVd that underlies severe stunting in hop in a mixed infection was studied by transcriptomic analysis. Our analysis revealed that CBCVd infection resulted in dynamic changes in the activity of genes as compared to single HLVd infection and their mixed infection. The differentially expressed genes that are involved in defense, phytohormone signaling, photosynthesis and chloroplasts, RNA regulation, processing and binding; protein metabolism and modification; and other mechanisms were more modulated in the CBCVd infection of hop. Nevertheless, Gene Ontology (GO) classification and pathway enrichment analysis showed that the expression of genes involved in the proteolysis mechanism is more active in a mixed infection as compared to a single one, suggesting co-infecting viroids may result in interference with host factors more prominently. Collectively, our results provide a deep transcriptome of hop and insight into complex single HLVd, CBCVd, and their coinfection in hop-plant interactions.
Collapse
Affiliation(s)
- Nataša Štajner
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Plant Protection Department, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Vishnu Sukumari Nath
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Chiumenti M, Navarro B, Venerito P, Civita F, Minafra A, Di Serio F. Molecular variability of apple hammerhead viroid from Italian apple varieties supports the relevance in vivo of its branched conformation stabilized by a kissing loop interaction. Virus Res 2019; 270:197644. [PMID: 31255643 DOI: 10.1016/j.virusres.2019.197644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
In the absence of protein-coding ability, viroid RNAs rely on direct interactions with host factors for their infectivity. RNA structural elements are likely involved in these interactions. Therefore, preservation of a structural element, despite the sequence variability existing between the variants of a viroid population, is considered a solid evidence of its relevant role in vivo. In this study, apple hammerhead viroid (AHVd) was first identified in the two apple cultivars 'Mela Rosa Guadagno' (MRG) and 'Agostinella' (AG), which are cultivated since long in Southern Italy, thus providing the first solid evidence of its presence in this country. Then, the natural variability of AHVd viroid populations infecting MRG and AG was studied. The sequence variants from the two Italian isolates shared only 82.1-87.7% sequence identity with those reported previously from other geographic areas, thus providing the possibility of exploring the impact of this sequence divergence on the proposed secondary structure. Interestingly, all the AHVd sequence variants considered in this study preserved a branched secondary structure stabilized by a kissing-loop interaction, resembling the conformation proposed previously for variants from other isolates. Indeed, most mutations did not modify the proposed conformation because they were co-variations, conversions of canonical into wobble base-pairs, or vice versa, as well as changes mapping at loops. Importantly, a cruciform structural element formed by four hairpins, one of which is implicated in the proposed kissing-loop interaction, was also preserved because several nucleotide changes actually resulted into two, three and up to five consecutive co-variations associated with other changes that did not affect the secondary structure. These data provide very strong evidence for the relevance in vivo of this cruciform structure which, together with kissing-loop interaction, likely contribute to further stabilizing the branched AHVd secondary structure.
Collapse
Affiliation(s)
- Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante (CNR), Bari, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante (CNR), Bari, Italy
| | - Pasquale Venerito
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia", Locorotondo, Italy
| | - Francesco Civita
- SINAGRI - Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | | |
Collapse
|
34
|
Wei S, Bian R, Andika IB, Niu E, Liu Q, Kondo H, Yang L, Zhou H, Pang T, Lian Z, Liu X, Wu Y, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc Natl Acad Sci U S A 2019; 116:13042-13050. [PMID: 31182602 PMCID: PMC6600922 DOI: 10.1073/pnas.1900762116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.
Collapse
Affiliation(s)
- Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 710-0046 Kurashiki, Japan
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
| |
Collapse
|
35
|
Abstract
Citrus can host a number of important vector- and graft-transmissible pathogens which cause severe diseases. Citrus disease management and clean stock programs require pathogen detection systems which must be economical and sensitive to maintain a healthy citrus industry. Rapid diagnostic tests for simultaneous detection of major graft-transmissible disease agents enable reduction of cost and time. The genetic and biological features of viruses and viroids can vary according to the strains/variants, with severe and mild strains described within the same species. The use of diagnostic tests that can allow to selectively discriminate severe strain(s) is a powerful tool to intercept the most harmful strains and to reduce the need for biological indexing. Moreover a combination of these detection methods will facilitate the studies on the interactions between CTV and viroids, a research topic only partially explored so far.
Collapse
|
36
|
Global Transcriptomic Analysis Reveals Insights into the Response of 'Etrog' Citron ( Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses 2019; 11:v11050453. [PMID: 31109003 PMCID: PMC6563217 DOI: 10.3390/v11050453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Citrus exocortis viroid (CEVd) is the causal agent of citrus exocortis disease. We employed CEVd-infected ‘Etrog’ citron as a system to study the feedback regulation mechanism using transcriptome analysis in this study. Three months after CEVd infection, the transcriptome of fresh leaves was analyzed, and 1530 differentially expressed genes were detected. The replication of CEVd in citron induced upregulation of genes encoding key proteins that were involved in the RNA silencing pathway such as Dicer-like 2, RNA-dependent RNA polymerase 1, argonaute 2, argonaute 7, and silencing defective 3, as well as those genes encoding proteins that are related to basic defense responses. Many genes involved in secondary metabolite biosynthesis and chitinase activity were upregulated, whereas other genes related to cell wall and phytohormone signal transduction were downregulated. Moreover, genes encoding disease resistance proteins, pathogenicity-related proteins, and heat shock cognate 70 kDa proteins were also upregulated in response to CEVd infection. These results suggest that basic defense and RNA silencing mechanisms are activated by CEVd infection, and this information improves our understanding of the pathogenesis of viroids in woody plants.
Collapse
|
37
|
Di Serio F, Torchetti EM, Daròs JA, Navarro B. Reassessment of Viroid RNA Cytosine Methylation Status at the Single Nucleotide Level. Viruses 2019; 11:E357. [PMID: 31003406 PMCID: PMC6521008 DOI: 10.3390/v11040357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
Composed of a few hundreds of nucleotides, viroids are infectious, circular, non-protein coding RNAs able to usurp plant cellular enzymes and molecular machineries to replicate and move in their hosts. Several secondary and tertiary RNA structural motifs have been implicated in the viroid infectious cycle, but whether modified nucleotides, such as 5C-methylcytosine (m5C), also play a role has not been deeply investigated so far. Here, the possible existence of m5C in both RNA polarity strands of potato spindle tuber viroid and avocado sunblotch viroid -which are representative members of the nucleus- and chloroplast-replicating viroids, respectively- has been assessed at single nucleotide level. We show that a standard bisulfite protocol efficiently used for identifying m5C in cellular RNAs may generate false positive results in the case of the highly structured viroid RNAs. Applying a bisulfite conversion protocol specifically adapted to RNAs with high secondary structure, no m5C was identified in both polarity strands of both viroids, indicating that this specific nucleotide modification does not likely play a role in viroid biology.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante (CNR), 70126 Bari, Italy.
| | | | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante (CNR), 70126 Bari, Italy.
| |
Collapse
|
38
|
Delgado S, Navarro B, Serra P, Gentit P, Cambra MÁ, Chiumenti M, De Stradis A, Di Serio F, Flores R. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol 2019; 16:906-917. [PMID: 30990352 DOI: 10.1080/15476286.2019.1600396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5'-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses.
Collapse
Affiliation(s)
- Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Beatriz Navarro
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Pedro Serra
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Pascal Gentit
- c Plant Health Laboratory (ANSES-PHL) , Angers , France
| | | | - Michela Chiumenti
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Angelo De Stradis
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Francesco Di Serio
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| |
Collapse
|
39
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
40
|
Abstract
Approaches based on next-generation sequencing (NGS) coupled with bioinformatics tools have been developed for detecting viruses and viroids infecting herbaceous and woody plants. Here we describe a protocol to extract nucleic acids from citrus bark and enrich them in double-stranded RNAs. These preparations can be efficiently used for generating cDNA libraries that, after pair-end sequencing and bioinformatics analyses, allow efficient identification of the viroids infecting the source plant.
Collapse
|
41
|
Marquez-Molins J, Navarro JA, Pallas V, Gomez G. Highly efficient construction of infectious viroid-derived clones. PLANT METHODS 2019; 15:87. [PMID: 31388344 PMCID: PMC6670230 DOI: 10.1186/s13007-019-0470-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Viroid research generally relies on infectious cDNA clones that consist of dimers of the entire viroid sequence. At present, those dimers are generated by self-ligation of monomeric cDNA, a strategy that presents several disadvantages: (i) low efficiency, (ii) it is a non-oriented reaction requiring tedious screenings and (iii) additional steps are required for cloning into a binary vector for agroinfiltration or for in vitro RNA production. RESULTS We have developed a novel strategy for simultaneous construction of a viroid dimeric cDNA and cloning into a multipurpose binary vector ready for agroinfiltration or in vitro transcription. The assembly is based on IIs restriction enzymes and positive selection and supposes a universal procedure for obtaining infectious clones of a viroid independently of its sequence, with a high efficiency. Thus, infectious clones of one viroid of each family were obtained and its infectivity was analyzed by molecular hybridization. CONCLUSION This is a zero-background strategy for direct cloning into a binary vector, optimized for the generation of infectious viroids. As a result, this methodology constitutes a powerful tool for viroid research and exemplifies the applicability of type IIs restriction enzymes and the lethal gene ccdB to design efficient and affordable direct cloning approaches of PCR products into binary vectors.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - Jose Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| |
Collapse
|
42
|
Goodrum G, Pelchat M. Insight into the Contribution and Disruption of Host Processes during HDV Replication. Viruses 2018; 11:v11010021. [PMID: 30602655 PMCID: PMC6356607 DOI: 10.3390/v11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.
Collapse
Affiliation(s)
- Gabrielle Goodrum
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
43
|
Hudu SA, Niazlin MT, Nordin SA, Tan SS, Omar H, Shahar H, Mutalib NA, Sekawi Z. Genetic diversity of hepatitis B co-infection with hepatitis C, D and E viruses among Malaysian chronic hepatitis B patients. Afr Health Sci 2018; 18:1117-1133. [PMID: 30766578 PMCID: PMC6354894 DOI: 10.4314/ahs.v18i4.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis B virus co-infection with other strains of viral hepatitis is associated with increased risk of liver cirrhosis and hepatic decompensation. OBJECTIVES This is a prevalence study that assessed the genetic diversity of chronic hepatitis B patients and coinfection. METHODS Chronic hepatitis B patients enrolled in this study were tested for antibodies of other hepatitis viruses using ELISA kits. Patient clinical profiles were collected and partial genes of HBV, HCV, and HEV were amplified, sequenced, and analyzed using phylogenetic analysis. The associations between variables were determined using the chi-squared test. RESULTS Of the 82 patients recruited for this study, 53.7% were non-cirrhotic, 22.0% cirrhotic, 20.7% acute flare and 3.7% hepatocellular carcinoma. Majority (58%) of patients had a high level of ALT (≥34 U/L). Sequence analysis showed HBV (63.9%) belonged to genotype B, HEV belonged to genotype 4 while HCV belonged to genotype 3a and the genotypes were found to be significantly associated with the clinical stage of the patients (χ2=56.632; p<0.01). Similarly, Hepatitis B e antigen was also found to be significantly associated with the clinical stage of infection (χ2=51.952; p<0.01). CONCLUSION This study revealed that genetic diversity was found to have a significant impact on the severity of infection.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, 840232 Sokoto State, Nigeria
| | - Mohd Taib Niazlin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| | - Soek Siam Tan
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Haniza Omar
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Hamiza Shahar
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Noor Aliza Mutalib
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| |
Collapse
|
44
|
Di Serio F, Ambrós S, Sano T, Flores R, Navarro B. Viroid Diseases in Pome and Stone Fruit Trees and Koch's Postulates: A Critical Assessment. Viruses 2018; 10:E612. [PMID: 30405008 PMCID: PMC6265958 DOI: 10.3390/v10110612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
Composed of a naked circular non-protein-coding genomic RNA, counting only a few hundred nucleotides, viroids-the smallest infectious agents known so far-are able to replicate and move systemically in herbaceous and woody host plants, which concomitantly may develop specific diseases or remain symptomless. Several viroids have been reported to naturally infect pome and stone fruit trees, showing symptoms on leaves, fruits and/or bark. However, Koch's postulates required for establishing on firm grounds the viroid etiology of these diseases, have not been met in all instances. Here, pome and stone fruit tree diseases, conclusively proven to be caused by viroids, are reviewed, and the need to pay closer attention to fulfilling Koch's postulates is emphasized.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy.
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | - Teruo Sano
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy.
| |
Collapse
|
45
|
Blackcurrant Leaf Chlorosis Associated Virus: Evidence of the Presence of Circular RNA during Infections. Viruses 2018; 10:v10050260. [PMID: 29762514 PMCID: PMC5977253 DOI: 10.3390/v10050260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 01/13/2023] Open
Abstract
Blackcurrant leaf chlorosis associated virus (BCLCaV) was detected recently by next-generation sequencing (NGS) and a new and distinct species in the genus Idaeovirus was proposed. Analysis of NGS-derived paired-end reads revealed the existence of bridge reads encompassing the 3′-terminus and 5′-terminus of RNA-2 or RNA-3 of BCLCaV. The full RNA-2 or RNA-3 could be amplified using outward facing or abutting primers; also, RNA-2/RNA-3 could be detected even after three consecutive RNase R enzyme treatments, with denaturation at 95 °C preceding each digestion. Evidence was obtained indicating that there are circular forms of BCLCaV RNA-2 and RNA-3.
Collapse
|
46
|
Więsyk A, Iwanicka-Nowicka R, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10050257. [PMID: 29762480 PMCID: PMC5977250 DOI: 10.3390/v10050257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023] Open
Abstract
Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in “Rutgers” tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd). The changes were analyzed over a time course of viroid infection development: (i) the pre-symptomatic stage; (ii) early symptoms; (iii) full spectrum of symptoms and (iv) the so-called ‘recovery’ stage, when stem regrowth was observed in severely affected plants. Gene expression profiles differed depending on stage of infection and variant. In S23-infected plants, the expression of over 3000 genes was affected, while M-infected plants showed 3-fold fewer differentially expressed genes, only 20% of which were specific to the M variant. The differentially expressed genes included many genes related to stress; defense; hormone metabolism and signaling; photosynthesis and chloroplasts; cell wall; RNA regulation, processing and binding; protein metabolism and modification and others. The expression levels of several genes were confirmed by nCounter analysis.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Correspondence: ; Tel.: +48-22-592-34-08; Fax: +48-22-592-21-90
| |
Collapse
|
47
|
Cordero T, Ortolá B, Daròs JA. Mutational Analysis of Eggplant Latent Viroid RNA Circularization by the Eggplant tRNA Ligase in Escherichia coli. Front Microbiol 2018; 9:635. [PMID: 29675002 PMCID: PMC5895719 DOI: 10.3389/fmicb.2018.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Eggplant latent viroid (ELVd) is a relatively small non-coding circular RNA that induces asymptomatic infections in eggplants (Solanum melongena L.). Like other viroid species that belong to the family Avsunviroidae, ELVd contains hammerhead ribozymes in the strands of both polarities that self-cleave RNAs producing terminal 5'-hydroxyl and 2',3'-cyclic phosphodiester groups. Available experimental data indicate that ELVd replicates in the chloroplasts of infected cells through a symmetric rolling-circle mechanism, in which RNA circularization is catalyzed by the chloroplastic isoform of the tRNA ligase. In this work, a mutational analysis was performed to gain insight into the sequence and structural requirements of the tRNA ligase-mediated circularization of ELVd RNAs. In the predicted minimum free energy conformation of the monomeric linear ELVd RNA intermediate of plus (+) polarity, the ligation site is located in the lower part of an opened internal loop, which is present in a quasi-rod-like structure that occupies the center of the molecule. The mutations analyzed herein consisted of punctual nucleotide substitutions and deletions surrounding the ligation site on the upper and lower strands of the ELVd quasi-double-stranded structure. Computational predictions of the mutated ELVd conformations indicated different degrees of distortions compared to the minimum free energy conformation of the wild-type ELVd linear monomer of + polarity. When these mutant RNAs were expressed in Escherichia coli, they were all circularized by the eggplant tRNA ligase with approximately the same efficiency as the wild-type ELVd, except for those that directly affected the ribozyme domain. These results suggest that the viroid ribozyme domains, in addition to self-cleavage, are also involved in the tRNA ligase-mediated circularization of the monomeric linear replication intermediates.
Collapse
Affiliation(s)
- Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
48
|
Serra P, Messmer A, Sanderson D, James D, Flores R. Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Res 2018; 249:8-15. [PMID: 29510173 DOI: 10.1016/j.virusres.2018.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/11/2023]
Abstract
Apple hammerhead viroid-like RNA (AHVd RNA) has been reported in different apple cultivars and geographic regions and, considering the presence of hammerhead ribozymes in both polarity strands, suspected to be either a viroid of the family Avsunviroidae or a viroid-like satellite RNA. Here we report that dimeric head-to-tail in vitro transcripts of a 433-nt reference variant of AHVd RNA from cultivar "Pacific Gala" are infectious when mechanically inoculated to apple, thus showing that this RNA is a bona fide viroid for which we have kept the name apple hammerhead viroid (AHVd) until its pathogenicity, if any, is better assessed. By combining thermodynamics-based predictions with co-variation analyses of the natural genetic diversity found in AHVd we have inferred the most likely conformations for both AHVd polarity strands in vivo, with that of the (+) polarity strand being stabilized by a kissing loop-interaction similar to those reported in peach latent mosaic viroid and chrysathemum chlorotic mottle viroid, the two known members of the genus Pelamoviroid (family Avsunviroidae). Therefore, AHVd RNA fulfills the biological and molecular criteria to be allocated to this genus, the members of which, intriguingly, display low global sequence identity but high structural conservation.
Collapse
Affiliation(s)
- Pedro Serra
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain
| | - Amber Messmer
- Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada
| | - Daniel Sanderson
- Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada
| | - Delano James
- Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada
| | - Ricardo Flores
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain.
| |
Collapse
|
49
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
50
|
Xia C, Li S, Hou W, Fan Z, Xiao H, Lu M, Sano T, Zhang Z. Global Transcriptomic Changes Induced by Infection of Cucumber ( Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Front Microbiol 2017; 8:2427. [PMID: 29312160 PMCID: PMC5733102 DOI: 10.3389/fmicb.2017.02427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
Fifteen years after transfer to hops, hop stunt viroid-grapevine (HSVd-g) was replaced by HSVd-hop (HSVd-h), a sequence variant that contains changes at five different positions. HSVd-g54 is a laboratory mutant derived from HSVd-g that differs from its progenitor by a single G to A substitution at position 54. While infection by HSVd-h induces only mild stunting in cucumber (Cucumis sativus L.), HSVd-g54 induces much more severe symptoms in this indicator host. Comparison of transcriptome profiles of cucumber infected with HSVd-h or HSVd-g54 with those of mock-inoculated controls obtained by whole transcriptome shotgun sequencing revealed that many genes related to photosynthesis were down-regulated following infection. In contrast, genes encoding RNA-dependent RNA polymerase 1 (CsRDR1), especially CsRDR1c1 and CsRDR1c2, as well as those related to basal defense responses were up-regulated. Expression of genes associated with phytohormone signaling pathways were also altered, indicating that viroid infection initiates a complex array of changes in the host transcriptome. HSVd-g54 induced an earlier and stronger response than HSVd-h, and further examination of these differences will contribute to a better understanding of the mechanisms that determine viroid pathogenicity.
Collapse
Affiliation(s)
- Changjian Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Agro-Biotechnology, Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanying Hou
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, State Tobacco Monopoly Bureau, Institue of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiguang Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|